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Objective: To investigate whether the neural augmentation technique can
induce improvement of proprioceptive performance in Anterior cruciate
ligament reconstruction (ACLR) patients.

Methods: Forty ACLR patients were recruited and randomly assigned to
receive either active prefrontal cortex-targeted repetitive transcranial magnetic
stimulation (rTMS) or sham stimulation (20 cases per group). All participants
underwent the allocated intervention (active or sham rTMS over the prefrontal
cortex) and completed standardized balance and proprioceptive assessments
both pre- and post-intervention to evaluate the neuromodulatory effects
on proprioceptive function in ACLR patients. The alpha level for statistical
significance was set at p < 0.05 a priori.

Results: In the rTMS group, the Center of Pressure Area (COPA) and the Center
of Pressure Sway (COPS) of the injured limb were significantly reduced before
and after repeated transcranial magnetic stimulation (p = 0.002), and the 30°
positional sensory stimulation was significantly improved compared with the
pre-stimulation period (p = 0.012).

Conclusion: Neuro-enhancement technology can improve the proprioceptive
performance of ACLR patients and thus improve their motor ability.

KEYWORDS

anterior cruciate ligament reconstruction, proprioception, repetitive transcranial
magnetic stimulation, balance control, joint position sense

1 Introduction

Anterior cruciate ligament (ACL) injuries represent a prevalent category of knee ligament
trauma in sports medicine, particularly among athletes, significantly impairing motor function and
occupational capacity in young adults (Konishi, 2018). Anterior cruciate ligament reconstruction
(ACLR) is widely regarded as the gold-standard treatment, aiming to restore knee joint
biomechanical stability and facilitate a return to pre-injury activity levels (Hughes et al., 2020).
However, clinical observations reveal suboptimal postoperative functional recovery rates, with at
least 20% of patients failing to regain pre-injury motor performance. Beyond mechanical instability,
pain, kinesiophobia, and arthrogenic muscle inhibition, emerging evidence implicates
proprioceptive dysfunction as a critical contributing factor (Kaya et al., 2019).
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Proprioception—a cornerstone of sensorimotor integration—
enables spatial perception of body position and coordinated
movement execution (Moon et al.,, 2021). The ACL contributes
crucially to proprioceptive feedback during dynamic activities,
modulating knee stability and neuromuscular control (Xu et al., 2022).
This feedback mechanism is essential for balance maintenance,
dynamic motion control, and injury prevention, especially in athletic
populations. ACLR patients frequently exhibit proprioceptive deficits
due to the injury’s pathoanatomy, surgical intervention, and
rehabilitation processes (Arumugam et al, 2021), which may
precipitate functional impairment and elevated reinjury risk (Forelli
et al.,, 2023). Post-injury and reconstruction, associated ligamentous
structures and neural pathways often remain compromised, with
deficits persisting beyond structural healing (Zandiyeh et al., 2019).
Therefore, comprehensive rehabilitation must address not only
mechanical joint restoration but also the crucial re-establishment of
proprioceptive acuity (Chaput et al., 2022).

Joint position sense (JPS) is the most commonly used method to
assess proprioceptive deficits, typically involving passive or active
reproduction of joint angles under visual occlusion (Hillier et al.,
2015). ACLR patients exhibit impaired JPS accuracy (Zhao et al,,
2023). Center of pressure Area (COPA) refers to the envelope area of
the center of pressure trajectory, reflecting overall static balance
stability, while center of pressure Sway (COPS) measures the
displacement amplitude of the center of pressure in the anterior-
posterior and medial-lateral directions, quantifying postural sway.
Both are closely related to lower-limb proprioception—declines in
proprioceptive accuracy lead to increased COPA area and greater
COPS sway, indicating impaired balance control (Horvath et al., 2023).

Concurrently with proprioceptive deficits, ACLR patients develop
neuroplastic adaptations in the prefrontal cortex (Grooms et al., 2017).
Compared to healthy controls, ACLR patients demonstrate
significantly reduced prefrontal activation during motor tasks, with
the degree of proprioceptive deficit showing positive correlation with
prefrontal engagement (Cao et al., 2024; Strong et al., 2022). This
neural divergence suggests impaired recruitment of prefrontal
resources to support complex motor tasks. To maintain post-injury
dynamic knee stability (Gokeler et al., 2019), ACLR patients exhibit
heightened cognitive and cross-modal neural activity for basic knee
motor control (Chaput et al., 2024). Such neural compensation may
foster excessive reliance on visual-cognitive processing to sustain
fundamental functions like proprioception and dynamic stability
(Miko et al., 2021), shifting sensorimotor strategies toward
visuomotor dependence.

Proprioception-focused  training demonstrates improved
intervention outcomes when combined with central neuromodulation
(Liu et al., 2024). Among these approaches, repetitive transcranial
magnetic stimulation (rTMS) has emerged as a promising adjunct
(Veldema and Gharabaghi, 2022). As a non-invasive brain stimulation
technique, rTMS utilizes pulsed magnetic fields to modulate cortical
excitability, enabling targeted neuromodulation (Klomyjai et al., 2015).
Its therapeutic efficacy has been established in stroke rehabilitation,
chronic pain management, and neurodegenerative diseases
(Lefaucheur et al., 2020). Notably, rTMS exhibits neurophysiological
potential for enhancing proprioceptive function and facilitating
sensorimotor recovery (Poh et al., 2022). The mechanism of rTMS-
mediated proprioceptive improvement involves synaptic plasticity
modulation within the central nervous system. Specifically, rTMS may
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activate relevant brain regions and induce cortical reorganization,
augmenting the brain’s compensatory capacity post-injury (Jannati
et al,, 2023). For ACLR patients with disrupted proprioceptive
pathways, rTMS could potentially restore neural circuit functionality
(Xia et al., 2023). By enhancing prefrontal cortical excitability and
functional connectivity, rTMS may optimize proprioceptive input
processing efficiency, thereby ameliorating visuomotor dependence
and improving rehabilitation responsiveness (Zheng et al., 2024).
r'TMS improves vestibular dependent balance control by targeting the
cerebellum and optimizes motor planning and posture control for
balance tasks by acting on brain regions related to the prefrontal lobe
(Parikh et al., 2024; Schoeberl et al., 2024). Nevertheless, existing
research on rTMS for proprioceptive enhancement in musculoskeletal
disorders—particularly ACLR—remains limited. Prior studies
predominantly focus on balance and gait tasks in stroke or multiple
sclerosis populations (Hofmeijer et al., 2023), findings that may not
directly translate to ACLRs unique sensorimotor requirements.
Consequently, systematic investigation into rTMS’s specific effects on
proprioceptive performance in ACLR patients is imperative.

This study employs a randomized sham-controlled design to
evaluate rTMS-induced improvements in proprioceptive performance
among ACLR patients, as measured by trajectory length reduction and
stability enhancement during balance tasks, along with improved joint
position sense testing outcomes. We hypothesize that active rTMS will
significantly enhance proprioceptive performance compared to sham
stimulation. By elucidating the role of rTMS-based neuro-
enhancement technology in ACLR proprioceptive recovery, this study
advances discussions on innovative rehabilitative interventions
through dual physiological and functional perspectives. The findings
will establish a foundation for subsequent research while deepening
understanding of neurophysiological mechanisms underlying post-
injury proprioceptive rehabilitation.

2 Methods
2.1 General information

Forty patients who underwent ACLR in the Binzhou Medical
University Hospital from January 2024 to October 2024 were selected
and randomly divided into rTMS group and sham group. After
confirming normality with the Shapiro-Wilk test, continuous baseline
characteristics were compared using paired t-tests. Comparison of
demographic and clinical characteristics between groups showed no
statistically significant differences (p > 0. 05) (Table 1). All participants
provided written informed consent prior to enrollment. This study
was approved by the Ethics Committee of the Affiliated Hospital of
Binzhou Medical University (under the Ethical Approval Number
2022-G 29-01).

2.2 Inclusion criteria

The inclusion criteria were as follows: (1) MRI showing simple
ACL injury with good ligament tissue structure; (2) no meniscal
injury; (3) no presence of internal tumors, infection, fracture; (4) no
mental illness; (5) no unstable vital signs in major organs such as the
heart, brain, and kidney; (6) no ACL injury secondary to immune and
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TABLE 1 Classification of characteristics.

Variable rTMS Sham
N 20 20

Age (years) 27.10 £ 4.41 28.10 £ 4.71
Height (cm) 169.80 + 8.38 170.85 £ 7.67
Weight (kg) 66.4 + 10.60 64.2 +10.81
Body Mass Index (kg/m?) 22.99 +3.01 21.85+2.12

metabolic diseases; (7) no severe osteoporosis; (8) no venous
thrombosis; (9) not pregnant or lactating women; (10) informed
consent and voluntary cooperation of patients; (11) unilateral knee
injury; (12) absence of periarticular muscle atrophy (Palke et al.,
2022); (13) no limitation in knee joint range of motion (Proske, 2019).

2.3 Test program

Prior to stimulation, all participants completed a balance test and
a proprioceptive test. rTMS was applied to the patients in the
experimental group using standard treatment parameters (Choi et al.,
2016; Kakuda et al., 2013), with the stimulation intensity set at 10%
subthreshold to the resting motor threshold, a frequency of 10 times
per second, and each stimulation pulse lasting 5 s at 25-s intervals for
a period of 20 min. In the sham group, the coils were rotated 90°on
their handles to position them tangentially to the scalp. While this
adjustment allowed patients to hear the instrument’s clicking sound
during treatment, it effectively prevented the delivery of actual neural
stimulation. The stimulation target was the unilateral prefrontal cortex
contralateral to the injured limb, based on the principle of central
nervous system cross-lateral control (Figure 1). After stimulation,
participants were again administered a balance test and a
proprioceptive test to assess the effects of repetitive rTMS on
proprioception in ACLR patients. The exclusion criteria were as
follows: (1) Limited joint movement prevents accurate testing; (2)
patients unable to complete evaluation and rehabilitation training as
required. None of the subjects reported any adverse side effects
concerning pain on the scalp or headaches after the experiment.

2.4 Plantar center of pressure (COP)
assessment

All subjects were assessed for postural stability in the standing
position using the Fourier Intelligence Balance Function Training
Assessment System (model AL-600; Fourier Intelligence, Shanghai
Fourier Intelligence Technology Co., Ltd., Shanghai, China) (Liu et al.,
2016). The system consists of a pressure test plate and a computerized
system. The middle part of the pressure test plate is equipped with
pressure sensors, which receive vertical pressure changes from the feet
and analyze the COP changes, reflecting the COP position and
movement; the computer system runs the PelmaMotus software,
which analyzes the incoming data from the force plate and records the
changes in COP position during the test.

Before each use, the pressure test board was firstly corrected, and
after correction, standing on both feet in the fixed position of the
pressure test board, with arms hanging down, eyes looking straight
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FIGURE 1
The prefrontal region of the cerebral cortex.

ahead, keeping steady, the frame rate of the test board was 100
frames/s. The evaluation indexes are as follows: © COPA: COPA is the
area of the COP envelope graph of each frame, reflecting the limit
range of the human body’s movement of the center of pressure, and
when the range of movement is smaller, the smaller the value; @
COPS: COPS is the ratio of the length of the COP trajectory to the test
time, reflecting the human body’s micro-postural control function.
The test time is fixed, when the COP trajectory is shorter, the smaller
this value is.

2.5 Knee joint position perception
measurement

Joint angle error testing is a viable method to assess clinical joint
proprioception, which can be used to accurately determine the
position of a specific body part in space by measuring the degree of
angular deviation from the starting position. Our study assessed the
proprioceptive state using isokinetic dynamometer NX A8-3 (Yikang,
Guangzhou, China). The outcome variables were measured in the
following four trials: (1) measurement of injured limb 30° (2)
measurement of uninjured limb 30°; (3) measurement of injured limb
60° and (4) measurement of uninjured limb 60°. We have been trained
as orthopedic rehabilitation therapists prior to the start of the trial,
and after achieving a uniform standard, two senior physicians from
the rehabilitation
perception assessment.

assessment team conducted a position

The specific operations were as follows: The knee was moved from
a 90° flexion starting position passively to each of the target angles of
30° and 60°. We have reminded patients to close their eyes before
collecting data. Please patient hold the leg in the 30° knee extension
and 60° knee extension positions for 10s to allow the patient to
memorize the position, and was then returned to 90° knee flexion.
After a pause of 10 s, the patient, with the memory of the active knee
flexion, moves the lower limb in the same way by active contractions
and stops when the patient perceives that the target angle has been
reached. The mean values of the six trials were obtained for each
patient at each angle and used to calculate the difference between the
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actual angle achieved and the target angle. The smaller the difference,
the better the patient’s perception of the position.

2.6 Statistical methods

All statistical analyses were performed using Statistical Package for
the Social Sciences (SPSS) software (version26.0, IL, USA). The
Shapiro-Wilk test was applied to test the normality of all data. However,
all data failed the normality tests. Due to non-normality of the data,
Wilcoxon signed-rank tests were performed for related samples
comparisons. Differences were considered statistically significant at
P <0.05. Data plots were obtained using GraphPad Prism 8 software.

3 Results

COPA on the injured limb of the rTMS group before and after
treatment was greater than that after treatment (p =0.002)
(Figure 2); there was no statistically significant difference between
COPA and COPS on the uninjured limb of the true stimulation
group and the uninjured limb of the sham stimulation group before
and after treatment (Figure 3). The 30° position perception on the

10.3389/fnhum.2025.1651309

injured limb of the rTMS group waited until after treatment to get
better and there was a statistically significant difference between the
two sides of the group (p=0.012) (Figure 4); there was no
statistically significant difference between the 30° and 60° position
perception of the uninjured limb of the rTMS group and the
uninjured limb of the sham group in the before-after treatment
comparison (Figure 5). There was no statistically significant
difference between the 30° and 60°position perception of the both
side of the rTMS group and the sham group.

4 Discussion

Our findings demonstrate significant improvements in
proprioceptive measures following rTMS intervention, specifically
evidenced by reduced COPA and COPS during balance tests, with
particularly pronounced COPA reduction in the injured limb of the
rTMS group. The marked enhancement in 30° joint position sense
further confirms rTMS’s efficacy in modulating central proprioceptive
mechanisms. In contrast, the sham stimulation group showed no
significant proprioceptive changes, reinforcing that observed benefits
derive from rTMS-specific intervention rather than temporal effects

or participant bias.

80+

60

40

204

Center Of Pressure Area (em’)

T
Before rTMS  After rTNS

a

50
40-
30

20+

Center Of Pressure Area (em’)

1
Before rTMS  After yTAS

c
FIGURE 2

COPA in the injured limb, (d) COPS in the injured limb.

Comparison of COPA and COPS in patients with ACLR in rTMS group. *p < 0.05. (a) COPA in the uninjured limb, (b) COPS in the uninjured limb, (c)

_ 15+

._E'_

=

j- 10

: 1

g

s °7

¥

E
0 T

Before r'TMS  After rTMS
b

15+

:.!?
-]

2 104

: ]
= 5

z

5

0

T
Before rTMS  After rTAMS

d

Frontiers in Human Neuroscience

04

frontiersin.org


https://doi.org/10.3389/fnhum.2025.1651309
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org

Duetal. 10.3389/fnhum.2025.1651309
80+ _ 20+
:
2 60- 3 154
2 &
z E
g 40+ 8 10 |
& &
= =
S S g
! =
T
“ “
0 - 0 T
Before rTMS  After rTMS Before rTAMS  After rTMS
a b
100~ = 164
E 80— 2'
. = 10+ |
E 60 +
: ]
£ 409 £
z g 57
T 20+ g
5 8
0 I 0 |
Before y'TMS  After yTMS Before rTMS  After rTMS
c d
FIGURE 3
Comparison of COPA and COPS in patients with ACLR in sham group. (a) COPA in the uninjured limb, (b) COPS in the uninjured limb, (c) COPA in the
injured limb, (d) COPS in the injured limb.

Proprioception—the ability to perceive body segment position
and movement effort—is critical for balance and coordinated
movement in ACLR patients (Ventura et al., 2024). These patients
commonly exhibit proprioceptive deficits that cause abnormal
peripheral afferent signals, leading to central compensation through
enhanced prefrontal cognitive control and somatosensory cortex
processing (An et al., 2022). When performing complex tasks, ACLR
patients require stronger prefrontal-premotor co-activation to
maintain motor control. This neural adaptation may result in
insufficient cognitive resources during dual/multi-tasking situations,
representing a neuroplastic barrier to functional recovery and a
contributor to reinjury risk (Hu et al., 2023).

While neural augmentation techniques have shown benefits for
balance and motor tasks across various clinical conditions (Schoeberl
et al,, 2024; Menezes et al., 2024), their application to proprioceptive
recovery remains limited. rTMS has been confirmed to selectively
modulate regional cortical excitability. By enhancing prefrontal-premotor
circuit excitability, rTMS effectively reduced injured limb COPA and
improved 30° joint position sense, demonstrating its capacity to address
proprioceptive deficits common in ACLR patients (Gilio et al., 2009).

Our
consideration. Given that intrahemispheric prefrontal connections to

unilateral prefrontal stimulation protocol warrants

motor/sensory regions substantially exceed interhemispheric

Frontiers in Human Neuroscience

connections, combined with ACLR patients characteristic
interhemispheric imbalance (reduced excitability in the hemisphere
contralateral to injury with compensatory hyperexcitability ipsilaterally),
r'TMS appears to restore this equilibrium (An et al., 2022). This explains
why statistically significant improvements primarily manifested in the
injured limb despite bilateral trend-level enhancements.

Previous studies note that while ACLR patients’ proprioception
generally improves over time, persistent deficits remain particularly
evident at 30° joint position testing, with minimal differences at 60°
(Zhao et al.,, 2023; Zhang et al., 2018). This discrepancy may stem
from differential muscle recruitment: at 60° flexion, greater
quadriceps and hamstring activation (including hamstring isometric
contraction and quadriceps-hamstring co-contraction) generates
substantial muscular afferent input that compensates for
ACL-mediated proprioceptive loss, accounting for limited 60°
position sense changes in our study.

Our results underscore proprioception’s pivotal role in athletic
performance and functional recovery. Addressing proprioceptive deficits
through rTMS may ameliorate balance impairments, agility deficits, and
neuromuscular control abnormalities—key factors contributing to
elevated reinjury risk in ACLR patients (Buckthorpe, 2021). Incorporating
rTMS as an adjunct to conventional physiotherapy could potentially

accelerate rehabilitation timelines and optimize functional outcomes.
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5 Limitations

This study has certain limitations, including a relatively small
(n =40). To
generalizability of the findings, we plan to conduct larger-scale,

sample size enhance the robustness and
multicenter trials in the future. Additionally, long-term follow-up
studies will be implemented to validate the sustained effects of
neuro-enhancement technology. These results were obtained
using a standard rTMS treatment protocol; therefore, the
applicability of these findings to other stimulation protocols

remains unknown.

6 Conclusion

In conclusion, this study demonstrates that rTMS can significantly
improve proprioceptive task performance in ACLR patients, including
enhanced balance control and joint position sense accuracy. However,
the broader effects on motor function recovery and rehabilitation
outcomes require further investigation.
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