& frontiers | Frontiers in Human Neuroscience

@ Check for updates

OPEN ACCESS

EDITED BY
Qiang Wang,
Tianjin Normal University, China

REVIEWED BY
Suhao Peng,

Anhui Normal University, China
Xiaohua Bao,

Qinghai Normal University, China

*CORRESPONDENCE
Dor Mizrahi
dor.mizrahil@msmail.ariel.ac.il

RECEIVED 22 June 2025
AcCEPTED 20 August 2025
PUBLISHED 05 September 2025

CITATION

Mizrahi D, Zuckerman | and Laufer | (2025)
Predicting attachment style from EEG data on
the Flanker task.

Front. Hum. Neurosci. 19:1651943.

doi: 10.3389/fnhum.2025.1651943

COPYRIGHT

© 2025 Mizrahi, Zuckerman and Laufer. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiersin Human Neuroscience

TYPE Original Research
PUBLISHED 05 September 2025
pol 10.3389/fnhum.2025.1651943

Predicting attachment style from
EEG data on the Flanker task

Dor Mizrahi*, Inon Zuckerman and Ilan Laufer

Department of Industrial Engineering and Management, Ariel University, Ariel, Israel

Bowlby's attachment theory describes the differences that people exhibit in
the way they form emotional bonds with others. The dimensional measure
of attachment describes it by the magnitude of anxiety and an avoidance
dimension, which are currently measured using a self-report questionnaire.
Recent advances in neurophysiological methods have started exploring the
neural underpinnings of attachment styles. Nonetheless, a conspicuous gap
remains: the underexplored realm of predictive models for predicting attachment
styles based on objective physiological data. With that in mind, we have
constructed a model for inferring individual attachment profiles, based solely
on their brain signals recorded using an electroencephalogram (EEG). For that
aim, we recorded EEG data of 27 participants engaged in the Flanker task
and receiving either positive or negative feedback following each trial. We
then utilized the recently developed ROCKET algorithm (RandOm Convolutional
KErnel Transform) to automatically extract 20,000 time-series features from the
EEG data. Next, we applied a Principal Component Analysis (PCA) and reduced
the number of features to 87 individual components that were used to construct
regression models predicting participants’ anxiety and avoidance scores, as
measured by the ECR-R questionnaire. Our results show, for the first time, that
individual attachment profiles can be inferred from EEG data, allowing post hoc
categorization into the four canonical attachment styles. This offers two key
contributions: first, it provides an objective alternative to traditional self-report
questionnaires, helping reduce subjectivity bias in attachment assessment.
Second, it highlights the value of using automatically generated features over
the limited set of hand-crafted features typically found in the literature.
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1 Introduction

Bowlby’s Attachment theory posits that people exhibit differences in how they form
emotional bonds with another person (Fearon and Roisman, 2017). The first distinction
in attachment styles is either a secure or an insecure attachment style. A securely attached
individual shows mutual trust and support, is emotionally stable in conflict situations,
and can set healthy boundaries. Individuals with insecure attachment styles are roughly
divided into having an anxious or an avoidance attachment style. Anxious individuals have
an intense fear of abandonment and a need for constant validation. They are dependent
on their partner for self-worth. Avoidant individuals, as the name suggests, avoid intimacy
and vulnerability, have commitment issues, and have guarded and closed-off hearts. Some
individuals exhibit both a high degree of anxiety and a high degree of avoidance and are
known as having a fearful-avoidant (or disorganized) attachment. They have a strong fear
of rejection, difficulty trusting and relying on a partner, and low self-esteem.
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While the attachment style does have a genetic ingredient which
seems to contribute to around 40% of the variability of anxiety and
avoidance dimensions (Erkoreka et al., 2021), it is formed mainly
by the way the baby is taken care of by his primary caretaker in
its early years, mostly between birth and until age three (Fearon
and Roisman, 2017). In addition, the attachment style is primarily
stable throughout the years. It profoundly impacts human behavior,
particularly the significant emotional bonds in his adult life and his
neurophysiological responses (Jones et al., 2018). Previous research
showed varying degrees of statistical distributions of the attachment
styles in the population; however, most studies show that roughly
50% of the population exhibits a secure attachment style, around
20% exhibit an anxious and avoidant attachment style, and around
10% are those with a fearful avoidant attachment style (Waters
et al., 2000; Fearon and Roisman, 2017).

There are currently two main methods for measuring adult
attachment style: a self-report questionnaire and a narrative
(Gander and Buchheim, 2015). There are many self-report
questionnaires with different attributes; some provide a discrete
classification of one of the four attachment styles, while others
measure the degree to which each attachment dimension (anxiety
or avoidance) is present (Ravitz et al., 2010). For example, the ECR-
R (Experiences in Close Relationships—Revisited) questionnaire,
which includes 36 items, is a reliable and valid self-report
questionnaire that quantifies the anxiety and avoidance dimensions
to a value in the range of 1 (lowest) to 7 (highest) (Sibley et al.,
2005). Thus, for example, an individual who scored 1.5 on the
anxiety dimension and 4.5 on the avoidance dimension will be
denoted as having an avoidant attachment style. An individual who
scored low on both dimensions will be classified as having a secure
attachment style.

In addition to psychological studies, there has been a growing
body of research exploring the physiological aspects of attachment
styles. Converging evidence from a recent systematic review shows
that insecure attachment is consistently associated with impaired
emotion regulation across autonomic, biochemical, EEG, and
behavioral indices, underscoring the neurophysiological basis
of attachment (Eilert and Buchheim, 2023). Researchers have
examined various physiological responses, such as cardiovascular
activity and galvanic skin conductance, while others have focused
on adrenocortical activity (see Gander and Buchheim, 2015 for a
review). These studies suggest correlations between attachment
behaviors and physiological reactions. Complementing EEG
findings, resting-state fMRI work has linked individual differences
in attachment anxiety and avoidance to distinct intrinsic brain
dynamics, both amplitude of low-frequency, fluctuations and
functional connectivity patterns in networks including the
posterior cingulate and fusiform regions (Deng et al., 2021). More
recently, advancements in electroencephalogram (EEG) studies
have provided insights into the neural correlates of attachment.
For example, (Verbeke et al, 2014) demonstrated that social
environments significantly influence cortical activity, especially
among individuals with anxious attachment, showing heightened
alpha, beta, and theta band activity in social settings. This
discovery offers potential explanations for their social behavior
and interaction patterns. Similarly, (Sloan et al., 2007) identified a
link between attachment anxiety and the presence of alpha waves
during sleep, and (Rognoni et al., 2008) highlighted the relationship
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between adult attachment styles and EEG frontal asymmetry, which
contributes to understanding emotional regulation. Furthermore,
research on EEG event-related potentials (ERPs) (Zuckerman
et al., 2023b; Laufer et al., 2024) has illuminated how attachment
styles affect defensive responses, notably in moderating the
attachment system through P200 and P400 ERPs during the
Flanker task. In addition, network-level EEG analyses show
reduced global efficiency following attachment-memory retrieval
in unresolved/disorganized attachment, further supporting a
neurophysiological substrate for attachment representations
(Massullo et al., 2022).

While these findings have advanced the field, there remains
a notable gap in the development of predictive models that
can forecast attachment styles based on physiological data.
Physiological measurements offer an advantage over self-report
questionnaires by providing more objective and accurate
data, as they bypass the potential biases associated with self-
reports. Specifically, EEG brain signals—using time-domain
and frequency-domain analyses and transformations such as
wavelets and various Fourier transforms together with complex
mathematical representations that capture essential characteristics
and relationships of data from the real world (i.e., signals
embeddings) (Li et al., 2018; Alhalaseh and Alasasfeh, 2020; Jaswal
and Dhingra, 2023; Mizrahi et al., 2023; Vempati and Sharma,
2023) creates a rich set of features for building models capable of
predicting an individual’s attachment style.

Considering the abovementioned gap in knowledge, our
research goal was to construct a model for predicting the
attachment of adult individuals, their anxiety, and avoidance values
based solely on their EEG signals. To align with this goal, we
focused specifically on the neural activity that occurs immediately
after participants received performance feedback (success or
failure) in the Flanker task, as this period is when the emotional
response to the outcome is most likely to be evoked. By targeting
post-feedback epochs rather than stimulus selection periods,
we aimed to capture attachment-related differences in affective
processing under controlled task conditions. For that aim, we
recorded EEG data of participants who were engaged in Erikson’s
Flanker task (Brunetti et al., 2019) that was originally introduced
to study cognitive control and attentional processes with no direct
connection to attachment styles. Our rationale for selecting the
Flanker task, despite its primary use in cognitive control research,
is threefold. First, prior work shows attachment-related differences
in EEG during cognitive tasks (e.g., Zuckerman et al., 2023a)
and the feasibility of EEG-based attachment prediction more
broadly (Laufer et al., 2024). Second, the Flanker task uses neutral,
highly controlled stimuli and a fixed target location—minimizing
variability from emotional or semantic interpretation and yielding
consistent neural responses across participants (Eriksen and
Eriksen, 1974; Fan et al., 2002). Third, it is simple and robust
for eliciting well-characterized ERP markers of control (e.g., N2,
ERN/Pe), supporting detection of subtle between-group differences
without introducing overt affective content (Folstein and Van
Petten, 2008; Lin et al., 2020).

The EEG data was preprocessed and analyzed using the recently
developed ROCKET algorithm (RandOm Convolutional KErnel
Transform) (Dempster et al., 2020) that created a comprehensive
set of 20,000 automatically generated features from the EEG data.
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In other words, while there are known features in the literature that
can be used to some degree in differentiation between attachment
classes [for example, P200 and P400 ERP that were utilized in
Laufer et al. (2024) or enhanced Alpha and Beta bands as was
reported in Verbeke et al. (2014)], the novelty of the ROCKET
algorithm is that by using convolutional networks, it automatically
constructs a large number of features that are statistical in nature.
Thus, those features lack a specific interpretation in the context
of brain neuroscience, however, as our results show, they can
be extremely useful for the construction of a machine learning
prediction model.

The large set of features extracted through the ROCKET
algorithm was later reduced using Principal Component Analysis
(PCA) to distill the data into its most informative 87 principal
components to ensure the clarity and relevance of our model’s
inputs. On these 87 features, we run the CatBoost machine learning
algorithm, renowned for its proficiency with categorical data and
regression tasks (Hancock and Khoshgoftaar, 2020), to predict
each of the four established attachment styles—secure, avoidant,
anxious, and fearful-avoidant (Mikulincer and Shaver, 2005).

Our results are two-fold: First and foremost, we present
a regression model that predicts the anxiety and avoidance
dimensions of the participant’s attachment style by analyzing a
single epoch of the Flanker task. Second, we show a dependency
between the anxiety and avoidance dimensions by comparing the
error rates of two regression models: multi-target regression and
two single-value regressions. The results of the paper show, for the
first time, that attachment style can be predicted using EEG data.
Prediction using EEG provides an alternative way of measuring
attachment, which reduces the subjectivity bias of the standard
self-report questionnaires or narrated interview methods.

2 Experimental design

The study consisted of two primary phases. First, 96
participants filled in the ECR-R questionnaires (with 36 items),
and then 27 participants from the first group were invited to
the EEG laboratory for the second phase, where they engaged
in the Flanker task while their EEGs were recorded. The EEG
sample consisted of 27 participants (16 women and 11 men) with
a mean age of 23.8 years (men: 24.9 £ 2.6 years; women: 23.06
+ 1.8 years). All participants were right-handed and enrolled
as undergraduate engineering students, resulting in a relatively
homogeneous sample in terms of age, education level, and
handedness. While age and gender were not included as covariates
in the analyses, the limited variability in these characteristics
reduces the likelihood of substantial confounding effects. The
experiment received approval from the institution’s Institutional
Review Board (IRB) committee, and all participants signed a formal
agreement form before participating.

2.1 Data collection
The ECR-R questionnaire outputs two values for each

participant, anxiety and avoidant, on a scale of 1 to 7. Figure 1
shows the distribution of the ECR-R results. The x-axis shows
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FIGURE 1
Attachment results of the ECR-R questionnaire.

the avoidance dimension value of the participant, and the y-axis
shows her anxiety dimension value. The values range from 1 to
7, where the highest value indicates an increase in both insecurity
dimensions. Secure attachment can be seen in participants with low
values in both dimensions, and fearful avoidance is seen in those
with high values in both dimensions.

Next, we employed the k-means clustering algorithm to
autonomously determine the appropriate number of clusters
within the provided dataset. To identify the optimal number
of clusters, we applied the Elbow method (Syakur et al., 2018),
which, in line with the established literature regarding the
existence of four distinct attachment classes, selected k = 4
as its optimal value (see Figure 2A). The different groups were
created by the k-means algorithm and will be utilized to select
participants for the 2nd stage of the experiments. The exact
values of the boundaries are not crucial to our research, which
will predict the continuous anxiety/avoidance values and not
group membership.

In the second stage, we issued invitations to participate in
the EEG part of the experiment. Each session was 1h long, and
participants were paid for their efforts. We employed a proportional
allocation method to ensure a representative distribution across
attachment clusters. This method kept the proportions consistent
with the relative sizes of each attachment cluster. The secure
group consisted of six participants; nine were anxiously attached,
seven were avoidants, and five participants had a fearful avoidant
attachment. Figure 2B shows the 27 individuals who participated
in the EEG recording part of the experiment. You can see that the
orange dots provide a uniform sample of the population from the
first part of the experiment.

During this phase, the participants engaged in Eriksen’s Flanker
task (Brunetti et al., 2019). The Eriksen Flanker task (developed
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FIGURE 3
The Flanker task
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in 1974) is a widely used experimental paradigm in cognitive

psychology and neuroscience to study cognitive control and
attentional processes. The task involves participants responding to
a central target stimulus flanked by distracting stimuli. It has proven
valuable in investigating various executive functions and cognitive
control aspects in healthy individuals and clinical populations.
As explained below, our main interest is not in the cognitive
process during the selection but in the evoked emotional response
after a successful or unsuccessful decision. Accordingly, the EEG
analysis in this study was designed to focus on the time period
immediately following the feedback screen, which is when the
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emotional response to the trial outcome is expected to occur. All

epochs used for feature extraction were time-locked to the onset

of feedback (correct in green or incorrect in red), enabling us to

capture neural activity associated with processing success or failure,

rather than the cognitive demands

of stimulus selection.

In our adaptation of the Flanker task, arrow symbols were used,

and participants were presented with one of four possible arrow

configurations (see Figure 3) for a duration of 1 s:

1. Congruent right (———)
2. Congruent left («—<«—<-)
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FIGURE 4
(A) Fixation cross (B) the 10—20 position of the electrodes

Posterior

3. Incongruent right target (<—— <)
4. Incongruent left target (— <——)

The middle arrow served as the target, and the flanking arrows
served as distractors. On each trial, one of these four configurations
was selected randomly with equal probability, ensuring that across
each block approximately half the trials were congruent and
half incongruent.

The task consisted of three blocks of 20 trials each.
In the first and third blocks, participants pressed the key
corresponding to the direction of the central arrow (congruent
keypress—arrow mapping). In the second block, participants
pressed the opposite key (incongruent keypress—arrow mapping).
This design ensured that participants had to actively engage
cognitive control processes in the second block rather than
relying on an automatic response strategy from the first
block. Congruent and incongruent flanker arrangements were
presented in all blocks to maintain interference effects throughout
the task.

In our analysis, interference was quantified by comparing
performance (reaction time and accuracy) between congruent and
incongruent trials, enabling us to evaluate how distractor conflict
influenced task execution across different keypress—arrow mapping
conditions. After each trial, a feedback screen was presented
for 1 second, showing “correct” in green or “incorrect” in red
based on performance. Before the main task, all participants
completed a short training session to become familiar with
the procedure.

A fixation cross (Figure 4A) was displayed between trails, and
its duration varied randomly between 0.5 and 1.5 s.

EEG signals were recorded using a 16-channel active EEG
amplifier (USBAMP, by g.tec, Austria) operating at a sampling
frequency of 512 Hz, adhering to the 10-20 international system
using 512 Hz (Figure 4B). Electrode impedance was maintained
below 5 Kohm throughout the experiment, and data analysis
focused on six frontal and prefrontal electrodes (Fpl, F7, Fp2, F8,
F3, and F7).
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3 Data analysis

3.1 Preprocessing step

EEG signals were recorded at a sampling rate of 512 Hz using
a 16-channel cap arranged according to the international 10-20
system, with the Cz electrode serving as the reference. The raw EEG
data underwent bandpass FIR filtering between 1-32 Hz to remove
slow drifts and high-frequency noise, followed by a 50 Hz notch
FIR filter to attenuate power-line interference. Signals were then
re-referenced to the average of all electrodes to reduce spatial bias.

Artifact
Component Analysis (ICA), which allowed the separation of

removal was performed using Independent
neural and non-neural sources. Components corresponding
to ocular (blinks, saccades) and muscle artifacts were visually
identified and removed. The cleaned continuous EEG data were
then segmented into 1-second epochs, time-locked to stimulus
onset, aligning with the Flanker task slide duration. Time-locking
to stimulus onset ensured consistent alignment of neural responses
across trials and participants, facilitating direct comparison of EEG
features related to task performance.

The complete preprocessing pipeline is illustrated in Figure 5.

3.2 Feature extraction

After acquiring and preprocessing the EEG data, we segmented
the continuous recordings into epochs time-locked to the onset of
visual feedback, indicating success or failure in the Flanker task.
Each epoch lasted for 1,000 ms after feedback presentation and
included all trials, irrespective of whether the feedback was positive
or negative. Feedback type was not separated in this analysis, as the
aim of the present study was to model general post-feedback neural
responses rather than to examine differences between feedback
conditions. This pooling across feedback types was a deliberate
design choice, reflecting the main aim of the study—to predict
attachment style from general post-feedback neural activity rather
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FIGURE 5
EEG preprocessing scheme.

than to examine specific differences between success and failure
conditions. Pooling also increased the total number of trials
available for analysis, thereby reducing the impact of random
variation or noise due to small sample sizes in each feedback
condition. In addition, this approach ensured more balanced
datasets, which improves the performance of the classification
algorithms employed in this study.

We utilized the ROCKET algorithm (Dempster et al., 2020)
for feature extraction. ROCKET is specifically designed to handle
time series data rapidly. It uses a diverse set of randomly selected
convolutional kernels to transform raw EEG time series data into
a high-dimensional feature space. This approach allows ROCKET
to uncover significant patterns and structures within the data,
regardless of size or complexity. From the EEG epochs, ROCKET
generated an extensive array of 20,000 features.

Given the relatively small number of trials per participant and
the sensitivity of the ROCKET algorithm to extreme values, we
implemented measures to minimize the influence of outliers before
feature generation. Trials with reaction times exceeding three
standard deviations from the participant’s mean were excluded to
remove atypical behavioral responses likely caused by distraction
or technical issues. In addition, all features were standardized to z-
scores within participants before applying ROCKET, ensuring that
differences in signal amplitude or scale did not disproportionately
affect the convolutional kernel outputs. These steps reduced the
risk of distortion from extreme values while preserving meaningful
neural variability relevant to attachment-related processes.

To manage the complexity and high dimensionality of this
feature set, we applied Principal Component Analysis (PCA). PCA
reduces the dimensionality of data while preserving as much
variance as possible by transforming the original features into a
new set of orthogonal components, thereby identifying the most
informative aspects of the data.

In our analysis, PCA reduced the 20,000 features to 87
principal components, selected based on their ability to retain
over 90% of the original variance. This high retention rate ensures
that the condensed feature set retains the essential information
for our predictive modeling. By focusing on these principal
components, we minimized the risk of overfitting and improved
the generalizability of our regression models, which supports the
accuracy of predicting attachment styles from EEG data.

Frontiersin Human Neuroscience 0

3.3 Constructing the regression models

Figure 6 schematically depicts the structure of our predictive
models, both of which use 87 principal components derived from
the original 20,000 features extracted from the EEG data. The
left panel shows the separate multiple linear regression models,
where two independent models are trained: one for predicting the
avoidance value and one for predicting the anxiety value. Each
model uses the 87 features independently and does not consider
the potential relationship between anxiety and avoidance.

The right panel presents the single multi-target linear
regression model, designed to simultaneously predict anxiety and
avoidance values from the 87 features. This model leverages the
potential correlations between the two target variables, improving
its predictive capability. Specifically, if there is a correlation
between anxiety and avoidance, the multi-target model can use this
relationship to make more accurate predictions. For example, if
higher anxiety often correlates with higher avoidance, the model
can adjust its predictions to reflect this relationship, enhancing its
overall performance.

The need to construct and select between the two models arose
for two reasons: First, we hypothesized from the psychological
literature that a covariance exists between the two variables, but we
could not approximate its magnitude. Second, using a larger model,
such as in the multi-target case, might result in overfitting, as our
data was relatively small for an 87-features prediction problem.
By simultaneously predicting both values, the multi-target model
can improve accuracy by leveraging the interrelated nature of
anxiety and avoidance. Conversely, if anxiety and avoidance are
largely independent, separate multiple linear regression models
might perform just as well or better. These models treat each target
variable independently, which can be beneficial if no significant
interaction exists between them.

We utilized the supervised learning paradigm for the
construction of the prediction model. However, while a wide range
of supervised learning algorithms exist (decision trees, artificial
neural networks, support vector machines, and others), each with
its strengths and weaknesses, no single learning algorithm works
best on all supervised learning problems. For our cause, mainly
due to our relatively small data set, we have decided to use a
decision-learning tree ensemble called CatBoost (implemented in
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exclusively on held-out test sets.

The prediction model structure. The left panel shows separate regression models for predicting avoidance and anxiety. The right panel illustrates a
multi-target model that predicts both simultaneously, leveraging correlations to improve accuracy. All models were evaluated using a stratified K-fold
cross-validation procedure (K = 3), ensuring equal representation of all four attachment groups in each fold and computing performance metrics

TABLE 1 Mean =+ SD reaction time (RT) in milliseconds and accuracy for
each attachment class.

Attachment \| RT mean £+ SD Accuracy
class (ms) mean + SD
Secure 6 569.8 + 54.6 0.893 4 0.095
Avoidant 7 577.8 4 38.3 0.953 4 0.046
Anxious 9 592.3 £ 412 0.922 = 0.055
Fearful-avoidant 5 546.5 £ 61.9 0.878 £ 0.118

N = number of participants per class.

Python) to construct the models for the computation. CatBoost,
a tree-based ensemble model (Hancock and Khoshgoftaar, 2020),
offers fast computation for dual regression tasks, allowing for
the simultaneous prediction of anxiety and avoidance. CatBoost
utilizes several cost functions, and we applied the Root Mean
Square Error (RMSE), which measures the average error between
observed and predicted values.

To ensure the validity and generalizability of our models, we
employed a stratified K-fold cross-validation procedure with K =
3. In each fold, the data were divided into training and test sets
such that all four attachment groups (secure, avoidant, anxious,
and fearful-avoidant) were equally represented in both sets, thus
preventing class imbalance from biasing the results. Model training
was performed exclusively on the training set for each fold, and
performance metrics (RMSE) were computed only on the held-out
test set. This process was repeated for all folds, and the reported
results reflect the aggregated performance across the three test
folds. This approach mitigates overfitting and provides a more
reliable estimate of out-of-sample predictive performance, in line
with best practices for small to moderate datasets.

The performance comparison between these models is detailed
in Table1 (in the Results section), which provides the error
distances for each model. The multi-target regression model
shows superior performance with lower mean error distances,
highlighting the benefit of accounting for the interdependence
between anxiety and avoidance in a single predictive model. By
accounting for this interdependence, the multi-target model can
more accurately capture the underlying patterns in the data, leading
to better predictive performance. This approach allows the model
to use the shared information between anxiety and avoidance,
resulting in predictions that are not only more precise but also more
reflective of the true nature of the psychological constructs being
studied (Mizrahi et al., 2024).
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4 Results

4.1 Behavioral results

Across the full dataset (N = 27 participants; 1,620 trials),
the mean reaction time (RT) at the trial level was 571.4 =+
127.3 ms. Aggregating to the participant level, the mean of per-
participant RTs was 571.4 £ 50.2 ms. Accuracy was high overall:
0.910 at the trial level; the mean of per-participant accuracies was
0.910 £ 0.090.

Associations between attachment dimensions and performance
were assessed at the participant level. Anxiety showed no
—0.012, p = 0.953)
0.285, p = 0.150). Avoidance showed a
small, non-significant negative association with mean RT (r

reliable association with mean RT (r =
or accuracy (r =

= —0.176, p = 0.380) and a moderate positive association
with accuracy (r = 0.538, p = 0.004). Taken together, these
results indicate that individual differences in behavioral

performance did not systematically covary with anxiety and
only modestly covaried with avoidance (higher avoidance
associated with higher accuracy), suggesting that the EEG-based
effects reported below are unlikely to be explained by broad
performance differences.

A descriptive summary of mean RT and accuracy by attachment
class is presented in Table 1.

In addition, in an exploratory analysis, age and gender
were tested as Neither
variable was found to be significantly associated with RT,

potential confounding variables.

accuracy, or the attachment dimensions, suggesting that
demographic factors did not exert a notable influence on the

observed results.

4.2 Comparing the two regression models

A feature selection process was applied to improve the
performance and reliability of both the separate multiple
regression models and the multi-target regression model. Using
PCA, the original 20,000 features were reduced to 87 principal
This
overfitting, which occurs when a model captures noise rather

components. dimensionality reduction helps prevent
than meaningful patterns in the data. By retaining over 90%
of the original variance, PCA preserved the most significant

and informative features. This approach simplifies the models,
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TABLE 2 Comparison of both model’s mean error distances.

Single multi-target Multiple 1D Attachment
regression model regression models style
Mean error distance Mean
error distance
0.371969 0.415561 Secure
0.729351 0.830325 Avoidant
0.791785 0.819838 Anxious
0.414988 0.530712 Fearful-
Avoidant

reducing complexity and enhancing their generalization ability to
new, unseen data. Consequently, the regression models are less
likely to overfit and are better equipped to make accurate and
reliable predictions.

Table 2 depicts the mean error distance of the regression
outputs to the centroid of the attachment style. Recall that
the values of both anxiety and avoidants are in the range
of 1 to 7 in the ECR-R questionnaire, and we can see that
the values of the error distance are relatively small in both
cases. However, it is easy to see that the mean error values
of the multi-target regression in all four attachment classes are
smaller than in the two separate multiple regressions. The most
minor improvement, 3.54%, was in the Anxious class, and the
most significant difference, 27.91%, was in the Fearful-avoidant
class. The Secure and Avoidant classes improved 11.72% and
13.85% respectively.

As stated earlier, we can now see through these results that
there is some dependency between the Anxiety and the Avoidance
values. Therefore, we continued our analysis using the multi-target
regression model, which proved to be a better fit for the problem.

4.3 Exploring the mean error for each
attachment class

Figure 7 presents the average centroid locations calculated
using k-means clustering within a two-dimensional space
representing Avoidance and Anxiety. The circles in the graph
indicate the average distance of data points within each cluster,
serving as a proxy for prediction error. The size of these circles
reflects the regression model’s accuracy in classifying each
attachment style. In other words, the radius corresponds to the
mean error of each cluster.

Interpreting the visual information in Figure 7 and considering
the radius of each circle, which signifies data compactness or error
size, we can draw the following conclusions:

1. Secure cluster (blue): The blue circle, representing the Secure
attachment style, is tightly clustered with a small radius.
This suggests that individuals classified under the Secure
attachment style tend to have minimal variability in their
Anxiety and Avoidance scores. Consequently, the model’s
prediction error for this cluster is expected to be low
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Visualization of the mean error for each attachment class.

(mean error of 0.37), indicating high precision in identifying
individuals with Secure attachment characteristics.

2. Anxious cluster (green): The green circle has a larger area than
the blue one, indicating more variability among individuals
within the Anxiously Attached category. This implies that
while the central tendency for Anxiously attached individuals
is characterized by higher Anxiety and lower Avoidance, there
is less consistency in the model’s predictions for this group, as
evidenced by the larger circle radius (mean error of 0.79).

3. Avoidant cluster (red): The red circle is slightly smaller than
the green one, suggesting a comparable prediction error or
variability level for the Avoidant attachment style (mean error
of 0.73). Individuals in this cluster exhibit higher Avoidance
but lower Anxiety. The spread of this cluster also indicates
less consistency in the model’s predictions for this group.

4. Fearful Avoidant cluster (magenta): The magenta circle is
smaller than the green and red circles but slightly larger
than the blue one (mean error of 0.41). This cluster
comprises individuals with high levels of both Anxiety and
Avoidance. Nevertheless, the relatively tight cluster suggests
that the Fearful Avoidant attachment style exhibits predictive
accuracy comparable to the Secure group, with somewhat less
variation in the model’s classification of these individuals than
those with Anxious or Avoidant attachment styles.

In summary, the secure cluster stands out with the most
grouping,
performance in predicting this attachment style. On the

compact emphasizing the model’s exceptional
other hand, the anxious and avoidant clusters, represented
by larger circles, display varying degrees of prediction error
and data variability, indicating less consistency in the model’s
predictions. The fearful-avoidant cluster occupies an intermediate
position, demonstrating predictive accuracy comparable to the

Secure group.
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5 Discussion

In recent years, there has been increasing evidence in
the literature that the notion of attachment style is not only
an explanatory behavioral construct but also has a profound
neurophysiological basis. In that context, the ability of EEG to
record rapid temporal signals evoked by emotional responses
to success or failure signals provides a breeding ground for
researching the neuro correlates of attachment style.

The results presented in this paper can be summarized into
three main insights. First, and the most important one is a
demonstration of the ability to detect attachment style based solely
on EEG data gathered from a general cognitive task, the Flanker
task, thus cannot be manipulated by the participants. Second, there
is a dependency between both attachment dimensions, that is,
anxiety and avoidance. Third, features extracted from EEG signals
on a task that has no direct relation to the notion of attachment can
be used to construct a predictive model for attachment styles.

Unlike our previous EEG work, which focused on binary
classification between secure and insecure attachment styles, the
present model advances the field by predicting continuous anxiety
and avoidance scores. While this dimensional approach enables
approximate post hoc mapping onto the four canonical attachment
styles, its primary strength lies in modeling the spectrum of
individual differences across both axes. The ability to recover these
scores from neural data without relying on self-report represents
a meaningful step toward more objective measures of personality-
related constructs.

Besides our main results, our research bears additional
implications for attachment theory. The significance within the
context of the dimensional theory of attachment styles is first to
the discussion on whether adult attachment styles are categorical
or dimensional (Fraley et al., 2015). First, our results with the
multi-target regression model suggest a dependency between both
attachment dimensions. In addition, our results, as shown in
Figure 7, visually underscores the variability in predicting Anxious
and Avoidant attachment styles, indicative of broader error ranges
in more complex attachment dimensions. These findings support
the dimensional perspective of attachment theory, emphasizing
that attachment styles span multiple dimensions, enriching our
understanding of human attachment and relationships.

Specifically, the Secure cluster exhibits the tightest grouping,
indicating the model’s exceptional performance in predicting this
attachment style. Conversely, the Anxious and Avoidant clusters,
with larger radii, demonstrate varying prediction errors and data
variability, suggesting less consistency and precision. The Fearful
Avoidant cluster falls in between, indicating comparable predictive
accuracy to the Secure group. These findings harmonize with
established literature that posits that Secure and Fearful Avoidant
attachment occupy opposite ends of the spectrum of attachment
styles (Brennan et al., 1998). This highlights attachment styles’
complex and continuous nature, supporting the dimensional
approach within attachment theory.

Our study also provides insights for AI researchers with
complex, dimensional data. The ability to successfully construct a
predictive model relies not on technological advancement in EEG
technology but on machine learning technologies and processing
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power improvements. To make our model, we present a practical
example of using ROCKET for time-series data feature extraction,
paired with CatBoost for analysis. Specifically, the ability to
automatically create a dataset of 20,000 features and reduce them
using PCA to a subset of 87 features is due to newly developed
algorithms unavailable a few years ago.

Thus, beyond theoretical contributions, our study also diverges
methodologically from traditional EEG-based attachment research,
which has largely relied on predefined features such as frontal
alpha asymmetry (Rognoni et al., 2008) or ERP components (Zhang
et al., 2023). These hand-crafted measures restrict analysis to a
narrow set of expected neural markers. In contrast, the ROCKET
algorithm enables automated extraction of a broad range of time-
series features directly from the EEG signal, without relying on
prior assumptions. This data-driven strategy allows for a more
expansive and potentially more sensitive representation of neural
dynamics associated with attachment, making use of computational
tools that only recently became viable.

Beyond classification accuracy, our approach offers several
advantages over traditional self-report measures of attachment.
First, EEG-based measures avoid the subjectivity and social
desirability biases that can distort questionnaire responses and
reduce their validity (Van de Mortel, 2008). Second, EEG records
implicit neural responses in real time, which are not limited by
self-awareness or language, and in some cases have been shown
to predict behavior more directly than questionnaires (Shestyuk
et al., 2019). Third, EEG is non-invasive, portable, and suitable
for assessment outside the laboratory, which increases flexibility
and ecological validity (Sugden et al, 2023). In the present
study, self-reported attachment scores served as reference labels
to demonstrate that EEG signals contain patterns consistent with
these dimensions. While this means the model is anchored to self-
reports here, the approach lays the groundwork for using EEG as
an independent or complementary tool, particularly in situations
where self-report is unreliable or not possible.

Our exploratory study is not without limitations, and the
following list provides some of them and ideas for future studies.
Addressing these limitations and incorporating the proposed future
directions could improve the understanding and prediction of
attachment styles. This progress may benefit psychological practices
and contribute to more tailored therapeutic approaches.

1. Limited Sample Size: Our study’s sample size, especially
within the secure attachment group, was limited due to the
proportional allocation method. Future studies should strive
for more extensive and varied sample sizes to ensure broader
applicability of the results.

2. Homogeneity of Participants: We concentrated on university
students, potentially limiting the broader applicability of
our findings. Future work should seek to incorporate
a demographically wider participant cohort with varying
ages, cultural contexts, and life experiences to bolster the
universality of the results.

3. Engineering Enhancements: Technologically, it would be
advantageous for subsequent studies to investigate the
creation of real-time EEG data processing systems to predict
attachment styles. Such systems could prove invaluable in
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clinical settings for immediate interventions. Improving the
model’s computational efficiency for use on devices with
limited resources would also facilitate wider deployment
and access.

4. Longitudinal Analysis: Incorporating a longitudinal study
design could provide insights into the stability of attachment
styles over time and the model’s predictive power across
different life stages.

5. Interdisciplinary Approaches: Combining psychological
theory with advanced machine learning techniques can be
further explored. For example, integrating neurobiology and
psychodynamic theory findings might refine the model’s
predictive capabilities.

6. Cross-Validation with Behavioral Data: To enhance the
validity of our model, future studies could incorporate
behavioral measures of attachment, providing a multimodal
approach to validation and capturing a more holistic picture
of attachment patterns.

7. Feedback Type Separation: EEG epochs were pooled across all
feedback types (positive and negative) rather than analyzed
separately. While this approach aligned with our aim of
modeling general post-feedback neural responses, it does not
allow us to isolate neural mechanisms specific to success vs.
failure outcomes. Future research could extend the current
work by examining condition-specific neural responses, an
approach we have implemented in related work examining
the interplay between feedback type, task difficulty, and
attachment style (Mizrahi et al., 2025).

6 Conclusions

Attachment style is one of the most essential psychological
constructs that dictates human behavior in their younger years and
adult life. While there have been insights through previous studies
showing different neurophysiological evidence of attachment, there
has yet to be a successful attempt at predicting attachment style
based on neurophysiological signals in recent years. The current
research fills this gap by demonstrating that a predictive regression
model can be constructed on EEG data in a way that allows for the
prediction of one’s attachment style through anxiety and avoidance
dimensions with high accuracy.

The implications of the study are profound. First, in contrast
to the available ways of measuring attachment via self-report
questionnaires, our method does not reveal what is being measured
by the participant. As such, our suggested method tackles one of
the main limitations of self-report evaluation, i.e., the inherent bias
of the participant. Second, we show for the first time that instead
of relying on common EEG features from the literature (ERP,
alpha, beta, gamma values, etc.), one could use the newly available
machine learning algorithm, ROCKET to automatically construct
a large set of features, reduce it to its prominent vector via a PCA
algorithm, and use those as the input to the prediction model. This
new technique presented in this paper allows for the construction of
a successful prediction model even in cases where the physiological
understanding of the brain signals and their relation to the object
in question (in our case attachment style) is still a mystery.

Frontiersin Human Neuroscience

10.3389/fnhum.2025.1651943

We believe the technique demonstrated here could be easily
replicated and utilized to learn and predict other cognitive
constructs or personality traits such as the Big Five traits,
approach vs. avoidance motivation, and many others that are still
measured using self-report questionnaires. In contrast to prior
approaches relying on explicit feature extraction across known
signal domains followed by filter-based selection algorithms (e.g.,
Relief) (Bunterngchit et al., 2024), our method applies automated
convolutional transformations (ROCKET) to derive a large feature
set without predefined signal assumptions. More broadly, this
work shows how newer machine learning tools for time-series
data can help uncover psychological patterns in brain activity,
even without relying solely on predefined EEG markers or manual
feature engineering. We hope this encourages future research
to apply similar approaches in the search for neural markers
of personality and cognition in ways that complement existing
psychological theory.
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