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Objective: This study aimed to investigate the cortical task-specific response

patterns underlying the improvement of upper limb dysfunction in stroke patients

using transcutaneous auricular vagus nerve stimulation (taVNS) paired with

task-oriented training (TOT) under varying cognitive loads.

Methods: In this randomized, double-blinded, sham-controlled trial, 30 patients

with subacute stroke were enrolled and randomly assigned to either the taVNS

groupor the Shamgroup. Both groups received 3weeks of TOT. The taVNS group

received concurrent active taVNS, while the Sham group received concurrent

sham stimulation. Assessments were performed pre- and post-intervention.

Clinical function was evaluated using the Fugl-Meyer Assessment-Upper

Extremity (FMA-UE), Montreal Cognitive Assessment (MoCA), Fatigue Severity

Scale (FSS), and Modified Barthel Index (MBI). Neurophysiological measures

included heart rate variability (HRV) to assess taVNS e�cacy and motor-evoked

potentials (MEPs) to assess cortical excitability changes. Brain functional imaging

was conducted using functional near-infrared spectroscopy (fNIRS) during

motor tasks with di�erent cognitive loads (low-load: continuous horizontal

movement; high-load: goal-directed movement) to analyze changes in

spontaneous neural activity, task-related regional brain activation characteristics,

and brain functional network alterations.

Results: (1) Post-intervention, the taVNS group showed significantly greater

improvements in all HRV indices compared to the Sham group (P < 0.05). (2)

Both groups exhibited significant improvements frombaseline in FMA-UE,MoCA,

MBI, and FSS scores (P < 0.05), with the taVNS group demonstrating significantly

greater improvement than the Sham group (P < 0.05). (3) MEP results indicated

significant improvements in the elicitation rate of ipsilesional MEPs within the

taVNS group post-intervention (P < 0.05). Furthermore, compared to the Sham

group, the taVNS group showed significantly greater improvements in the

ipsilesional MEP elicitation rate and a significant reduction in contralesional MEP

latency (P < 0.05). (4) Regarding resting-state fNIRS, the taVNS group exhibited

higher Amplitude of Low-Frequency Fluctuation (ALFF) values post-intervention

in the ipsilesional prefrontal cortex (PFC), dorsolateral prefrontal cortex (DLPFC),

and sensorimotor cortex (SMC) compared to the Sham group (P < 0.05),

but these di�erences were not significant after correction. In task-state fNIR

under the low-cognitive-load condition, activation levels in the ipsilesionalS
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primary motor cortex (M1) and premotor and supplementary motor areas

(pSMA) were significantly higher in the taVNS group compared to the Sham

group post-intervention (PFDR < 0.05). During the high-cognitive-load task,

activation levels in the ipsilesional PFC and DLPFC were significantly higher in

the taVNS group compared to the Sham group post-intervention (PFDR < 0.05).

(5) Functional network analysis using complex network metrics revealed that the

taVNS group exhibited significantly increased nodal clustering coe�cient and

nodal local e�ciency in the ipsilesional DLPFC during the high-cognitive-load

task post-intervention compared to the Sham group (PFDR < 0.05).

Conclusion: taVNS paired with TOT enhances autonomic homeostasis,

increases corticospinal pathway excitability, activates cognition-motor related

brain regions, and modulates functional connectivity networks through

multi-pathway neuroregulatory mechanisms. This promotes the formation

of task-specific cortical activation and network connectivity during motor

tasks under varying cognitive demands in stroke patients. These changes

contribute to improved executive control performance in complex tasks, thereby

enhancing cognitive-motor integration capabilities and facilitating upper limb

functional recovery.

Clinical Trial Registration: https://www.chictr.org.cn/index.html, Unique

Identifier/Registration Number: ChiCTR2400085163.

KEYWORDS

transcutaneous auricular vagus nerve stimulation, task-oriented training, functional

near-infrared spectroscopy, motor-evoked potentials, neuroplasticity, upper extremity

rehabilitation

1 Introduction

Stroke has emerged as the leading cause of neurological
disability worldwide. Recent epidemiological data indicate a rising
annual incidence rate, with approximately 70% of survivors
experiencing persistent upper limb motor dysfunction (GBD 2021
Diabetes Collaborators, 2023). Such post-stroke deficits critically
compromise activities of daily living, diminish social participation,
and significantly impair quality of life (De Iaco et al., 2024). Patients
commonly exhibit significant fine motor deficits and intentional
motor impairments during the subacute and chronic stages.
Conventional rehabilitation approaches demonstrate substantial
limitations in improving upper limb function (Kwakkel et al.,
2019). In recent years, transcutaneous auricular vagus nerve
stimulation (taVNS) has gained considerable research interest as
a novel non-invasive neuromodulatory intervention, principally
attributable to its unique biphasic neuromodulatory properties.
By stimulating vagal afferent fibers within the auricular concha,
taVNS activates the nucleus tractus solitarius and locus coeruleus,
thereby upregulating the release of cholinergic (Horinouchi
et al., 2024) and noradrenergic neurotransmitters (Szeska et al.,
2025). This cascade ultimately promotes long-term potentiation
within the motor cortex (Steidel et al., 2021). Preclinical
evidence has confirmed that taVNS paired with motor training
increases synaptic density in the motor cortex by 37% and
facilitates the remodeling of the ipsilateral corticospinal tract
in stroke models (Meyers et al., 2018). Clinical investigations
further demonstrate that adjunctive taVNS significantly enhances

Fugl-Meyer Assessment-Upper Extremity (FMA-UE) scores in
chronic stroke patients compared to training alone (Lin et al.,
2024). Nevertheless, current research predominantly focuses on
behavioral improvements, lacking systematic elucidation regarding
the temporal dynamics of its cortical effects (de Melo et al., 2023).
Our prior work has provided preliminary evidence supporting
the beneficial effects of taVNS on upper limb motor recovery
in stroke patients and revealed its neuromodulatory potential on
cortical activation patterns (Wang et al., 2024b). Building upon
this foundation, rigorous investigation of taVNS-modulated, task-
specific cortical dynamics is warranted. Existing studies suggest that
cognitive engagement critically modulates functional activation
characteristics within key regions, including the motor cortex
(M1) and prefrontal cortex (PFC) (Meulenberg et al., 2023; Wang
et al., 2023). Consequently, identifying differences in cortical
responses to taVNS under varying cognitive loads is essential for a
deeper understanding of cognitive-motor interaction mechanisms
in stroke rehabilitation. Based on this background, this study
introduces motor tasks under graded cognitive load conditions.We
utilize functional near-infrared spectroscopy (fNIRS) to observe
taVNS-induced, task-specific cortical activation patterns. As an
emerging non-invasive neuroimaging modality, fNIRS provides
high temporal resolution and motion compatibility, enabling real-
time capture of oxyhemoglobin (HbO) dynamics during task
execution. This makes it an effective tool for investigating taVNS-
induced cortical neuroplasticity (An et al., 2025). Employing a
randomized controlled design, hemiplegic stroke patients will
receive combined taVNS and task-oriented training (TOT). By
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integrating measures including heart rate variability (HRV),
fNIRS, and motor-evoked potentials (MEPs), we aim to explore
the neuromodulatory mechanisms of taVNS-paired TOT on
cortical excitability and autonomic function in stroke patients.
Furthermore, we will discuss the specific cortical activation patterns
elicited by motor tasks under different cognitive loads. This
investigation seeks to elucidate the critical role of cognitive-motor
interactions in the neuroplasticity facilitated by taVNS, thereby
establishing a theoretical foundation for the rehabilitation of post-
stroke limb dysfunction.

2 Materials and methods

2.1 Participants

This trial was conducted in the Department of Rehabilitation
Medicine at Sir Run Run Hospital of Nanjing Medical University
between June 2024 and March 2025. A total of 30 stroke
patients were enrolled. The inclusion criteria were as follows:
(1) aged 18–80 years; (2) first-ever unilateral stroke confirmed
by computed tomography (CT) or magnetic resonance imaging
(MRI), with a disease duration of 1–6 months; (3) Fugl-Meyer
Assessment-Upper Extremity (FMA-UE) score of 20–50 on the
affected side; (4) Montreal Cognitive Assessment (MoCA) score
≥18, indicating the ability to cooperate with assessments and
interventions; (5) provision of written informed consent. Exclusion
criteria included: (1) implanted electronic devices, intracranial
vascular clips, or other electrically sensitive medical devices; (2)
compromised skin integrity in the stimulation area; (3) severe end-
stage cardiovascular, pulmonary, or other systemic diseases; (4)
a history of vagus nerve injury; (5) upper limb dysfunction not
attributable to stroke; (6) use of neuroactive medications within
the past 3 months; and (7) resting heart rate <60 beats per min.
The trial was conducted following the principles outlined in the
Declaration of Helsinki and was approved by the Ethics Committee
of Sir Run Run Hospital, Nanjing Medical University (No. 2024-
SR-034). The trial was registered at the Chinese Clinical Trial
Registry (ChiCTR2400085163).

2.2 Sample size estimation

Sample size estimation was performed using analysis of
covariance (ANCOVA) in G∗Power 3.1.9.7. The effect size was
derived from the partial eta squared value (partial η² = 0.3362)
for FMA-UE, as reported in the study by Wang et al. (2024b).
Assuming a statistical power (1–β) of 80% and a two-tailed
significance level of α = 0.05, and accounting for an anticipated
dropout rate of 20%, the required sample size was calculated to be
at least 12 participants per group, resulting in a minimum total of
24 participants.

2.3 Study design

This study adopted a randomized, double-blinded, sham-
controlled trial design. A total of 35 patients with subacute stroke

were initially recruited, of whom 5 were excluded for not meeting
the inclusion criteria. The remaining 30 eligible participants were
randomly assigned in a 1:1 ratio to either the intervention group
(taVNS group) or the sham stimulation group (Sham group)
using a random number table. Participants in the taVNS group
received taVNS combined with TOT, while those in the Sham group
underwent TOT with sham stimulation. The intervention lasted
for 3 weeks, with sessions conducted 5 days per week, 1 h per
day. Assessments were performed at baseline and post-intervention
by trained therapists blinded to group allocation. A double-blind
protocol was strictly followed: participants, outcome assessors,
and data analysts remained unaware of group assignments,
while only the research personnel administering the intervention
had access to allocation information. All interventions were
administered following a standardized protocol and schedule
to ensure methodological rigor and the reliability of outcomes.
No intervention-related adverse events were reported by any
of the enrolled participants. The study flow is illustrated in
Figure 1.

2.4 Intervention protocol

2.4.1 Task-oriented training (TOT)
Both groups received a standardized TOT protocol, supervised

or assisted by licensed occupational therapists. Each training
session lasted for 1 h per day, 5 days per week, over 3
weeks. The training protocol was developed in accordance with
evidence-based rehabilitation guidelines (Billinger et al., 2014),
and included six structured tasks: (1) forearm supported on
an adjustable-height table; (2) finger-to-nose pointing exercises;
(3) wrist extension to touch a target with the elbow flexed
at 90 ◦; (4) grasping and holding a 500mL water bottle
while maintaining the same posture; (5) transferring peanuts
from a cup to a plate with the affected hand, minimizing
compensatory trunk movements; (6) mirror therapy using the
Gloreha Professional 2 hand rehabilitation robot (Idrogenet,
Italy). During each session, therapists dynamically adjusted task
parameters including movement speed, distance, and resistance
based on the patient’s motor ability and rehabilitation goals. Visual
and tactile cues were provided to facilitate accurate execution of
each movement.

2.4.2 Transcutaneous auricular vagus nerve
stimulation (taVNS)

taVNS was administered using the Auricular Vagus Nerve
Stimulator (tVNS 501, RISHENA Co., Ltd., Changzhou,
China). Participants in the taVNS group received active taVNS
simultaneously during each TOT session. The stimulation was
delivered via a dedicated ear-clip device equipped with two dot-like
electrodes, which were applied to the left cymba conchae following
routine antiseptic cleansing. Stimulation parameters according
to the international consensus for minimum reporting standards
(Farmer et al., 2021): biphasic square pulses with a pulse width of
500µs, frequency of 25Hz, with 30 s of stimulation alternating with
30 s of rest (duty cycle 1:1). The current intensity was individually
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Multidimensional clinical 

function assessment(T0)

Post-intervention HRV 

collection (T1)
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fNIRS collection (T1)
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resting state, session1, session2
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 (3 weeks)

Multidimensional clinical 

function assessment(T1)

Post-intervention HRV 

collection (T1)

Post-intervention 

fNIRS collection (T1)

Exclusion of 5 cases:

Not meeting inclusion criteria

Data analysis Data analysis

FIGURE 1

Study flow diagram. taVNS, transcutaneous auricular vagus nerve stimulation; HRV, heart rate variability; fNIRS, functional near-infrared

spectroscopy; TOT, task-oriented training.

adjusted to a comfortable level, defined as clearly above the sensory
threshold but below the pain threshold. For each participant,
stimulation was gradually increased from 0mA until a distinct but
non-painful tingling sensation was reported at the stimulation site
(Wang et al., 2024b). The final intensity was set at the maximum
level that could be tolerated without discomfort or pain, within
a range of 1–10mA (mean intensity in the taVNS group: 5.27
± 0.98mA). Participants in the Sham group wore an identical
ear-clip device applied to the left cymba conchae and underwent
the same stimulation threshold calibration procedure to maintain
procedural consistency. However, during the intervention, no
actual current was delivered. The electrodes were non-functional,
and the stimulator displayed simulated current values and auditory
signals to mimic active stimulation. Although no formal blinding
assessment was conducted, no participants reported suspicion
about their treatment allocation. This sham protocol has been
previously validated in taVNS studies to maintain effective blinding
(Wang et al., 2024b). The duration and frequency of stimulation
were identical between the two groups (60min per session,
concurrent with TOT), ensuring comparability of intervention
conditions across groups.

2.5 Outcome measures

2.5.1 Multidimensional clinical function
assessment

This study employed a series of standardized clinical scales
to quantitatively assess improvements in upper limb motor
function, cognitive ability, fatigue, and activities of daily living
among participants.

Upper extremity function assessment: The Fugl-Meyer
Assessment-Upper Extremity (FMA-UE) was used, comprising 33
items with a maximum score of 66. This scale is widely validated
and commonly applied in the evaluation of motor impairment
following stroke, with higher scores indicating better upper limb
motor function (Ase et al., 2025; Wang et al., 2024c).

Cognitive function assessment: The Montreal Cognitive
Assessment (MoCA) was utilized, with a total score of 30,
covering multiple cognitive domains including attention, memory,
language, executive function, and visuospatial abilities. MoCA
is frequently employed to evaluate multidimensional changes in
cognitive function and serves as an important indicator of cognitive
rehabilitation outcomes (Wei et al., 2022).
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TABLE 1 Cortical representations of ROIs based on BA and corresponding

fNIRS channels.

ROI BA Channel number

Ipsilesional
hemisphere

Contralesional
hemisphere

PFC 8, 10 1, 2, 7, 33, 41, 42 3, 4, 9, 35, 43, 44

DLPFC 9, 45, 46 5, 6, 12, 13, 16, 17,
18, 19, 26, 27, 32,

31

10, 11, 14, 15, 21,
22, 23, 24, 28, 29,

36, 37

SMC 1, 2, 3, 7 60, 61, 83 66, 67, 86

M1 4 50, 84 56, 85

pSMA 6 39, 40, 51, 52, 62,
63, 72, 73

45, 46, 54, 55, 64,
65, 75, 76

AC 21, 22, 38, 40,
43, 48

25, 38, 48, 49, 59,
69, 70, 71, 80, 81,

82

30, 47, 57, 58, 68,
77, 78, 79, 87, 88,

89

VC 17, 18, 19 90, 91, 94, 95, 99,
100, 103, 104

92, 93, 97, 98, 101,
102, 105, 106

ROI, region of interest; BA, Brodmann area; PFC, prefrontal cortex; DLPFC, dorsolateral

prefrontal cortex; SMC, sensorimotor cortex; M1, primary motor cortex; pSMA, premotor

and supplementary motor areas; AC, auditory cortex; VC, visual cortex.

Fatigue assessment: The Fatigue Severity Scale (FSS) was used
to measure participants’ subjective experience of fatigue. The FSS
consists of 9 items, each rated on a 7-point scale (1–7), with higher
total scores indicating more severe fatigue. The FSS is sensitive
to changes in fatigue levels throughout the rehabilitation process
(Almhdawi et al., 2021).

Activities of daily living assessment: The Modified Barthel
Index (MBI) was used to assess participants’ basic functional
independence in daily activities. The MBI includes 10 items (e.g.,
feeding, dressing, toileting), with a total score of 100. Higher
scores indicate greater independence and are considered a core
indicator of improvement in daily functional capacity (Li et al.,
2021a; Pignolo et al., 2022).

All clinical assessments were conducted at two time points,
baseline (T0) and post-intervention (T1), by professional
evaluators with standardized training, and changes in scores from
T0 to T1 were compared to evaluate the effects of the intervention.

2.5.2 Heart rate variability (HRV) assessment
HRV reflects the variation in time intervals between successive

heartbeats and is widely recognized as a biomarker of vagal nerve
activity (Laborde et al., 2017). In this study, resting-state HRV
was continuously collected for 5min prior to fNIRS acquisition
using an SA-3000P electrocardiograph (Medocore, South Korea)
under quiet conditions. The time-domain HRV metrics extracted
included the average heart rate (HR), the standard deviation of the
normal-to-normal (NN) intervals (SDNN), and the square root of
the mean squared differences of successive NN intervals (RMSSD).
For frequency-domain analysis, the ratio of low-frequency to high-
frequency power (LF/HF ratio) was recorded. Previous research
(Rodrigues et al., 2024; Machado et al., 2022) has demonstrated
that enhanced vagal activity is typically associated with increased
SDNN and RMSSD, along with decreased HR and LF/HF ratio.
Accordingly, these HRV indices may serve as potential indicators of

taVNS-induced modulation of vagal efferent function (Wang et al.,
2024a). HRV data were collected at two time points-baseline (T0)
and post-intervention (T1), to evaluate the efficacy of taVNS.

2.5.3 Motor-evoked potentials (MEPs) assessment
Motor-evoked potentials (MEPs) refer to electromyographic

responses recorded from target muscles following single-pulse
transcranial magnetic stimulation (TMS) applied to the primary
motor cortex (M1). MEPs are commonly used to assess cortical
excitability and the integrity of the corticospinal tract (Paparella
et al., 2020). In this study, single-pulse TMS was delivered to the
hand representation areas of both the lesioned and non-lesioned
M1 using a figure-eight coil (YRD CCY-I, Wuhan Yiruide). Surface
electromyography (sEMG) electrodes were placed on the bilateral
first dorsal interosseous (FDI) muscles to serve as recording
sites (Paparella et al., 2020). The sEMG settings were as follows:
sampling rate of 5,000Hz, amplification×500, notch filter at 50Hz,
and low-pass filter at 500Hz. The initial stimulation intensity was
set at 30% of the maximum stimulator output (MSO) (Gardi et al.,
2024), and gradually increased in 5% increments until MEPs were
elicited in at least 5 out of 10 consecutive trials, with peak-to-peak
amplitudes ≥50 µV. The primary outcome measures included the
average MEP latency and peak-to-peak amplitude recorded from
bilateral FDIs. Latency was defined as the time interval between the
TMS pulse and the onset of the MEP in the target muscle, while
amplitude referred to the voltage difference between the MEP peak
and trough. Post-intervention MEPs were elicited using the same
stimulation intensity as at baseline. If no valid MEPs were detected
even at 100% MSO, the result was recorded as “Not Elicited” (NA).

2.5.4 Functional near-infrared spectroscopy
(fNIRS) assessment

Cerebral hemodynamic signals were acquired using a
multichannel continuous-wave fNIRS system (BS-3000,
Wuhan ZiLian HongKang, China). The system comprises
32 semiconductor laser sources (λ1|2 = 690|830 nm, average
power ≥30 mW) and 32 avalanche photodiode detectors, with
a sampling frequency of 20–100Hz. The sources and detectors
were arranged over the frontal, parietal, temporal, and occipital
cortices according to the 10–20 international standard electrode
placement system, establishing 106 channels. A 3D spatial digitizer
was used to mark anatomical reference points (Nz, Cz, AL, RL)
and record the coordinates of all optodes. These coordinates were
transformed into Montreal Neurological Institute (MNI) space
via the NIRS-SPM toolbox. Based on the probabilistic Brodmann
area atlas, channels were assigned to specific functional regions,
including dorsolateral prefrontal cortex (DLPFC), Broca’s area,
primary motor cortex (M1), supplementary motor area, primary
somatosensory cortex, Wernicke’s area, temporal cortex, and visual
cortex. The predefined regions of interest (ROIs) for this study
included the prefrontal cortex (PFC), DLPFC, sensorimotor cortex
(SMC), M1, premotor and supplementary motor areas (pSMA),
auditory cortex (AC), and visual cortex (VC). Corresponding
Brodmann areas and channels assignments for each ROI are
detailed in Table 1 and illustrated in Figure 2.

Experiments were conducted in a controlled environment
with attenuated ambient illumination and acoustic isolation.
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FIGURE 2

Layout of fNIRS optodes and channels. Red numbers, sources; blue numbers, detectors; white numbers, channels; colored boxes, each colored box

represents a distinct Region of Interest (ROI). Channels enclosed within a box correspond to the respective ROI.

Procedures were administered by technicians trained in fNIRS
instrument operation, and the entire experimental protocol
was guided by computer-generated auditory cues. During the
initial phase, a 5-min baseline fNIRS signal was recorded
while participants rested with their eyes closed. Subsequently,
the computer prompted participants to perform both motor
tasks with differential cognitive loads using their hemiparetic
hand in two separate sessions (Session 1 and Session 2). The
assignment of cognitive load conditions (low/high) to sessions was
counterbalanced across participants using a pseudorandomized
sequence (Figure 3C), ensuring all participants completed both
conditions. Both tasks employed a block design comprising 5
blocks. For the low-cognitive-load task (Figure 3A), each block
consisted of a 20-s task execution period followed by a 30-s
rest interval. During task execution, participants were instructed
to continuously translate a wooden block horizontally from
side to side as rapidly and steadily as possible. for the high-
cognitive-load task (Figure 3B), each block also comprised a
20-s execution period and a 30-s rest period. Throughout the

execution period, the computer sequentially presented randomized
auditory number commands (integers 1–4). Following each
command, participants were allotted 2 s to move the block
and place it into the corresponding numbered target quadrant
on the table. Each execution block contained 10 randomized
number commands. If a participant failed to complete the
movement corresponding to the current command within the
2-s timeframe due to insufficient speed or other unforeseen
circumstances, that specific command was discarded, and the
next command proceeded immediately. Response accuracy and
timeliness for each command were recorded. Completion rate per
task block was calculated based on the percentage of commands
accurately completed within the allotted time; this metric served
as a criterion for determining block inclusion in subsequent
neural activation analyses. Continuous fNIRS signal acquisition
throughout task execution enabled comparative assessment of
cortical activation patterns across cognitive load conditions and
evaluation of intervention effects on functional hemodynamics in
task-relevant regions.
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FIGURE 3

fNIRS evaluation flowchart. (A) Low-cognitive-load task; (B) high-cognitive-load task; (C) fNIRS detection process. *Each subject completed both

low and high cognitive load tasks across two sessions, with randomized task assignment ensuring Session 1 and Session 2 always involved opposing

cognitive load conditions (i.e., low → high or high → low sequence per subject).

3 Data processing

3.1 fNIRS signal processing

Raw fNIRS data were preprocessed utilizing the Homer2
toolbox within MATLAB R2013b (MathWorks, USA), following
these sequential procedures (Kamran et al., 2016): (1) conversion
of raw light intensity to optical density (OD); (2) detection
and correction of motion artifacts; (3) band-pass filtering; (4)
conversion of OD to oxyhemoglobin (HbO2) concentration based
on the modified Beer-Lambert law; and (5) extraction of the mean
HbO2 concentration during the rest period for assessing inter-
group baseline homogeneit. To standardize hemispheric alignment
and lesion localization, fNIRS channel data from patients with
right-hemispheric lesions underwent mirror-flipping, ensuring
consistent correspondence of the ipsilesional hemisphere to the
left hemisphere across all subjects. The amplitude of low-frequency
fluctuation (ALFF) (Hu et al., 2024) was employed to assess
the intensity of spontaneous regional neural activity during the
resting state. For the task state, regional activation strength
was characterized by calculating beta values (β) for each ROI
via the general linear model (GLM) implemented within the
NIRS_KIT toolbox (Li et al., 2020). To enhance activation signal
specificity, response accuracy for each command during the high-
cognitive-load motor task was recorded; only blocks achieving a
completion rate ≥80% within the task period were incorporated
into the GLM analysis, thereby controlling for confounding
effects of insufficient task execution. Furthermore, considering the
significant time-varying characteristics of neural activity during
tasks, functional connectivity analysis in the task state utilized
wavelet coherence (Hakim et al., 2023), which offers superior

time-frequency sensitivity, to construct functional connectivity
matrices between ROIs. In contrast, due to the relative stability of
neural activity during rest, the resting-state functional connectivity
matrix was derived using the phase locking value (PLV) (Li et al.,
2021b), a measure sensitive to phase synchronization and well-
suited for low-frequency signals, reflecting the relative synchrony
between ROIs. To further investigate the topological properties of
neural functional networks, the resultant resting-state and task-
state functional connectivity matrices were imported into the
Gretna toolbox for complex network analysis. Computed network
metrics included nodal clustering coefficient, nodal local efficiency,
and global efficiency. To circumvent potential bias associated with
single-threshold selection in network structure analysis, a sparsity-
based thresholdingmethod (Wu et al., 2024) was applied to regulate
network connection density, with the threshold spanning 0.10–0.50
in increments of 0.05. Finally, the area under the curve (AUC)
for each network metric across this threshold range was calculated
to facilitate robust comparison of topological properties across
different experimental conditions.

3.2 Statistical analysis

All statistical analyses were conducted in Jamovi (version 2.4.8)
(JAMOVI, 2023). Normality of continuous variables was assessed
using the Shapiro-Wilk test. For baseline demographic and clinical
characteristics, group comparisons of categorical variables were
conducted using Fisher’s exact test, while continuous variables
were compared using independent samples t-tests for normally
distributed data or Mann-Whitney U tests for non-normally
distributed data. Between-group comparisons of behavioral
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outcomes (FMA-UE, MoCA, FSS, MBI), HRV parameters
(HR, SDNN, RMSSD, LF/HF ratio), and MEP parameters
(amplitude, latency) were conducted using analysis of covariance
(ANCOVA) with group assignment as the between-subject
factor, post-intervention change scores as the dependent variable,
and corresponding baseline values as covariates. Within-group
comparisons employed paired samples t-tests or Wilcoxon signed-
rank tests based on data normality. Changes in the ipsilesional
MEP elicitation rate were analyzed using the McNemar test for
within-group comparisons and Fisher’s exact test for between-
group comparisons. For fNIRS data, between-group comparisons
of resting-state spontaneous neural activity (ALFF), task-related
regional activation intensity (β), and complex network topology
metrics (nodal clustering coefficient, nodal local efficiency, global
efficiency) were performed via ANCOVA, using post-intervention
values as the dependent variable and baseline values as covariates.
Results are presented as least squares means (LS Means) with
corresponding 95% confidence intervals (95% CI), derived from
estimated marginal means (EMM). Between-group comparisons
of resting-state and task-state functional connectivity metrics were
conducted using independent samples t-test or Mann-Whitney
U tests according to data normality. Within-group changes were
assessed by paired samples t-test or Wilcoxon signed-rank tests
as appropriate. The False Discovery Rate (FDR) correction was
applied for multiple comparisons, with statistical significance
set at P < 0.05. Finally, between-group comparison results for
resting-state spontaneous activity, task-related regional activation,
and functional connectivity were visualized in 3D using the
BrainNet Viewer toolbox.

4 Results

4.1 Demographic and clinical
characteristics

The demographic and baseline clinical characteristics of
participants in both groups are presented in Table 2. No statistically
significant intergroup differences were observed in age, sex
distribution, stroke duration, stroke etiology, side of hemiparesis,
FMA-UE scores, or MoCA scores at baseline (P > 0.05).

4.2 HRV outcomes

Significant post-intervention improvements in HR, SDNN,
RMSSD, and LF/HF ratio were demonstrated in the taVNS
group compared to baseline (P < 0.05). In contrast, the Sham
group exhibited only significant HR reduction (P < 0.05). The
improvement in all HRV indices was significantly greater in the
taVNS group vs. the Sham group (P < 0.05), with detailed data
presented in Table 3.

4.3 FMA-UE, MoCA, MBI, and FSS outcomes

Both groups showed significant within-group improvements in
FMA-UE,MoCA,MBI, and FSS scores post-intervention compared

to baseline (P < 0.05). However, the taVNS group demonstrated
significantly superior improvements across all behavioral metrics
compared to the Sham group (P < 0.05). Comprehensive results
are provided in Table 4.

4.4 MEPs outcomes

The taVNS group exhibited a significant increase in ipsilesional
MEP elicitation rate post-intervention vs. baseline (P < 0.05),
with this increase being significantly greater than observed in the
Sham group (P < 0.05). Additionally, the taVNS group showed
significant reduction in contralesional MEP latency and amplitude
enhancement (P < 0.05). The Sham group demonstrated only
significant contralesional amplitude improvement (P < 0.05), with
no significant change in latency. The reduction in contralesional
MEP latency was significantly greater in the taVNS group than the
Sham group (P < 0.05). Detailed results are presented in Table 5.

4.5 fNIRS outcomes

4.5.1 Resting-state spontaneous neural activity
(ALFF)

Post-intervention resting-state analysis revealed significantly
higher ALFF values in the taVNS group vs. the Sham group within
the ipsilesional PFC, DLPFC, and SMC (P < 0.05). However, these
regional differences did not retain statistical significance after FDR
correction (PFDR > 0.05). No statistically significant within-group
changes in ALFF were observed from baseline to post-intervention
in either cohort (P > 0.05). Detailed results are presented in Table 6
and Figure 4.

4.5.2 Task-related brain activation changes
During the low-cognitive-loadmotor task, general linear model

(GLM) analysis demonstrated significantly higher beta values,
reflecting activation strength, in the taVNS group compared to the
Sham group within the ipsilesional DLPFC, M1, and pSMA, as well
as the contralesional AC (P < 0.05). Following FDR correction,
activation differences in the ipsilesional M1 and pSMA remained
significant (PFDR > 0.05; Table 7, Figure 5). For the high-cognitive-
load motor task, the taVNS group demonstrated significantly
elevated activation levels than the Sham group in the ipsilesional
PFC, DLPFC, and pSMA, alongside the contralesional VC and
SMC (P < 0.05). Following FDR correction, beta value differences
in the ipsilesional PFC and DLPFC retained significance (PFDR
> 0.05). Within-group analyses identified that only the taVNS
group showed significant post-intervention increases in ipsilesional
PFC activation during the high-cognitive-load task compared to
baseline (PFDR > 0.05). No other regions exhibited significant
longitudinal changes in either group (Table 8, Figure 6).

4.5.3 Resting-state and task-state network
connectivity

Both resting-state and task-state data showed nominally
increased intra-/inter-hemispheric functional connectivity strength
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TABLE 2 Baseline demographic and clinical characteristics of patients between the two groups.

Variables taVNS group (n =
15)

Sham group (n = 15) t P

Demographics

Age (years, mean± SD) 50.33± 14.41 51.07± 13.68 −0.143 0.887a

Gender (male/female, n) 8/7 12/3 – 0.128b

Stroke characteristics

Stroke type
(hemorrhagic/ischemic)

5/10 9/6 – 0.272b

Stroke onset (days, mean±

SD)
124.47± 23.03 106.67± 33.07 1.711 0.098a

Hemiparetic side (left/right,
n)

8/7 6/9 – 0.715b

Baseline functional scores

FMA-UE (score, mean± SD) 38.53± 4.37 42.93± 9.38 −1.646 0.111a

MoCA (score, mean± SD) 20.67± 1.99 22.13± 2.72 −1.685 0.103a

SD, standard deviation; FMA-UE, Fugl-Meyer assessment-upper extremity; MoCA, montreal cognitive assessment. aIndependent samples t-test; bFisher’s exact test.

TABLE 3 Comparison of HRV post-intervention between the two groups.

Variables Group Descriptive analysis Between-group di�erences (VNS-Sham, ANCOVA)

T0

Mean (SD)

T1
Mean (SD)

Di�erences
in LS mean
(95% CI)

P F η2

HR taVNS 85.67 (12.93) 78.00 (11.61)∗∗∗ −4.321 (−6.951,
−1.692)

0.002 11.410 0.305

Sham 86.53 (15.49) 83.07 (13.67)∗

SDNN taVNS 18.40 (4.38) 25.95 (7.21)∗∗∗ 5.594 (0.960,10.228) 0.020 6.157 0.191

Sham 14.98 (4.39) 17.27 (6.33)

RMSSD taVNS 16.12 (4.89) 21.18 (7.69)∗∗∗ 4.736 (0.957,8.514) 0.016 6.637 0.203

Sham 12.66 (5.83) 13.41 (5.42)

LF/HF taVNS 1.21 (0.44) 0.75 (0.33)∗∗ −0.359 (−0.628,
−0.090)

0.011 7.548 0.225

Sham 1.19 (0.41) 1.10 (0.44)

ANCOVA, analysis of covariance; T0, baseline; T1, after 3 weeks of treatment; SD, standard deviation; HRV, heart rate variability; LS, least squares; CI, confidence interval; HR, average heart

rate; SDNN, standard deviation of the normal-to-normal (NN) intervals; RMSSD, square root of the mean squared differences of successive NN intervals; LF/HF, the ratio of low-frequency to

high-frequency power; ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 vs. T0.

in the taVNS group (P < 0.05, Figure 7), though these differences
were non-significant post-FDR correction. Complex network
analysis further indicated that during resting state, the taVNS
group showed a trend of increased nodal clustering coefficient
in the ipsilesional DLPFC compared to the Sham group (P
< 0.05). During the low-cognitive-load motor task, the taVNS
group demonstrated increased nodal clustering coefficients in the
ipsilesional M1 and contralesional pSMA and increased nodal local
efficiency in the ipsilesional pSMA compared to the Sham group
(P < 0.05). During the high-cognitive-load motor task, increased
nodal clustering coefficient was observed in the ipsilesional DLPFC
and VC, and contralesional AC, along with increased nodal local
efficiency in the ipsilesional PFC and DLPFC, and increased global
efficiency in the contralesional DLPFC and VC in the taVNS group
compared to Sham (P < 0.05). After FDR correction, only the
differences in nodal clustering coefficient and nodal local efficiency

of the ipsilesional DLPFC during the high-cognitive-load task
remained statistical significance (PFDR < 0.05). Detailed results are
presented in Table 9.

5 Discussion

Recent research has increasingly emphasized non-invasive
brainstem neuromodulation techniques, particularly taVNS, as a
promising intervention for post-stroke functional rehabilitation.
Compared to invasive vagus nerve stimulation, taVNS offers
distinct advantages including non-surgical administration,
enhanced patient compliance, and the capacity for flexible
integration with rehabilitation tasks during execution, thereby
enabling a real-time “stimulation-task synergy” mechanism.
Its superior safety profile, scalability, and cost-effectiveness
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TABLE 4 Comparison of post-intervention clinical scale scores between the two groups.

Variables Group Descriptive analysis Between-group di�erences (VNS-Sham, ANCOVA)

T0

Mean (SD)

T1
Mean (SD)

Di�erences
in LS mean
(95% CI)

P F η2

FMA-UE taVNS 38.53 (4.37) 50.27 (6.90)∗∗∗ 8.453 (4.472,12.163) 0.000 21.923 0.457

Sham 42.93 (9.38) 46.67 (10.97)∗∗

MoCA taVNS 20.67 (1.99) 25.87 (2.42)∗∗ 3.236 (1.593,4.880) 0.000 16.382 0.387

Sham 22.13 (2.72) 23.33 (2.53)∗

MBI taVNS 46.33 (28.12) 54.67 (29.54)∗∗∗ 5.636 (2.177,9.096) 0.002 11.213 0.301

Sham 69.33 (27.51) 71.67 (25.82)∗

FSS taVNS 45.67 (7.74) 38.60 (8.50)∗∗∗ −2.926 (−5.501,
−0.351)

0.027 5.456 0.173

Sham 46.73 (7.51) 42.47 (6.45)∗∗∗

ANCOVA, analysis of covariance; T0, baseline; T1, after 3 weeks of treatment; SD, standard deviation; LS, least squares; CI, confidence interval; FMA-UE, Fugl-Meyer assessment-upper

extremity; MoCA, montreal cognitive assessment; MBI, modified barthel index; FSS, fatigue severity scale; ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 vs. T0.

TABLE 5 (A) Comparison of contralesional MEP amplitude and latency post-intervention between the two groups. (B) Comparison of ipsilesional MEP

elicitation rates post-intervention between the two groups.

(A)

Variables Group Descriptive analysis Between-group di�erences (VNS-Sham, ANCOVA)

T0
(elicited/not
elicited)

T1
(elicited/not
elicited)

P

Ipsilesional
MEP
elicitation rate

taVNS 3/12 10/5∗ 0.025

Sham 1/14 3/12

(B)

Variables Group Descriptive analysis Between-group di�erences (VNS-Sham, ANCOVA)

T0

Mean (SD)

T1

Mean (SD)

Di�erences
in LS mean
(95% CI)

P F η2

Contralesional
MEP
amplitude

taVNS 63.90 (24.65) 124.07 (40.54)∗∗∗ 22.854
(−8.782,54.490)

0.150 2.205 0.078

Sham 110.93 (66.09) 127.93 (63.97)∗

Contralesional
MEP latency

taVNS 41.37 (10.03) 24.67 (4.99)∗∗∗ −9.304 (−14.226,
−4.382)

0.001 15.097 0.367

Sham 30.85 (6.08) 32.33 (5.50)

MEP, motor-evoked potential; ANCOVA, analysis of covariance; T0, baseline; T1, after 3 weeks of treatment; SD, standard deviation; LS, least squares; CI, confidence interval; ∗p < 0.05, ∗∗p <

0.01, ∗∗∗p < 0.001 vs. T0.

further support clinical translation (Badran et al., 2023; Shi
et al., 2023). Within the broader landscape of non-invasive
brain stimulation (NIBS), techniques such as transcranial
magnetic stimulation (TMS) and transcranial direct current
stimulation (tDCS) have also been investigated for stroke
rehabilitation, but their clinical adoption remains limited
by variable protocols, heterogeneity of patient response, and
logistical demands (Yokota et al., 2022; Balderston et al.,
2022). In contrast, taVNS engages neuromodulatory systems
indirectly via vagal afferent pathways, allowing for peripheral
administration and concurrent integration with functional tasks

(Lee et al., 2025). This distinct mechanism may complement
the corticospinal and cortical modulation achieved by TMS and
tDCS, potentially offering synergistic effects in future combined
approaches. Relative to conventional rehabilitation, taVNS
demonstrates not only favorable safety and reproducibility
but also unique potential for modulating multisystem neural
circuits, enhancing cortical plasticity, autonomic homeostasis,
and executive functions (Jonker et al., 2021; Balderston et al.,
2022; Lee et al., 2025; Camargo et al., 2024; Forte et al., 2022;
Kang et al., 2024). Although existing studies indicate taVNS-
mediated improvements in motor function at the behavioral level,
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TABLE 6 Comparison of resting-state ALFF post-intervention between the two groups.

ROI Group Descriptive analysis Between-group di�erences (VNS-Sham, ANCOVA)

T0

Mean (SD),
×10−7

T1

Mean
(SD), ×10−7

F P PFDR

iPFC taVNS −1.698 (2.725) 1.274 (2.114) 6.429 0.017 0.0793

Sham −0.391 (1.677) −0.929 (1.207)

iDLPFC taVNS −0.154 (3.438) 1.615 (1.934) 8.164 0.008 0.0793

Sham −0.872 (2.463) −0.852 (1.070)

iSMC taVNS −2.566 (3.928) 0.334 (4.415) 6.722 0.015 0.0793

Sham −2.969 (5.543) −1.063 (1.858)

ALFF, amplitude of low-frequency fluctuation; ANCOVA, analysis of covariance; T0, baseline; T1, after 3 weeks of treatment; SD, standard deviation; iPFC, ipsilesional prefrontal cortex;

iDLPFC, ipsilesional dorsolateral prefrontal cortex; iSMC, ipsilesional sensorimotor cortex; FDR, false discovery rate.

FIGURE 4

Between-group comparison of ALFF during resting state after intervention (taVNS-Sham).

its integrated neuromodulatory mechanisms, particularly the
cortical dynamic response patterns under cognitive modulation,
remain systematically unverified (Wang et al., 2024b; Gianlorenco
et al., 2022). This study therefore aimed to investigate the
neurofunctional benefits of taVNS-paired TOT in stroke patients
with hemiplegia using multimodal metrics, focusing specifically
on cortical response patterns to taVNS modulation under varying
cognitive loads.

Employing HRV as a physiological index of sympathovagal
balance (Kang et al., 2024), we observed significantly increased
SDNN and RMSSDwith concomitant reductions in HR and LF/HF
ratio in the taVNS group post-intervention. These findings indicate
enhanced parasympathetic activity and reduced sympathetic tone,
confirming taVNS successfully activated vagal pathways and
improved autonomic nervous system regulation, consistent with
prior research (Owens et al., 2024), which demonstrate that
taVNS activates medullary vagal pathways, inducing systemic
parasympathetic excitation to improve cardiovascular autonomic
control. Crucially, established research (Zou et al., 2024) indicates
that establishing autonomic homeostasis provides essential support

for neural plasticity and motor learning processes, further
substantiating our observations.

MEPs were assessed in both groups pre- and post-intervention
to evaluate taVNS effects on corticospinal tract plasticity.
Results demonstrated a significant increase in ipsilesional MEP
elicitation rate within the taVNS group compared to baseline,
with the improvement magnitude significantly exceeding
that of the Sham group. Additionally, the taVNS group exhibited
significantly shortenedMEP latency and increased amplitude in the
contralesional hemisphere. These results suggest taVNS effectively
activates impaired neural pathways and enhances excitability in
contralesional pathways, reflecting its synergistic modulation of
bilateral corticospinal motor tracts. This mechanism may relate
to taVNS promoting cortical synaptic activity and increasing
neuronal excitability, thereby enhancing cortical output efficiency
to the spinal cord. Notably, improved ipsilesional MEP elicitation
rates may indicate enhanced neural recruitment capacity within the
corticospinal pathways, while contralesional latency and amplitude
changes suggest improved functional efficiency of existing
conduction pathways (Yun et al., 2025; van Midden et al., 2023).
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TABLE 7 Comparison of beta values during low-cognitive-load motor tasks post-intervention between the two groups.

ROI Group Descriptive analysis Between-group di�erences (VNS-Sham, ANCOVA)

T0

Mean (SD),
×10−7

T1
Mean

(SD), ×10−7

F P PFDR

iDLPFC taVNS −3.135 (6.213) 1.913 (5.031) 6.542 0.017 0.079

Sham 5.753 (3.529) −2.435 (5.088)

iM1 taVNS −2.606 (8.891) 6.384 (5.518) 15.401 0.001 0.014

Sham 1.016 (9.412) −6.485 (1.109)

ipSMA taVNS −2.614 (6.311) 1.509 (4.862) 12.268 0.002 0.014

Sham −2.765 (8.968) −5.132 (5.523)

cAC taVNS −2.889 (8.676) 7.725 (2.288) 4.801 0.038 0.133

Sham 1.443 (9.133) −5.805 (1.091)

ANCOVA, analysis of covariance; T0, baseline; T1, after 3 weeks of treatment; SD, standard deviation; iDLPFC, ipsilesional dorsolateral prefrontal cortex; iM1, ipsilesional primary motor cortex;

ipSMA, ipsilesional premotor and supplementary motor areas; cAC, contralesional auditory cortex; FDR, false discovery rate.

FIGURE 5

Between-group comparison of beta value during low-cognitive-load motor task after intervention (taVNS-Sham).

Collectively, taVNS promotes reorganization and functional
recovery of damaged neural networks by boosting excitability and
elicitation rates in the damaged cortex (Wang et al., 2024b; Badran
et al., 2023). Concurrently, it induces compensatory excitation
in the contralesional hemisphere, not only strengthening its
inherent compensatory functions but also potentially supporting
recovery in the ipsilesional cortex via transhemispheric regulatory
mechanisms (Li et al., 2025; Huang et al., 2023). Crucially, the
pattern of changes—increased excitability in the ipsilesional
hemisphere alongside reduced latency in the contralesional
hemisphere—may reflect a modulation of interhemispheric
inhibitory dynamics. This could indicate a reduction in excessive
inhibition from the contralesional hemisphere onto the ipsilesional
hemisphere, a key mechanism of interhemispheric imbalance
implicated in post-stroke motor impairment (Garrido et al.,
2023). While direct measures of interhemispheric inhibition
were not obtained, this MEP profile provides indirect support
for the hypothesis that taVNS contributes to restoring a more
balanced interhemispheric interaction, alongside enhancing

excitability within the lesioned pathways. This dual mechanism—
enhancing reconstruction capacity in impaired pathways
while optimizing compensatory efficacy in contralesional
pathways—holds promise for synergistically remodeling higher-
order motor control networks, offering a potentially more
effective intervention strategy for central nervous system
functional recovery.

fNIRS results further elucidated taVNS mechanisms within
cognitive-motor integration. While resting-state analyses showed a
trend toward higher spontaneous neural activity in the ipsilesional
PFC, DLPFC, and SMC cortices in the taVNS group, these
differences were non-significant post-FDR correction. This
suggests unstable intergroup effects on regional activity at rest,
potentially limited by substantial individual variability and signal
fluctuation (Yokota et al., 2022; Keatch et al., 2025). In contrast,
taVNS-induced activation patterns during tasks were more focused
and stable, exhibiting distinct network responses across cognitive
loads. During the low-cognitive-load motor task, the taVNS
group demonstrated elevated activation in the ipsilesional DLPFC,
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TABLE 8 Comparison of beta values during high-cognitive-load motor tasks post-intervention between the two groups.

ROI Group Descriptive analysis Between-group di�erences (VNS-Sham, ANCOVA)

T0

Mean (SD),
×10−7

T1
Mean

(SD), ×10−7

F P PFDR

iPFC taVNS −1.698 (2.725) 1.274 (2.114)∗∗ 14.483 0.001 0.007

Sham −0.391 (1.677) −0.929 (1.207)

iDLPFC taVNS −0.154 (3.438) 1.615 (1.934) 17.723 0.000 0.000

Sham −0.872 (2.463) −0.852 (1.070)

ipSMA taVNS 1.017 (2.586) 1.047 (3.556) 7.420 0.011 0.053

Sham 7.031 (3.334) 1.806 (1.613)

cSMC taVNS −1.975 (10.810) 5.771 (3.075) 5.228 0.031 0.087

Sham 3.127 (14.160) −1.675 (2.223)

cAC taVNS −1.504 (8.066) 0.989 (3.640) 5.195 0.031 0.087

Sham −2.170 (5.409) −3.064 (5.495)

ANCOVA, analysis of covariance; T0, baseline; T1, after 3 weeks of treatment; SD, standard deviation; iPFC, ipsilesional prefrontal cortex; iDLPFC, ipsilesional dorsolateral prefrontal cortex;

ipSMA, ipsilesional premotor and supplementary motor areas; cSMC, contralesional sensorimotor cortex; cAC, contralesional auditory cortex; FDR, false discovery rate; ∗∗p < 0.01 vs. T0.

FIGURE 6

Between-group comparison of beta value during high-cognitive-load motor task after intervention (taVNS-Sham).

M1, pSMA, and the contralesional AC. Activation increases in
M1 and pSMA remained statistically significant after multiple
comparisons correction. The sustained significant activation of
these core motor hubs (M1, pSMA) suggests taVNS may accelerate
action generation and execution by enhancing initiation and
synergistic control mechanisms (Wang et al., 2024b; Gerges et al.,
2025). Co-activation of DLPFC and AC also indicates taVNS
potentially facilitates attentional modulation and movement
preparation processes, potentially enhancing motor cortical
responses indirectly by improving premotor cognitive engagement
(Li et al., 2023; Harrison et al., 2025). During the high-cognitive-
load motor task, regions showing enhanced activation in the
taVNS group expanded to include the ipsilesional PFC, DLPFC,
pSMA, and contralesional VC and SMC, with PFC and DLPFC
exhibiting the most significant increases. As key regions for higher-
order cognitive control and motivational drive, their sustained
significant activation under complex task demands suggests taVNS

may enhance executive efficiency and goal-directedness by boosting
the involvement of advanced cognitive control and motivational
systems (An et al., 2025). This interpretation is reinforced by
within-group analyses demonstrating significant post-intervention
increases specifically in ipsilesional PFC activation among taVNS
participants, identifying this region as a critical node for taVNS
modulation during complex cognitive-motor tasks. Furthermore,
the concurrent involvement of pSMA, SMC, and VC implies taVNS
plays a significant role in strengthening overall motor regulation
and mediating “cognition-driven motor cortex activation”.
Importantly, the activation pattern observed in the contralesional
hemisphere during both task loads—characterized by co-activation
(AC in low-load) or supplementary activation (SMC, VC in
high-load)—aligns with the notion that taVNS may promote a
more balanced and cooperative interhemispheric engagement
(Zhou et al., 2021). This contrasts with patterns of maladaptive
contralesional over-activation sometimes observed in stroke
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FIGURE 7

Between-group comparison of functional connectivity under di�erent conditions (taVNS-Sham). All displayed connections survived the uncorrected

threshold of P < 0.05 (independent samples t-test). No connections retained statistical significance following false discovery rate (FDR) correction.

(Peng et al., 2023), suggesting taVNS could help attenuate such
hemispheric imbalance and foster more efficient bihemispheric
collaboration, particularly under cognitively demanding conditions
where top-down control is crucial. This activation pattern aligns
with the “motor-cognitive fusion model” (Bestmann and Krakauer,
2015) and resembles the prefrontal-motor network synergy
enhancement observed in respiratory-gated taVNS studies (Han
et al., 2025). Supporting evidence (An et al., 2025) further confirms
that taVNS can strengthen DLPFC-PFC functional coupling
during high-cognitive-load tasks, thereby improving complex
motor task performance efficiency. Beyond motor execution,
this enhanced prefrontal connectivity may also underlie the
cognitive improvements (e.g., MoCA score increases) and reduced
fatigue (FSS score decreases) observed in the taVNS group.
Ascending projections from the nucleus tractus solitarius to the
locus coeruleus–norepinephrine and basal forebrain cholinergic
systems could facilitate attentional regulation, executive control,
and arousal stability, thereby improving overall cognitive-motor
integration and alleviating fatigue-related performance decline
(Giraudier et al., 2022). Although sensory outcomes were not
directly assessed in this study, previous evidence suggests that
vagal pathway activation may influence thalamocortical sensory
processing, highlighting the potential for taVNS to support
sensory recovery as part of an integrated rehabilitation strategy.
In summary, taVNS elicited distinct regional activation patterns
depending on cognitive load: activation dominated by motor hubs
with cognitive region co-activation during low-cognitive-load
tasks, shifting toward cognitive hub dominance driving broader
motor network participation during high-cognitive-load tasks.
This suggests that taVNS enhances cognitive-motor integration
efficiency by modulating the driving intensity of cognition on
motor execution according to task demands. This load-dependent
activation profile likely originates from taVNS modulation of

the brainstem-prefrontal-motor cortex pathway. By activating
the locus coeruleus-norepinephrine system (Horinouchi et al.,
2024; Szeska et al., 2025) and prefrontal regions (e.g., DLPFC),
taVNS enhances cognitive control capacity and strengthens
prefrontal-motor cortical coupling, facilitating a dynamic shift
from “motor-dominant” to “cognition-driven” processing based
on task complexity (Giraudier et al., 2022; Viglione et al., 2023).
The potential modulation of interhemispheric interactions, as
suggested by both MEP and fNIRS findings, further underscores
taVNS’s synergistic regulatory capacity in stroke rehabilitation,
potentially promoting higher-order integrative functional recovery
through cognitive reinforcement of motor pathways and the
restoration of more balanced hemispheric dynamics.

Complex network analysis revealed taVNS-induced dynamic
modulation of cortical functional connectivity. Resting-state data
showed increased nodal clustering coefficient in the ipsilesional
DLPFC in the taVNS group, indicating enhanced local information
integration capacity within this region (Luo et al., 2022). Task-
state network reorganization exhibited cognitive-load dependency:
During the low-cognitive-load task, increased nodal clustering
coefficient in ipsilesional M1 and contralesional pSMA, alongside
increased nodal local efficiency in ipsilesional pSMA, suggested
taVNS enhanced local integration and functional synergy within
motor-related regions (Owens et al., 2024). Conversely, during
the high-cognitive-load task, network optimization manifested
as broad cross-regional reorganization. Specifically, increased
nodal clustering coefficient was observed in ipsilesional DLPFC,
VC, and contralesional AC; enhanced nodal local efficiency
occurred in ipsilesional PFC and DLPFC; and increased global
efficiency was found in contralesional DLPFC and VC. These
changes indicate that under high-cognitive load, taVNS may
enhance overall coordination and resource integration within the
prefrontal-motor network by boosting local and inter-regional
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TABLE 9 Comparison of network parameters post-intervention between the two groups.

Network
parameters

ROI Group Descriptive analysis Between-group di�erences (VNS-Sham,
ANCOVA)

T0

Mean (SD)

T1

Mean (SD)

F P PFDR

Resting state

Nodal
clustering
coefficient

iDLPFC taVNS 0.177 (0.136) 0.181 (0.129) 5.102 0.032 0.448

Sham 0.220 (0.083) 0.247 (0.098)

Nodal local
efficiency

No significant difference

Global
efficiency

No significant difference

Low cognitive load motor task

Nodal
clustering
coefficient

iM1 taVNS 0.272 (0.091) 0.349 (0.085)∗ 7.538 0.011 0.154

Sham 0.261 (0.080) 0.251 (0.105)

ipSMA taVNS 0.292 (0.106) 0.307 (0.093) 4.600 0.041 0.287

Sham 0.259 (0.135) 0.214 (0.135)

Nodal local
efficiency

ipSMA taVNS 0.255 (0.127) 0.343 (0.089) 5.577 0.026 0.364

Sham 0.249 (0.136) 0.265 (0.114)

Global
efficiency

No significant difference

High cognitive load motor task

Nodal
clustering
coefficient

iDLPFC taVNS 0.208 (0.096) 0.371 (0.037)∗∗∗ 16.235 0.000 0.000

Sham 0.335 (0.020) 0.309 (0.031)∗∗

iVC taVNS 0.245 (0.133) 0.178 (0.142) 5.058 0.033 0.154

Sham 0.280 (0.117) 0.280 (0.090)

cAC taVNS 0.290 (0.063) 0.231 (0.135) 5.071 0.033 0.154

Sham 0.313 (0.079) 0.322 (0.077)

Nodal local
efficiency

iPFC taVNS 0.256 (0.128) 0.372 (0.020)∗∗ 8.340 0.008 0.056

Sham 0.312 (0.070) 0.315 (0.079)

iDLPFC taVNS 0.251 (0.119) 0.376 (0.028)∗∗ 13.251 0.001 0.014

Sham 0.360 (0.016) 0.312 (0.043)∗∗∗

Global
efficiency

cDLPFC taVNS 0.207 (0.048) 0.205 (0.047) 5.237 0.030 0.259

Sham 0.215 (0.041) 0.148 (0.083)

cVC taVNS 0.192 (0.057) 0.155 (0.066) 4.831 0.037 0.259

Sham 0.160 (0.076) 0.208 (0.050)

ANCOVA, Analysis of Covariance; T0, baseline; T1, after 3 weeks of treatment; SD, standard deviation; iPFC, ipsilesional prefrontal cortex; i/cDLPFC, ipsilesional/contralesional dorsolateral

prefrontal cortex; iM1, ipsilesional primary motor cortex; ipSMA, ipsilesional premotor and supplementary motor areas; cAC, contralesional auditory cortex; cVC, contralesional visual cortex;

FDR, false discovery rate; ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 vs. T0.
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information transfer efficiency. The consistent DLPFC involvement
across multiple metrics positions it as a key hub for taVNS
modulation of cognitive-motor integration, aligning with Pereira’s
“executive control-motor planning” synergy model (Pereira et al.,
2024) emphasizing DLPFC’s dual role in cognitive control and
motor planning during high-demand tasks. Enhanced network
efficiency here may reflect superior behavioral regulation capacity.
This network reorganization pattern closely matches the “motor
activation-dependent neuroplasticity” observed in closed-loop
taVNS systems (Zhuang et al., 2023), indicating DLPFC’s role as
a core network hub participating in the synergistic integration
of task control and motor planning (Sommer et al., 2023).
Previous studies (Holub et al., 2023; Han et al., 2023; Wheelock
et al., 2023; Gondo et al., 2023; Sintini et al., 2024) also found
taVNS-induced functional connectivity changes associated with
default mode network remodeling, potentially modulating global
network states to create an internal environment conducive to
neural plasticity. These topological parameter changes suggest
taVNS operates via distinct mechanisms across cognitive loads:
prioritizing activation and integration of local motor hub networks
to enhance execution efficiency during low-cognitive-load tasks,
while primarily enhancing connection integration within cognitive
hubs (e.g., DLPFC) to guide broad motor region collaboration for
optimized resource allocation and system integration during high-
cognitive-load tasks. This demonstrates taVNS’s flexible adaptation
to the cognitive control-motor execution pathway, exhibiting task-
load dependency. Clinically, stroke patients frequently exhibit
insufficient cognitive resource mobilization and low task control
efficiency during functional recovery even without overt cognitive
impairment (Potts et al., 2024; Rajda et al., 2025; Bachar
Kirshenboim et al., 2025). Our findings suggest that taVNS
not only improves motor execution but also possesses the
potential to support task regulation and resource integration under
increased cognitive load. Consequently, compared to traditional
interventions primarily targeting motor cortex activation, taVNS
demonstrates the capacity to modulate cognition-driven pathways
and promote prefrontal-motor network synergy. This offers
a novel approach and theoretical foundation for integrated
cognitive-motor rehabilitation, particularly beneficial for patients
exhibiting inadequate cognitive engagement and poor complex task
adaptation during recovery.

Several limitations warrant consideration: the relatively small
sample size, short intervention duration, and lack of long-
term follow-up limited our ability to assess the sustained
efficacy of taVNS and the causal relationships among multimodal
indicators. The sham protocol, though based on prior taVNS
studies, may not have fully matched the sensory experience of
active stimulation. Correlation analyses between groups during
the intervention were not performed. Stimulation parameters
were adopted from published consensus rather than preliminary
testing in this cohort. The lesion-specific effects of left-sided
taVNS were not evaluated, and although stimulation was
synchronized with task execution, it was not precisely matched
to discrete movement events. Future studies should include
larger samples, explore lesion-specific stimulation protocols, refine
sham designs, incorporate intergroup correlation analyses, and
optimize stimulation parameters and timing strategies to validate
long-term efficacy.

6 Conclusion

taVNS paired with TOT promotes post-stroke upper
limb functional recovery through synergistic multi-level
neuromodulatory mechanisms. These include enhancement
of autonomic regulation, elevation of corticomotor pathway
excitability, facilitation and activation of cortical regions
governing cognitive-motor integration, and reorganization of
functional connectivity networks. Crucially, taVNS-induced
neural activation patterns and network reconfiguration
demonstrate significant cognitive-load-dependent reorganization:
During low cognitive demand tasks, activation primarily
centers on motor hubs with enhanced local integration,
whereas high cognitive demand tasks engage cognitive hubs,
driving broader prefrontal-motor network co-activation.
This dynamic transition from motor-dominant to cognition-
driven processing suggests that taVNS modulates functional
coupling within prefrontal-motor cortical pathways according
to task cognitive load. Consequently, such neuromodulation
optimizes cognitive-motor integration efficiency, augments
executive efficiency in complex task performance, and
accelerates functional recovery of impaired extremities.
Collectively, these findings provide novel neurophysiological
evidence supporting individualized rehabilitation strategies for
stroke recovery.
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