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With the rapid development of brain-computer interface (BCI) technology, the
effective integration of multimodal biological signals to improve classification
accuracy has become a research hotspot. However, existing methods often
fail to fully exploit cross-modality correlations in complex cognitive tasks. To
address this, this paper proposes a Multi-Branch Convolutional Neural Network
with Attention (MBC-ATT) for BCl based cognitive tasks classification. MBC-
ATT employs independent branch structures to process electroencephalography
(EEG) and functional near-infrared spectroscopy (fNIRS) signals separately,
thereby leveraging the advantages of each modality. To further enhance
the fusion of multimodal features, we introduce a cross-modal attention
mechanism to discriminate features, strengthening the model’s ability to focus
on relevant signals and thereby improving classification accuracy. We conducted
experiments on the n-back and WG datasets. The results demonstrate that
the proposed model outperforms conventional approaches in classification
performance, further validating the effectiveness of MBC-ATT in brain-computer
interfaces. This study not only provides novel insights for multimodal BCl systems
but also holds great potential for various applications.

KEYWORDS

brain-computer interface, cognitive task, deep learning, multimodal signals, multimodal
fusion

1 Introduction

Brain-Computer Interface (BCI) represents a cutting-edge human-machine interaction
paradigm that establishes direct neural pathways between the brain and external devices,
enabling users to bypass traditional neuromuscular channels for device control (Sharma
and Meena, 2024). Based on the mode of signal acquisition, BCI systems are generally
categorized into invasive and non-invasive approaches. Compared to invasive methods,
non-invasive techniques offer superior clinical applicability due to their enhanced
safety and user tolerance. These approaches eliminate the risks associated with surgical
implantation, making them suitable for long-term monitoring and mobile applications
(Jafari et al., 2023). Moreover, they avoid the ethical concerns linked to intracranial
implants, rendering them more appropriate for large-scale population studies and
translational clinical research (Virbu et al., 2022). Accordingly, non-invasive acquisition
methods were adopted in the present study.
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Electroencephalography (EEG) and functional near-infrared
spectroscopy (fNIRS) are two representative non-invasive brain
signal acquisition techniques that have been widely adopted
in BCI research due to their safety and ease of use (Liu
et al,, 2021). EEG offers millisecond-level temporal resolution,
enabling real-time recording of cortical neural activity. This
makes it particularly suitable for investigating high-level cognitive
functions such as attention and memory. However, as EEG signals
are collected via scalp electrodes, they are highly susceptible
to artifacts from electromyographic activity, eye movements,
and environmental noise (Li et al, 2022). Additionally, EEG
exhibits considerable inter-subject variability, and the same
subject’s signal characteristics may change across sessions or
experimental contexts. This variability hinders the cross-subject
generalizability of EEG-based BCI systems and often necessitates
a laborious calibration process for new users, which severely
limits practical deployment (Wu et al, 2020). In contrast,
fNIRS measures hemodynamic responses associated with neural
activity by detecting changes in oxygenated and deoxygenated
hemoglobin concentrations in the brain. It offers better spatial
resolution and is more robust against motion artifacts, making
it well-suited for experiments in more naturalistic settings
(Chiarelli et al., 2017). However, fNIRS suffers from limited
temporal resolution and is less capable of capturing fast
neural dynamics.

To overcome this limitation, researchers have focused in
recent years on developing multimodal fusion techniques. Among
these, the combined application of EEG and fNIRS has garnered
particular attention. The high temporal resolution of EEG
complements the spatial localization capability of fNIRS, which
indirectly reflects neural activity by detecting changes in cortical
blood oxygen levels. Moreover, the strong resistance of fNIRS to
artifacts such as eye movements effectively compensates for the
inherent limitations of EEG (Lin et al., 2023). This fusion strategy
not only deepens the multidimensional analysis of brain activity
but also demonstrates significant value in areas such as motor
imagery decoding, cognitive state assessment, and the diagnosis of
neurological disorders.

In recent years, an increasing number of studies have
attempted to enhance brain state recognition performance
through multimodal fusion. For example, a method combining
handcrafted features and traditional machine learning techniques
was proposed (Cao et al, 2022) to classify multi-level brain
load, but it heavily relies on complex preprocessing and feature
extraction processes. To overcome the limitations of traditional
approaches, some studies have begun to incorporate deep
learning techniques. A novel recurrence plot (RP)-based time-
distributed convolutional neural network and long short-term
memory (CNN-LSTM) framework (Mughal et al., 2022) has been
introduced for the integrated classification of EEG and fNIRS
signals in hybrid BCI applications, demonstrating an effective
approach for capturing spatiotemporal patterns across modalities.
Additionally, short-time Fourier transform (STFT) has been
employed to convert EEG signals into time-frequency images,
which are subsequently integrated with the frequency-domain
features of fNIRS using the Dense Convolutional Network
(DenseNet) architecture, offering a complementary strategy
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for enhancing multimodal representation and classification

performance in hybrid BCI systems (Bunterngchit et al,

2024). However, these methods largely depend on simple

concatenation or stacking fusion strategies and fail to fully

exploit the complementary and synergistic relationships
between modalities.

In terms of fusion strategies, existing studies have explored
different fusion timings and methods, which are generally
categorized into early fusion-where multimodal features are
combined at the input or low-level feature stage and late fusion,
where decisions or high-level features from each modality are
integrated at a later stage. For example, a comparison between early
and late fusion approaches (Li et al., 2023) showed that early fusion,
where multimodal features are combined before classification, can
somewhat improve model performance. In contrast, a polynomial
fusion method was proposed in Sun et al. (2020), which operates
at a deeper semantic level and thus falls under the category of
late fusion. Similarly, the FGANet model (Kwak et al., 2022)
employs spatial mapping and attention mechanisms to extract
high-level cross-modal features, serving as another example of a
late fusion strategy that provides novel insights into improving
representational capacity. However, current fusion methods still
face several challenges: firstly, the ability to model complementary
relationships between modalities is limited, lacking mechanisms
for deeply exploring the dynamic dependencies between EEG and
fNIRS (Bourguignon et al., 2022; Khan et al., 2021); secondly, most
fusion methods rely on feature concatenation or static weighting,
making it difficult to automatically focus on key modalities or brain
region signals based on different task states (Nour et al., 2021; Chen
etal., 2023).

To address these issues, this paper proposes a cross-
modal attention fusion framework, Multimodal MBC-ATT. This
framework is based on a late fusion strategy and incorporates
a modality-guided attention mechanism aimed at selectively
integrating information through the joint modeling of cross-modal
features, thereby enhancing the decoding ability of cognitive states
and overcoming the limitations of current methods in dynamic
dependency modeling and task adaptability. The innovations of this
study are primarily reflected in the following aspects:

o Cross-modal attention fusion framework (Multimodal
MBC-ATT): by incorporating a modality-guided attention
mechanism, the framework selectively integrates EEG and
fNIRS signals, tackling the issue of inadequate modeling
of complementary relationships between modalities in
traditional methods.

e Dynamic dependency modeling: this approach overcomes the
limitations of static fusion strategies by enabling the model to
automatically concentrate on key modalities and brain region
signals in accordance with task states, thereby enhancing
task adaptability.

e Enhanced cross-modal synergy: compared to traditional
feature concatenation or static weighting methods, this
approach dynamically adjusts the contribution of each
modality, enhancing the synergistic ability of fused signals
and improving the decoding accuracy and robustness of the
brain-computer interface.
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2 Dataset and method

In this section, we describe the multimodal dataset that
integrates EEG and fNIRS signals, outline the preprocessing
steps necessary for effective signal representation, and finally
present the MBC-ATT framework designed for cross-modal brain
activity decoding.

2.1 Experimental dataset

This study used an open-access multimodal brain imaging
which simultaneously recorded EEG and fNIRS
signals, aiming to promote the development of neuroimaging
analysis and BCI research (Shin et al, 2018). The dataset
was collected from 26 healthy participants while performing

dataset,

three cognitive tasks, with the aim of providing high-quality
multimodal signal data for BCI and neuroscience research. All
participants were right-handed adults (nine males, 17 females)
aged 17-33 years (M = 26.1, SD =
provided written informed consent and confirmed absence

3.5). Each participant

of neurological or psychiatric history through standardized
screening questionnaires.

During the experiment, participants sat on a comfortable chair
approximately 1.2 meters from a 24-inch LCD monitor, with their
right index and middle fingers positioned on a numeric keypad
for keypress responses. Three cognitive tasks were employed:
the n-back task (Dataset A) to assess working memory load,
the discrimination/selection response (DSR) task (Dataset B) to
examine neural responses to target versus non-target stimuli, and
the word generation (WG) task (Dataset C) to investigate brain
activity related to language processing.

In this study, participants completed the n-back task
(Dataset A) and the WG task (Dataset C) to investigate the
multimodal neural signal characteristics under different cognitive
task conditions.

In the n-back task, participants made responses based on
the task type: in the 0-back task, participants pressed the right
index finger (target button) or the right middle finger (non-
target button); in the 2-back and 3-back tasks, participants
determined whether the currently displayed number matched the
number shown 2 or 3 trials earlier and pressed the corresponding
button. As shown in Figure 1, each task block consists of a 2-
s instruction display, followed by a 40-s task period. During the
task period, a random one-digit number is displayed every 2
s for 0.5 s, followed by a 1.5-s display of a fixed cross. After
the task period, participants enter a 20-s rest period, during
which they focus on a fixed cross displayed on the screen.
Each participant performed a total of 180 trials (20 trials x 3
series X 3 sessions) to ensure the adequacy and reliability of
the data.

The WG task is a spontaneous word generation task in which
participants are required to think of and silently generate words
starting with a specific letter within a limited time, aiming to
investigate the neural activity characteristics of brain regions
related to language. The experiment consists of 3 sessions, each
containing 10 WG tasks and 10 Baseline (BL) tasks. Participants
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perform a total of 30 WG tasks and 30 BL tasks. As shown in
Figure 2, each trial consists of a 2-s task prompt, a 10-s task
execution period, and a 13-15 s rest period. During the WG task
period, a random letter is displayed on the screen, and participants
are required to quickly generate and silently list as many words
as possible starting with that letter within 10 s, while avoiding
repetition. In the BL task period, participants are instructed to
focus on a fixed point at the center of the screen to maintain
a low cognitive load, serving as a control condition for the
WG task.

The EEG-fNIRS multimodal dataset used in this study
underwent basic preprocessing prior to its release to ensure data
quality. The EEG data were sampled at 1,000 Hz, consisting
of 30 EEG channels and 2 Electrooculography (EOG) channels,
and were downsampled to 200 Hz during the data processing
stage. A 1-40 Hz bandpass filter was applied to remove low-
frequency drift and high-frequency noise, as this frequency range
preserves task-related neural oscillations (theta, alpha, beta, and
low gamma) while suppressing irrelevant artifacts. Eye movement
artifacts were removed using the EEGLAB toolbox (Martinez-
Cancino et al., 2021). The fNIRS data consist of 36 channels with
a sampling rate of 10.4 Hz. The raw optical intensity measurements
were converted to changes in concentrations of oxyhemoglobin
(HbO) and deoxyhemoglobin (HbR), and the sampling rate was
downsampled to 10 Hz. Additionally, basic artifact removal and
noise filtering were applied during data acquisition.

To meet the requirements of this experiment, further
processing was performed on the data. First, the EEG and fNIRS
signals were synchronized and segmented based on the task time
markers. The 2 s before the task start and the rest period after the
task were discarded, retaining only the valid data following the task
onset. Each task data was segmented into multiple time windows
using a sliding window approach (with a window length of 5 s and
a step size of 1 s), which was chosen to ensure that each segment
contains sufficient task-related neural activity while increasing the
number of samples and maintaining temporal continuity for more
robust analysis.

2.2 Methods

The paper proposes a decoding framework that integrates
a multi-branch convolutional neural network with a cross-
modal attention mechanism (MBC-ATT), aimed at efficient joint
modeling of EEG and fNIRS signals. The model independently
extracts temporal and spatial features of EEG and fNIRS signals
through separate branches and introduces a modality-guided
attention mechanism to achieve dynamic fusion and selective
enhancement of cross-modal features, thereby improving decoding
performance for complex cognitive tasks. The network architecture
is illustrated in Figure 3.

The model employs a dual-branch architecture, with the upper
branch corresponding to the EEG feature extraction module and
the lower branch dedicated to the fNIRS feature extraction module.
The features extracted from both modalities are subsequently fed
into a cross-modal attention fusion mechanism to accomplish the
final classification task.
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FIGURE 3
MBC-ATT network architecture.

2.2.1 EEG feature extraction network This branch consists of multiple convolutional layers, pooling

This branch uses a convolutional neural network (CNN) as
the core architecture for the EEG feature extraction branch. The
branch aims to automatically extract meaningful features from raw
EEG signals using deep learning methods, thereby enhancing the
performance of multimodal fusion.

Frontiersin Human Neuroscience

layers, and fully connected layers. In the initial stage, three
convolutional layers with kernel sizes of (7, 1) are used to
gradually extract local features from the EEG signals, with the
ReLU activation function introducing non-linearity to enhance
the feature representation capability. This kernel configuration is
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primarily based on the temporal characteristics of EEG signals,
where the (7,1) kernel slides along the time dimension to capture
short-term local temporal dependencies while maintaining the
independence across channels. This design was inspired by Yu
et al. (2025), which demonstrated that short temporal receptive
fields are effective for EEG decoding; in our work, the (7,1)
kernel was further adapted to our data characteristics (sampling
rate and channel configuration) to balance temporal locality with
computational efficiency. Subsequently, a max pooling layer is
applied to downsample the feature map, reducing its spatial
dimensions while preserving key information. This operation
effectively reduces computational complexity and enhances the
robustness of the features. Additionally, batch normalization
(Ogundokun et al., 2022) is applied to standardize the features,
accelerating the model training and improving its stability. In the
deeper layers of the network, three two-dimensional convolutional
layers with kernel sizes of (4x4) are used to extract global EEG
features, a configuration designed to capture spatial correlations
across multiple channels, which helps identify more complex inter-
channel patterns and reflect the spatial distribution of brain activity.
Max pooling is again applied to further downsample the feature
map for increased feature abstraction, while batch normalization
continues to optimize the training process. Finally, the feature maps
are flattened and passed through two fully connected layers to
extract high-level features and perform feature mapping, thereby
enhancing discriminability and providing optimized feature
representations for multimodal fusion in classification tasks.

2.2.2 fNIRS feature extraction network

Unlike EEG signals, fNIRS signals reflect changes in blood
oxygen concentration, with feature extraction focusing more on
local fluctuations and temporal changes. Despite their differences
in physiological characteristics, both utilize CNN as the core
architecture. This design ensures consistency in multimodal data
processing, while also reducing the complexity of module design,
thereby facilitating subsequent multimodal fusion.

The initial stage of the network consists of two convolutional
layers with kernel sizes of (4, 1), designed to extract local
spatial features of the fNIRS signals, particularly modeling the
temporal dynamics of blood oxygen concentration. Subsequently,
the pooling layer downsamples the feature map, reducing its
spatial dimensions, while preserving key features and lowering
computational complexity. In the subsequent layers, the network
further extracts complex spatial features through two convolutional
layers with kernel sizes of (2, 2), identifying blood oxygen
concentration variation patterns between different regions. These
convolutional layers progressively expand the receptive field,
capturing broader spatial information. Finally, the fully connected
layers merge and transform the extracted spatiotemporal features
of blood oxygen concentration, generating high-level features
that serve as input for subsequent classification and multimodal
fusion. This design enables the fNIRS feature extraction branch to
efficiently capture the spatial distribution and temporal dynamics
of oxygen hemodynamics and map them to a feature space suitable
for multimodal tasks.

Frontiersin Human Neuroscience

10.3389/fnhum.2025.1660532

2.2.3 Multimodal feature fusion network

In this study, to fully leverage the complementarity of the two
modalities, we employed an attention mechanism (Vaswani et al.,
2017) to dynamically capture the dependencies between them.

First, the input features of EEG and fNIRS are mapped onto
a unified hidden space using independent linear transformation
layers. This step ensures that both modalities, which may
have different original dimensions or feature distributions, are
projected into a common representational space, facilitating
effective interaction and comparison. Subsequently, the features of
the EEG and fNIRS modalities are passed through independent
linear transformation layers to generate their corresponding
Query, Key, and Value representations, which are used to assess
both intra-modal and inter-modal dependencies. These additional
transformations allow the model to learn optimal representations
tailored for attention computation, enabling it to focus on the most
relevant parts of the input. To enhance the interaction between
modalities, the model employs a cross-modal attention mechanism
for fusion. Specifically, the Query from the EEG modality interacts
with the Key and Value from the fNIRS modality, and similarly, the
fNIRS modality interacts with the EEG modality. This cross-modal
fusion allows each modality to dynamically reference the features
of the other, thereby fully leveraging the complementary nature
of the high temporal resolution of EEG and the spatial resolution
of fNIRS. In addition, the model employs a 4-head attention
mechanism, where the Query, Key, and Value are divided into
four independent subspaces. Each head captures the inter-modal
dependencies from a different perspective. This multi-head design
further enhances the expressive power of the attention mechanism,
enabling it to model the complex the complex relationships
between EEG and fNIRS more comprehensively.

3 Experiments and results

In the experiments, this study employs the n-back task and
the WG task to validate the effectiveness of the proposed MBC-
ATT method across different cognitive tasks. The experimental
procedure strictly follows standardized protocols for data splitting,
feature extraction, and model training to ensure the reproducibility
of the results.

All experiments were conducted on a system equipped with
an Intel Core processor and an NVIDIA GeForce RTX 4060
Laptop GPU. The software environment included Python 3.10
and PyTorch 2.1 with CUDA 11.8 support, all implemented
within an Anaconda-managed virtual environment. For the n-
back experiment, the model was trained for 60 epochs using the
Adam optimizer with an initial learning rate of le-3; for the WG
experiment, training lasted 70 epochs with the same optimizer and
learning rate. Other training hyperparameters were kept consistent
across both experiments.

3.1 Experimental plan
This study adopts a within-subject partitioning strategy to

evaluate the applicability of the model at the individual level.
By performing independent training and testing on the dataset

frontiersin.org


https://doi.org/10.3389/fnhum.2025.1660532
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org

Liet al.

of each subject, confounding effects arising from inter-individual
variability are effectively mitigated. This approach not only
enhances recognition accuracy but also ensures robust adaptation
to subject-specific physiological signal characteristics.

For each subject, the dataset is randomly partitioned into
training (80%) and testing (20%) subsets, with the former dedicated
to model development and the latter reserved for final performance
assessment. To ensure robustness against partitioning randomness,
the training subset undergoes five-fold cross-validation. This
strategy not only mitigates overfitting but also enhances the model’s
generalizability to unseen data.

To further ensure the robustness and generalizability of the
model, we additionally conducted a complementary evaluation
using five-fold cross-validation on the entire dataset. This cross-
validation procedure mitigates overfitting and reduces potential
bias caused by data partitioning, providing a more comprehensive
assessment of the model’s performance.

3.2 Evaluation metrics

To provide a comprehensive evaluation of the classification
model’s performance, this study utilizes four key metrics: Accuracy,
Precision, Recall, and the F1-score.

Accuracy serves as a cornerstone evaluation metric in deep
learning-based classification tasks, formally defined as the ratio
between correctly predicted instances and the total number of test
samples. The computation follows the standard formulation:

N TP+ TN 0
ccuracy =
YT TP Y TN+ FP+FN

In the classification framework, True Positives (TP) correspond
to the number of positive instances correctly identified by the
model, True Negatives (TN) represent correctly classified negative
cases, False Positives (FP) indicate negative samples erroneously
predicted as positive, and False Negatives (FN) signify positive
samples inaccurately classified as negative.

Precision quantifies the model’s predictive reliability for the
positive class, representing the proportion of true positives among
all positive predictions. The metric is formally defined as:

. TP
Precision = ——— (2)
TP + FP
Elevated precision demonstrates the models enhanced
accuracy in  positive-class  identification,  characterized

by reduced false positive predictions. This metric proves
especially critical in applications where misclassification entails
significant consequences.

Recall quantifies the model’s sensitivity in detecting positive-
class instances, defined as the ratio of true positives to all
actual positives in the population. The formal computation is
expressed as:

Recall = (3)

TP + FN
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An elevated recall rate demonstrates the model’s enhanced
detection capability for positive instances, albeit with a potential
compromise in specificity through increased false positives.
This performance metric assumes critical importance in high-
stakes applications where false negatives may incur substantial
costs, such as medical diagnosis, security surveillance, or fault
detection systems.

The Fl-score represents the harmonic mean of precision and
recall, providing a balanced metric that reconciles the trade-
off between these two competing objectives. Formally, it is
computed as:

2 x Precision x Recall
Fl-score = — (4)
Precision + Recall

Under class-imbalanced conditions, the F1l-score serves as a
robust composite metric for evaluating overall model performance,
mitigating potential assessment bias induced by over-reliance on
individual metrics such as precision or recall in isolation.

Furthermore, to enable intuitive cross-class performance
analysis, this investigation incorporates confusion matrix
visualization (Lei et al., 2016). This diagnostic tool explicitly maps
the correspondence between ground-truth and predicted labels,
uncovering category-specific classification biases that inform

targeted model refinement.

3.3 Experimental results

3.3.1 n-back dataset experimental results

In the n-back experiment, we followed the established
experimental plan for data partitioning and model training, and
evaluated the model performance on the test set.

We computed multiple evaluation metrics for each subject,
as shown in Table 1. The results indicate that the proposed
method demonstrates excellent classification performance at the
individual level. Although there are differences in classification
performance across different subjects, the method is able to adapt
to inter-individual variations in neural signals and maintains a
high classification accuracy in most subjects, demonstrating good
generalization ability.

To further analyze the overall performance of the model, we
calculated the average results of all subjects. The classification
accuracy reached 98.13%, precision was 98.24%, recall was 98.10%,
and the F1 score was 98.11%. This result validates the effectiveness
and robustness of the model in a within-subject partition scenario.
Furthermore, the high consistency observed across different
subjects further demonstrates the model’s robustness to individual
neural signal variations, as it can stably extract common features
and perform classification tasks.

In addition, we plotted the confusion matrix (as shown in
Figure 4) to further analyze the classification performance of the
model. From the figure, it can be seen that the model’s prediction
results are well-balanced across categories with a high accuracy,
indicating that the proposed method has strong discriminative
ability across different task categories.
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TABLE 1 Classification performance metrics of each subject in the n-back task.

Subject 01-13 Subject 15-26
Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score
0.9697 0.9697 0.9697 0.9683 0.9999 0.9999 0.9999 0.9999
0.9999 0.9999 0.9999 0.9999 0.9091 0.9139 0.8956 0.9015
0.9697 0.9762 0.9667 0.9701 0.9999 0.9999 0.9999 0.9999
0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
0.9999 0.9999 0.9999 0.9999 0.9697 0.9697 0.9697 0.9683
0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
0.9999 0.9999 0.9999 0.9999 0.9697 0.9744 0.9792 0.9759
0.9999 0.9999 0.9999 0.9999 0.9091 0.9172 0.9167 0.9122
0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
0.8182 0.8222 0.8056 0.8042 0.9999 0.9999 0.9999 0.9999

80

0-back

True Label
2-back

K.
= -20
L
th
| ] L 0
O-back 2-back 3-back
Predicted Label
FIGURE 4
Confusion matrix of n-back experiment results.
3.3.2 WG dataset experimental results the proposed method achieves high classification accuracy for

Similar to the n-back dataset, we followed the same  each subject. The average classification accuracy reaches 98.61%,
experimental procedure for data partitioning, model training, and  the precision is 99.79%, the recall is 97.44%, and the Fl-score
performance evaluation on the test set. As shown in Table2, is 98.58%.
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TABLE 2 Classification performance metrics of each subject in the WG task.

Subject 01-13

10.3389/fnhum.2025.1660532

Subject 15-26

Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score
0.9583 0.9999 0.9167 0.9565 0.9999 0.9999 0.9999 0.9999
0.9861 0.9999 0.9722 0.9859 0.9722 0.9999 0.9444 0.9714
0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
0.9722 0.9722 0.9722 0.9722 0.9722 0.9999 0.9722 0.9859
0.9444 0.9999 0.8889 0.9412 0.9861 0.9999 0.9722 0.9859
0.9861 0.9730 0.9999 0.9863 0.9722 0.9999 0.9444 0.9714
0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
0.9722 0.9999 0.9444 0.9714 0.9861 0.9999 0.9722 0.9859
0.9999 0.9999 0.9999 0.9999 0.9722 0.9999 0.9444 0.9714
0.9861 0.9999 0.9722 0.9859 0.9999 0.9999 0.9999 0.9999
0.9861 0.9999 0.9722 0.9859 0.9722 0.9999 0.9722 0.9859
0.9722 0.9999 0.9444 0.9714 0.9999 0.9999 0.9999 0.9999
0.9861 0.9999 0.9722 0.9859 0.9861 0.9999 0.9722 0.9859
The model’s classification performance was further across classes, ensuring both precise classification and overall
analyzed using the confusion matrix (as shown in  performance stability.
Figure 5). The results indicate that the recognition

outcomes are well-balanced across different categories, with

diagonal elements significantly larger than non-diagonal
elements. This demonstrates a high correct classification
rate and a low misclassification rate, highlighting the

model’s robustness.

3.4 Model evaluation with cross-validation
and results

To enhance the robustness and generalizability of the
model evaluation, the original 80:20 train-test split strategy
was replaced with a five-fold cross-validation approach. This
adjustment aims to better address potential overfitting issues
and provide a more comprehensive assessment of the model’s
performance. Specifically, the dataset was randomly divided
into five equally sized subsets. In each fold, one subset was
used as the test set while the remaining four were used for
training. This process was repeated five times, ensuring that
each sample was tested exactly once. The final performance
metrics, including accuracy, precision, recall, and Fl-score,
were averaged across all folds to obtain a more reliable and
stable evaluation.

Table 3 presents the mean accuracy, precision, recall,
and Fl-score of the model evaluated via five-fold cross-
validation on the n-back and WG datasets. The results
demonstrate that the model achieves consistently high and
stable performance across both datasets, with accuracies of
approximately 97.53 and 96.68%, and Fl-scores of 97.54 and
96.34%, respectively. The close alignment between accuracy
model’s balanced capability

and Fl-score indicates the

Frontiersin Human Neuroscience

3.5 Effectiveness of the cross-modal
attention mechanism

To evaluate the contribution of the multimodal fusion
module to overall model performance, this study designed
and conducted an ablation experiment. Specifically, in the
ablated model, the cross-modal attention mechanism originally
proposed in the model was removed, and the Query-Key-Value
structure used to model the dependency between EEG and
fNIRS modalities was no longer employed. Accordingly, the
high-level features extracted from the two modalities were
directly concatenated and fed into the classifier for decision-
making. This modification retained the unimodal feature
extraction structures but omitted the explicit feature interaction
mechanism between modalities, serving as a baseline for
comparison against the proposed multimodal fusion strategy in
the controlled experiments.

On the nback task, the classification accuracy of the
original fusion model reached 98.13%, whereas it dropped
to 91.58% after removing the fusion module. On the WG
dataset, the accuracy decreased from 98.61 to 96.54%. These
results demonstrate that the proposed fusion module effectively
enhances model performance across both datasets. Notably,
the accuracy improvement of 6.55 percentage points on the
nback dataset highlights a more pronounced advantage of
the fusion mechanism in capturing complementary information
between modalities.

In summary, the designed fusion mechanism plays a
critical role in leveraging the complementary information
between EEG and fNIRS modalities and enhancing feature

frontiersin.org
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Confusion matrix of WG experiment results
TABLE 3 Performance of the model on n-back and WG datasets under five-fold cross-validation.
Dataset Metric Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average
Accuracy 0.9739 0.9775 0.9786 0.9739 0.9727 0.9753
n-back Precision 0.9750 0.9776 0.9790 0.9740 0.9723 0.9756
Recall 0.9732 0.9772 0.9785 0.9741 0.9734 0.9753
Fl-score 0.9739 0.9774 0.9787 0.9740 0.9728 0.9754
Accuracy 0.9602 0.9639 0.9762 0.9709 0.9628 0.9668
WG Precision 0.9550 0.9605 0.9750 0.9698 0.9600 0.9640
Recall 0.9520 0.9585 0.9748 0.9696 0.9584 0.9627
F1-score 0.9535 0.9595 0.9749 0.9697 0.9592 0.9634
The bold font represents the average value of the previous five fold cross validation.
representation capabilities, thereby effectively improving the  indicate that MBC-ATT consistently outperforms all
model’s discriminative power and generalization performance. baseline models. The obtained p-values are statistically

3.6 Statistical verification of results

To quantitatively assess the significance of the performance
introduced by MBC-ATT, paired t-tests
were conducted comparing MBC-ATT with three baseline
the EEG-only model, and
the fNIRS-only model. The results, presented in Figure 6,

improvements

models: the ablation model,
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significant (p <  0.05), confirming that the multimodal
fusion  contributes to in

substantially improvements

classification accuracy.

On the nback and WG tasks, MBC-ATT effectively
captures from EEG and {NIRS,
thereby enhancing feature representation. The paired t-test

complementary features
results further confirm that these improvements are statistically

significant, indicating that the high accuracies are robust
and reliable.
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FIGURE 6
Multimodal MBC-ATT: statistical validation. (a) Statistical validation for n-back task. (b) Statistical validation for WG task.

3.7 Comparative analysis of methods methods from relevant literature for both the n-back and
WG tasks. Given the differences in cognitive load and signal

To comprehensively evaluate the performance of the  characteristics between these two tasks, the selected comparison
proposed method, we conducted a comparative analysis with  methods also vary accordingly. The following sections provide a
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TABLE 4 Performance comparison of different methods on the n-back
task.

Method Accuracy (%)

SVM 83.00%
DNN 87.00%
CNN-LSTM 88.41%
STFT-MDNF 95.10%
MBC-ATT 98.13%

The bold font represents the experimental results of the MBC-ATT method proposed in this
manuscript.

TABLE 5 Performance comparison of different methods on the WG task.

Method Accuracy (%)

SVM 73.99%
DNN 92.00%
STFT-MDNF 93.10%
EF-Net 96.29%
MBC-ATT 98.61%

The bold font represents the experimental results of the MBC-ATT method proposed in this
manuscript.

detailed discussion of the comparisons for the n-back and WG
tasks, respectively.

3.7.1 Performance comparison of the n-back task

To comprehensively evaluate the performance of the proposed
method, we compared it with four existing approaches, including
Support Vector Machine (SVM) (Wu et al.,, 2020), Deep Neural
Network (DNN) (Vaswani et al., 2017), a time-distributed CNN-
LSTM method based on recurrence plots (CNN-LSTM) (Chiarelli
et al., 2017), and a multimodal DenseNet fusion model based on
Short-Time Fourier Transform (STFT-MDNF) (Lin et al., 2023).

As shown in Table4, this study systematically compares
the classification performance of five methods in the n-back
task. Compared to SVM (83.00%), DNN (87.00%), CNN-LSTM
(88.41%), and STFT-MDNF (95.10%), the MBC-ATT method
(98.13%) achieves accuracy improvements of 15.13%, 11.13%,
9.72%, and 3.03%, respectively, significantly outperforming
existing methods. These results strongly demonstrate the
superior performance of the MBC-ATT method in cognitive load
recognition and classification for the n-back task.

3.7.2 Performance comparison of the WG task
This study focuses on the characteristics of the WG task and
compares four methods: Support Vector Machine (SVM) (Wu
et al., 2020), Deep Neural Network (DNN) (Vaswani et al., 2017),
EEG-fNIRS Convolutional Network (EF-Net) (Arif et al., 2024),
and a Short-Time Fourier Transform-based Multimodal DenseNet
Fusion Model (STFT-MDNF) (Lin et al., 2023). The primary focus
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is to evaluate the performance advantages of the proposed MBC-
ATT model in the WG task.

As shown in Table5, the proposed MBC-ATT method
demonstrates superior performance in the WG task, achieving a
classification accuracy of 98.61%. The performance comparison
indicates that MBC-ATT improves accuracy by 24.62 percentage
points over the traditional SVM method (73.99%), 6.61 percentage
points over the deep neural network (DNN) (92.00%), 5.51
percentage points over STFT-MDNF (93.10%), and 2.32 percentage
points over EF-Net (96.29%). These results strongly confirm the
superior effectiveness of the MBC-AT T method in the WG task.

4 Discussion

The results of this study indicate that the Multimodal MBC-
ATT framework significantly enhances classification accuracy in
both the n-back and WG tasks, effectively demonstrating the
feasibility and advantages of its cross-modal attention mechanism
for EEG and fNIRS signal fusion. The framework achieved
classification accuracies of 98.13 and 98.61% in the two tasks,
respectively, outperforming existing fusion methods (as shown in
Figure 7).

The superior performance achieved in this study can be
primarily attributed to the proposed frameworks innovative
cross-modal attention mechanism. This mechanism leverages
the Query-Key-Value interaction strategy across modalities to
adaptively balance the contributions of EEG signals, which are
characterized by high temporal resolution, and fNIRS signals,
which provide high spatial resolution. In doing so, it enables
precise feature-level alignment and effective complementary
fusion. The mechanism effectively mitigates the inherent
discrepancies between EEG and {NIRS in terms of both temporal
dynamics and physiological representations. Specifically, EEG
reflects electrophysiological activity on a millisecond scale,
while fNIRS captures hemodynamic responses on a second
scale. Additionally, EEG represents neural electrical activity,
while fNIRS reflects blood oxygen metabolism. By preserving
the unique information of each modality, this approach
the
features, thereby offering a novel and effective fusion strategy

significantly ~enhances representation of task-relevant
to optimize the performance of multimodal brain-computer
interface systems.

Compared with existing multimodal fusion approaches, the
proposed MBC-ATT model demonstrates superior performance.
In contrast to early fusion strategies, which typically concatenate
features from different modalities and are prone to mutual
interference and loss of modality-specific information, MBC-
ATT employs a branch-specific feature extraction architecture
that effectively preserves the unique characteristics of each
modality. Moreover, unlike late fusion methods that often perform
simple integration at the decision level and thus overlook cross-
modal feature interactions, MBC-ATT incorporates an attention
mechanism to enable dynamic fusion at the feature level. This
design not only facilitates more effective inter-modal information
exchange but also aligns well with the physiological basis of
neurovascular coupling.
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Comparison of experimental results. (a) Classification performance on the n-back task. (b) Classification performance on the WG task.

The proposed approach demonstrates significant application
potential across various domains. Achieving a classification
accuracy exceeding 98%, the model provides a robust foundation
for the development of real-time BCI systems, particularly
in scenarios such as cognitive workload monitoring and
neurofeedback training. The attention weight distributions offer
a novel methodology for quantifying functional connectivity
strength across brain regions under different task states,
thereby facilitating deeper into multimodal
brain network dynamics.

investigations
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Despite these promising results, several limitations remain to be
addressed. The current model requires a high degree of temporal
synchronization between modalities, highlighting the need for
future research into fusion strategies that can accommodate
asynchronous signals. Additionally, the model’s generalization
ability on small-sample patient datasets has yet to be thoroughly
validated and may benefit from the integration of techniques such
as transfer learning. Furthermore, the relatively high computational
cost poses challenges for real-time deployment. To address this,
future work will explore lightweight solutions, including knowledge
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distillation, to enhance system efficiency. These advancements are
expected to strengthen the practical applicability of the proposed
method in real-world BCI applications.

5 Conclusion

This MBC-ATT for
classification utilizing EEG-fNIRS multimodal data. Extensive

study introduces cognitive state
experimental evaluations demonstrate that MBC-ATT consistently
achieves superior classification performance in both n-back and
WG tasks, compared to traditional machine learning models and
deep learning models.

The proposed MBC-ATT framework employs a multi-branch
convolutional architecture to effectively extract spatiotemporal
features from EEG and fNIRS signals. An integrated attention
mechanism further enhances feature fusion by selectively
emphasizing salient neural patterns. This design not only improves
the model’s discriminative capability for different cognitive states
but also strengthens its generalization performance across subjects.

The experimental results substantiate the effectiveness of MBC-
ATT in cognitive load recognition and spontaneous language
generation tasks. Future research will focus on further optimizing
the model architecture to enhance adaptability to individual
variability, as well as exploring its potential applications in a wider
range of cognitive paradigms and real-time BCI systems.
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