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Objective: To investigate whether the neural augmentation technique can 
induce improvement of proprioceptive performance in Anterior cruciate 
ligament reconstruction (ACLR) patients.
Methods: Forty ACLR patients were recruited and randomly assigned to 
receive either active prefrontal cortex-targeted repetitive transcranial magnetic 
stimulation (rTMS) or sham stimulation (20 cases per group). All participants 
underwent the allocated intervention (active or sham rTMS over the prefrontal 
cortex) and completed standardized balance and proprioceptive assessments 
both pre- and post-intervention to evaluate the neuromodulatory effects 
on proprioceptive function in ACLR patients. The alpha level for statistical 
significance was set at ρ ≤ 0.05 a priori.
Results: In the rTMS group, the Center of Pressure Area (COPA) and the Center 
of Pressure Sway (COPS) of the injured limb were significantly reduced before 
and after repeated transcranial magnetic stimulation (p = 0.002), and the 30° 
positional sensory stimulation was significantly improved compared with the 
pre-stimulation period (p = 0.012).
Conclusion: Neuro-enhancement technology can improve the proprioceptive 
performance of ACLR patients and thus improve their motor ability.
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1 Introduction

Anterior cruciate ligament (ACL) injuries represent a prevalent category of knee ligament 
trauma in sports medicine, particularly among athletes, significantly impairing motor function and 
occupational capacity in young adults (Konishi, 2018). Anterior cruciate ligament reconstruction 
(ACLR) is widely regarded as the gold-standard treatment, aiming to restore knee joint 
biomechanical stability and facilitate a return to pre-injury activity levels (Hughes et al., 2020). 
However, clinical observations reveal suboptimal postoperative functional recovery rates, with at 
least 20% of patients failing to regain pre-injury motor performance. Beyond mechanical instability, 
pain, kinesiophobia, and arthrogenic muscle inhibition, emerging evidence implicates 
proprioceptive dysfunction as a critical contributing factor (Kaya et al., 2019).
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Proprioception—a cornerstone of sensorimotor integration—
enables spatial perception of body position and coordinated 
movement execution (Moon et  al., 2021). The ACL contributes 
crucially to proprioceptive feedback during dynamic activities, 
modulating knee stability and neuromuscular control (Xu et al., 2022). 
This feedback mechanism is essential for balance maintenance, 
dynamic motion control, and injury prevention, especially in athletic 
populations. ACLR patients frequently exhibit proprioceptive deficits 
due to the injury’s pathoanatomy, surgical intervention, and 
rehabilitation processes (Arumugam et  al., 2021), which may 
precipitate functional impairment and elevated reinjury risk (Forelli 
et al., 2023). Post-injury and reconstruction, associated ligamentous 
structures and neural pathways often remain compromised, with 
deficits persisting beyond structural healing (Zandiyeh et al., 2019). 
Therefore, comprehensive rehabilitation must address not only 
mechanical joint restoration but also the crucial re-establishment of 
proprioceptive acuity (Chaput et al., 2022).

Joint position sense (JPS) is the most commonly used method to 
assess proprioceptive deficits, typically involving passive or active 
reproduction of joint angles under visual occlusion (Hillier et  al., 
2015). ACLR patients exhibit impaired JPS accuracy (Zhao et  al., 
2023). Center of pressure Area (COPA) refers to the envelope area of 
the center of pressure trajectory, reflecting overall static balance 
stability, while center of pressure Sway (COPS) measures the 
displacement amplitude of the center of pressure in the anterior–
posterior and medial-lateral directions, quantifying postural sway. 
Both are closely related to lower-limb proprioception—declines in 
proprioceptive accuracy lead to increased COPA area and greater 
COPS sway, indicating impaired balance control (Horváth et al., 2023).

Concurrently with proprioceptive deficits, ACLR patients develop 
neuroplastic adaptations in the prefrontal cortex (Grooms et al., 2017). 
Compared to healthy controls, ACLR patients demonstrate 
significantly reduced prefrontal activation during motor tasks, with 
the degree of proprioceptive deficit showing positive correlation with 
prefrontal engagement (Cao et al., 2024; Strong et al., 2022). This 
neural divergence suggests impaired recruitment of prefrontal 
resources to support complex motor tasks. To maintain post-injury 
dynamic knee stability (Gokeler et al., 2019), ACLR patients exhibit 
heightened cognitive and cross-modal neural activity for basic knee 
motor control (Chaput et al., 2024). Such neural compensation may 
foster excessive reliance on visual-cognitive processing to sustain 
fundamental functions like proprioception and dynamic stability 
(Miko et  al., 2021), shifting sensorimotor strategies toward 
visuomotor dependence.

Proprioception-focused training demonstrates improved 
intervention outcomes when combined with central neuromodulation 
(Liu et al., 2024). Among these approaches, repetitive transcranial 
magnetic stimulation (rTMS) has emerged as a promising adjunct 
(Veldema and Gharabaghi, 2022). As a non-invasive brain stimulation 
technique, rTMS utilizes pulsed magnetic fields to modulate cortical 
excitability, enabling targeted neuromodulation (Klomjai et al., 2015). 
Its therapeutic efficacy has been established in stroke rehabilitation, 
chronic pain management, and neurodegenerative diseases 
(Lefaucheur et al., 2020). Notably, rTMS exhibits neurophysiological 
potential for enhancing proprioceptive function and facilitating 
sensorimotor recovery (Poh et al., 2022). The mechanism of rTMS-
mediated proprioceptive improvement involves synaptic plasticity 
modulation within the central nervous system. Specifically, rTMS may 

activate relevant brain regions and induce cortical reorganization, 
augmenting the brain’s compensatory capacity post-injury (Jannati 
et  al., 2023). For ACLR patients with disrupted proprioceptive 
pathways, rTMS could potentially restore neural circuit functionality 
(Xia et al., 2023). By enhancing prefrontal cortical excitability and 
functional connectivity, rTMS may optimize proprioceptive input 
processing efficiency, thereby ameliorating visuomotor dependence 
and improving rehabilitation responsiveness (Zheng et  al., 2024). 
rTMS improves vestibular dependent balance control by targeting the 
cerebellum and optimizes motor planning and posture control for 
balance tasks by acting on brain regions related to the prefrontal lobe 
(Parikh et  al., 2024; Schoeberl et  al., 2024). Nevertheless, existing 
research on rTMS for proprioceptive enhancement in musculoskeletal 
disorders—particularly ACLR—remains limited. Prior studies 
predominantly focus on balance and gait tasks in stroke or multiple 
sclerosis populations (Hofmeijer et al., 2023), findings that may not 
directly translate to ACLR’s unique sensorimotor requirements. 
Consequently, systematic investigation into rTMS’s specific effects on 
proprioceptive performance in ACLR patients is imperative.

This study employs a randomized sham-controlled design to 
evaluate rTMS-induced improvements in proprioceptive performance 
among ACLR patients, as measured by trajectory length reduction and 
stability enhancement during balance tasks, along with improved joint 
position sense testing outcomes. We hypothesize that active rTMS will 
significantly enhance proprioceptive performance compared to sham 
stimulation. By elucidating the role of rTMS-based neuro-
enhancement technology in ACLR proprioceptive recovery, this study 
advances discussions on innovative rehabilitative interventions 
through dual physiological and functional perspectives. The findings 
will establish a foundation for subsequent research while deepening 
understanding of neurophysiological mechanisms underlying post-
injury proprioceptive rehabilitation.

2 Methods

2.1 General information

Forty patients who underwent ACLR in the Binzhou Medical 
University Hospital from January 2024 to October 2024 were selected 
and randomly divided into rTMS group and sham group. After 
confirming normality with the Shapiro–Wilk test, continuous baseline 
characteristics were compared using paired t-tests. Comparison of 
demographic and clinical characteristics between groups showed no 
statistically significant differences (p > 0. 05) (Table 1). All participants 
provided written informed consent prior to enrollment. This study 
was approved by the Ethics Committee of the Affiliated Hospital of 
Binzhou Medical University (under the Ethical Approval Number 
2022-G 29–01).

2.2 Inclusion criteria

The inclusion criteria were as follows: (1) MRI showing simple 
ACL injury with good ligament tissue structure; (2) no meniscal 
injury; (3) no presence of internal tumors, infection, fracture; (4) no 
mental illness; (5) no unstable vital signs in major organs such as the 
heart, brain, and kidney; (6) no ACL injury secondary to immune and 
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metabolic diseases; (7) no severe osteoporosis; (8) no venous 
thrombosis; (9) not pregnant or lactating women; (10) informed 
consent and voluntary cooperation of patients; (11) unilateral knee 
injury; (12) absence of periarticular muscle atrophy (Palke et  al., 
2022); (13) no limitation in knee joint range of motion (Proske, 2019).

2.3 Test program

Prior to stimulation, all participants completed a balance test and 
a proprioceptive test. rTMS was applied to the patients in the 
experimental group using standard treatment parameters (Choi et al., 
2016; Kakuda et al., 2013), with the stimulation intensity set at 10% 
subthreshold to the resting motor threshold, a frequency of 10 times 
per second, and each stimulation pulse lasting 5 s at 25-s intervals for 
a period of 20 min. In the sham group, the coils were rotated 90°on 
their handles to position them tangentially to the scalp. While this 
adjustment allowed patients to hear the instrument’s clicking sound 
during treatment, it effectively prevented the delivery of actual neural 
stimulation. The stimulation target was the unilateral prefrontal cortex 
contralateral to the injured limb, based on the principle of central 
nervous system cross-lateral control (Figure 1). After stimulation, 
participants were again administered a balance test and a 
proprioceptive test to assess the effects of repetitive rTMS on 
proprioception in ACLR patients. The exclusion criteria were as 
follows: (1) Limited joint movement prevents accurate testing; (2) 
patients unable to complete evaluation and rehabilitation training as 
required. None of the subjects reported any adverse side effects 
concerning pain on the scalp or headaches after the experiment.

2.4 Plantar center of pressure (COP) 
assessment

All subjects were assessed for postural stability in the standing 
position using the Fourier Intelligence Balance Function Training 
Assessment System (model AL-600; Fourier Intelligence, Shanghai 
Fourier Intelligence Technology Co., Ltd., Shanghai, China) (Liu et al., 
2016). The system consists of a pressure test plate and a computerized 
system. The middle part of the pressure test plate is equipped with 
pressure sensors, which receive vertical pressure changes from the feet 
and analyze the COP changes, reflecting the COP position and 
movement; the computer system runs the PelmaMotus software, 
which analyzes the incoming data from the force plate and records the 
changes in COP position during the test.

Before each use, the pressure test board was firstly corrected, and 
after correction, standing on both feet in the fixed position of the 
pressure test board, with arms hanging down, eyes looking straight 

ahead, keeping steady, the frame rate of the test board was 100 
frames/s. The evaluation indexes are as follows: ① COPA: COPA is the 
area of the COP envelope graph of each frame, reflecting the limit 
range of the human body’s movement of the center of pressure, and 
when the range of movement is smaller, the smaller the value; ② 
COPS: COPS is the ratio of the length of the COP trajectory to the test 
time, reflecting the human body’s micro-postural control function. 
The test time is fixed, when the COP trajectory is shorter, the smaller 
this value is.

2.5 Knee joint position perception 
measurement

Joint angle error testing is a viable method to assess clinical joint 
proprioception, which can be  used to accurately determine the 
position of a specific body part in space by measuring the degree of 
angular deviation from the starting position. Our study assessed the 
proprioceptive state using isokinetic dynamometer NX A8-3 (Yikang, 
Guangzhou, China). The outcome variables were measured in the 
following four trials: (1) measurement of injured limb 30°; (2) 
measurement of uninjured limb 30°; (3) measurement of injured limb 
60° and (4) measurement of uninjured limb 60°. We have been trained 
as orthopedic rehabilitation therapists prior to the start of the trial, 
and after achieving a uniform standard, two senior physicians from 
the rehabilitation assessment team conducted a position 
perception assessment.

The specific operations were as follows: The knee was moved from 
a 90° flexion starting position passively to each of the target angles of 
30° and 60°. We have reminded patients to close their eyes before 
collecting data. Please patient hold the leg in the 30° knee extension 
and 60° knee extension positions for 10s to allow the patient to 
memorize the position, and was then returned to 90° knee flexion. 
After a pause of 10 s, the patient, with the memory of the active knee 
flexion, moves the lower limb in the same way by active contractions 
and stops when the patient perceives that the target angle has been 
reached. The mean values of the six trials were obtained for each 
patient at each angle and used to calculate the difference between the 

TABLE 1  Classification of characteristics.

Variable rTMS Sham

N 20 20

Age (years) 27.10 ± 4.41 28.10 ± 4.71

Height (cm) 169.80 ± 8.38 170.85 ± 7.67

Weight (kg) 66.4 ± 10.60 64.2 ± 10.81

Body Mass Index (kg/m2) 22.99 ± 3.01 21.85 ± 2.12

FIGURE 1

The prefrontal region of the cerebral cortex.
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actual angle achieved and the target angle. The smaller the difference, 
the better the patient’s perception of the position.

2.6 Statistical methods

All statistical analyses were performed using Statistical Package for 
the Social Sciences (SPSS) software (version26.0, IL, USA). The 
Shapiro–Wilk test was applied to test the normality of all data. However, 
all data failed the normality tests. Due to non-normality of the data, 
Wilcoxon signed-rank tests were performed for related samples 
comparisons. Differences were considered statistically significant at 
p < 0.05. Data plots were obtained using GraphPad Prism 8 software.

3 Results

COPA on the injured limb of the rTMS group before and after 
treatment was greater than that after treatment (p = 0.002) 
(Figure 2); there was no statistically significant difference between 
COPA and COPS on the uninjured limb of the true stimulation 
group and the uninjured limb of the sham stimulation group before 
and after treatment (Figure 3). The 30° position perception on the 

injured limb of the rTMS group waited until after treatment to get 
better and there was a statistically significant difference between the 
two sides of the group (p = 0.012) (Figure  4); there was no 
statistically significant difference between the 30° and 60° position 
perception of the uninjured limb of the rTMS group and the 
uninjured limb of the sham group in the before-after treatment 
comparison (Figure  5). There was no statistically significant 
difference between the 30° and 60°position perception of the both 
side of the rTMS group and the sham group.

4 Discussion

Our findings demonstrate significant improvements in 
proprioceptive measures following rTMS intervention, specifically 
evidenced by reduced COPA and COPS during balance tests, with 
particularly pronounced COPA reduction in the injured limb of the 
rTMS group. The marked enhancement in 30° joint position sense 
further confirms rTMS’s efficacy in modulating central proprioceptive 
mechanisms. In contrast, the sham stimulation group showed no 
significant proprioceptive changes, reinforcing that observed benefits 
derive from rTMS-specific intervention rather than temporal effects 
or participant bias.

FIGURE 2

Comparison of COPA and COPS in patients with ACLR in rTMS group. *p < 0.05. (a) COPA in the uninjured limb, (b) COPS in the uninjured limb, (c) 
COPA in the injured limb, (d) COPS in the injured limb.
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Proprioception—the ability to perceive body segment position 
and movement effort—is critical for balance and coordinated 
movement in ACLR patients (Ventura et al., 2024). These patients 
commonly exhibit proprioceptive deficits that cause abnormal 
peripheral afferent signals, leading to central compensation through 
enhanced prefrontal cognitive control and somatosensory cortex 
processing (An et al., 2022). When performing complex tasks, ACLR 
patients require stronger prefrontal-premotor co-activation to 
maintain motor control. This neural adaptation may result in 
insufficient cognitive resources during dual/multi-tasking situations, 
representing a neuroplastic barrier to functional recovery and a 
contributor to reinjury risk (Hu et al., 2023).

While neural augmentation techniques have shown benefits for 
balance and motor tasks across various clinical conditions (Schoeberl 
et al., 2024; Menezes et al., 2024), their application to proprioceptive 
recovery remains limited. rTMS has been confirmed to selectively 
modulate regional cortical excitability. By enhancing prefrontal-premotor 
circuit excitability, rTMS effectively reduced injured limb COPA and 
improved 30° joint position sense, demonstrating its capacity to address 
proprioceptive deficits common in ACLR patients (Gilio et al., 2009).

Our unilateral prefrontal stimulation protocol warrants 
consideration. Given that intrahemispheric prefrontal connections to 
motor/sensory regions substantially exceed interhemispheric 

connections, combined with ACLR patients’ characteristic 
interhemispheric imbalance (reduced excitability in the hemisphere 
contralateral to injury with compensatory hyperexcitability ipsilaterally), 
rTMS appears to restore this equilibrium (An et al., 2022). This explains 
why statistically significant improvements primarily manifested in the 
injured limb despite bilateral trend-level enhancements.

Previous studies note that while ACLR patients’ proprioception 
generally improves over time, persistent deficits remain particularly 
evident at 30° joint position testing, with minimal differences at 60° 
(Zhao et al., 2023; Zhang et al., 2018). This discrepancy may stem 
from differential muscle recruitment: at 60° flexion, greater 
quadriceps and hamstring activation (including hamstring isometric 
contraction and quadriceps-hamstring co-contraction) generates 
substantial muscular afferent input that compensates for 
ACL-mediated proprioceptive loss, accounting for limited 60° 
position sense changes in our study.

Our results underscore proprioception’s pivotal role in athletic 
performance and functional recovery. Addressing proprioceptive deficits 
through rTMS may ameliorate balance impairments, agility deficits, and 
neuromuscular control abnormalities—key factors contributing to 
elevated reinjury risk in ACLR patients (Buckthorpe, 2021). Incorporating 
rTMS as an adjunct to conventional physiotherapy could potentially 
accelerate rehabilitation timelines and optimize functional outcomes.

FIGURE 3

Comparison of COPA and COPS in patients with ACLR in sham group. (a) COPA in the uninjured limb, (b) COPS in the uninjured limb, (c) COPA in the 
injured limb, (d) COPS in the injured limb.
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FIGURE 4

Comparison of bilateral lower limb position perception in patients with ACLR in rTMS group. *p < 0.05. (a) The position sense of 30° in the uninjured limb, 
(b) The position sense of 30° in the injured limb, (c) The position sense of 60° in the uninjured limb, (d) The position sense of 60° in the injured limb.

FIGURE 5

Comparison of bilateral lower limb position perception in patients with ACLR in sham group. (a) The position sense of 30° in the uninjured limb, (b) The 
position sense of 30° in the injured limb, (c) The position sense of 60° in the uninjured limb, (d) The position sense of 60° in the injured limb.
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5 Limitations

This study has certain limitations, including a relatively small 
sample size (n = 40). To enhance the robustness and 
generalizability of the findings, we plan to conduct larger-scale, 
multicenter trials in the future. Additionally, long-term follow-up 
studies will be implemented to validate the sustained effects of 
neuro-enhancement technology. These results were obtained 
using a standard rTMS treatment protocol; therefore, the 
applicability of these findings to other stimulation protocols 
remains unknown.

6 Conclusion

In conclusion, this study demonstrates that rTMS can significantly 
improve proprioceptive task performance in ACLR patients, including 
enhanced balance control and joint position sense accuracy. However, 
the broader effects on motor function recovery and rehabilitation 
outcomes require further investigation.
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