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Transcranial Magnetic Stimulation (TMS), a non-invasive neuromodulation

technique based on electromagnetic induction, modulates cortical excitability

by inducing currents with a magnetic field. TMS has demonstrated significant

clinical potential in the treatment of various neuropsychiatric disorders,

including depression, anxiety, and Parkinson’s disease. However, conventional

TMS targeting methods that rely on anatomical landmarks do not adequately

account for individual differences in brain structure and functional networks,

leading to considerable variability in treatment responses. In recent years,

advances in neuroimaging techniques–such as functional magnetic resonance

imaging (fMRI) and diffusion tensor imaging (DTI)–together with the application

of machine learning (ML) and artificial intelligence (AI) algorithms in big

data analysis, have provided novel approaches for precise TMS targeting and

individualized treatment. This review summarizes the latest developments in

the integration of multimodal neuroimaging and AI technologies for precision

neuromodulation with TMS. It focuses on critical issues such as imaging

resolution, AI model generalizability, real-time feedback modulation, as well

as data privacy and ethical considerations. Future prospects including closed-

loop TMS control systems, cross-modal data fusion, and AI-assisted brain-

computer interfaces (BCIs) are also discussed. Overall, AI-driven personalized

TMS strategies hold promise for markedly enhancing treatment precision and

clinical efficacy, thereby offering new theoretical and practical guidance for

individualized treatment in neuropsychiatric and neurodegenerative disorders.

KEYWORDS

transcranial magnetic stimulation, neuroimaging, artificial intelligence, precision
treatment, personalized medicine

1 Introduction

Since its initial description by Barker et al. (1985), Transcranial Magnetic Stimulation
(TMS) has attracted widespread attention due to its unique advantage of non-
invasively modulating neural activity via electromagnetic induction. With technological
advancements, TMS has evolved from single-pulse stimulation to repetitive TMS (rTMS),
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demonstrating significant clinical eÿcacy in modulating 
neuroplasticity and ameliorating brain dysfunction, particularly 
in the treatment of depression, anxiety, obsessive-compulsive 
disorder, and post-traumatic stress disorder (PTSD) (Lefaucheur 
et al., 2014, 2020; O’reardon et al., 2007). Although TMS is 
associated with high safety and moderate eÿcacy, its conventional 
targeting methods–primarily based on the “5-cm rule” or the 
use of electromyography (EMG) to identify motor evoked 
potential (MEP) hotspots on the motor cortex, often referred 
to as “EEG-guided hotspot localization” in a broader sense of 
electrophysiological guidance–largely overlook inter-individual 
variations in brain structure and functional connectivity. 
Consequently, heterogeneity in cortical morphology, functional 
connections, and white matter pathways among patients limits 
both treatment response and overall clinical eÿcacy (Fox et al., 
2012; Hanoglu et al., 2023). 

To overcome these limitations, neuroimaging modalities such 
as functional magnetic resonance imaging (fMRI) and diusion 
tensor imaging (DTI) have been increasingly employed in TMS 
research in recent years. Owing to its high spatial resolution and 
capability for real-time monitoring of brain activity, fMRI not only 
reveals aberrations in functional brain networks but also provides 
robust evidence for identifying pathological targets. For instance, 
several fMRI studies in depression have demonstrated that the 
functional connectivity between the dorsolateral prefrontal cortex 
(DLPFC) and the cingulate cortex can predict the therapeutic 
response to TMS (Hanoglu et al., 2023; Liston et al., 2014). 
Simultaneously, DTI oers quantitative insights into the integrity 
and trajectories of white matter fibers, thereby elucidating the 
structural underpinnings of functional connectivity and aiding in 
the optimization of TMS stimulation pathways and target selection 
(Kubicki et al., 2007). 

The integration of multimodal neuroimaging data–such as 
fMRI, DTI, and EEG–enables the construction of individualized 
brain network maps, making it possible to precisely identify 
optimal stimulation targets. In the era of big data, machine 
learning and AI techniques have shown immense potential in 
processing and analyzing large-scale neuroimaging and clinical 
datasets. These approaches can predict TMS treatment response, 
optimize stimulation parameters, and even facilitate real-time 
feedback modulation (Chekroud et al., 2016; Drysdale et al., 
2017; Siddiqi et al., 2020). For instance, algorithms such as 
support vector machines (SVM), random forests, and deep learning 
have been successfully applied to identify neuroimaging features 
associated with TMS response (Orrù et al., 2012). Moreover, recent 
studies indicate that AI algorithms can automatically adjust TMS 
coil positioning and, through real-time neuroimaging feedback, 
optimize the stimulation target to enhance treatment eÿcacy 
(Tubbs and Vazquez, 2024). 

Despite the promising theoretical and preliminary clinical 
outcomes of integrating neuroimaging with AI for precision 
TMS, several challenges hinder its widespread adoption. First, 
the diversity of imaging platforms and data acquisition protocols 
may limit the generalizability of AI models (Thut et al., 2011). 
Second, the high inter-individual variability in brain anatomy and 
dynamic neural activity increases the complexity of individualized 
neuromodulation (Brunoni et al., 2017). Lastly, issues surrounding 
data privacy protection and ethical considerations require further 
exploration (O’reardon et al., 2007; Rossi et al., 2009). In response 

to these challenges, emerging research is exploring closed-loop 
TMS control systems, cross-modal data fusion techniques, and 
AI-assisted BCIs as potential future directions. 

To systematically address these issues, this review introduces 
an integrative framework that links multimodal neuroimaging, 
computational modeling, and AI-driven closed-loop control into a 
coherent precision TMS workflow. Specifically, fMRI is employed 
to capture individualized abnormal brain network patterns; 
diusion tensor imaging (DTI) combined with finite element 
modeling (FEM) guides the modulation of these aberrant neural 
circuits through individualized electric field simulations; and 
during treatment, high-temporal-resolution modalities such as 
EEG or MEG, coupled with AI algorithms, enable dynamic 
adjustment of stimulation parameters in real time. This stepwise 
framework–diagnosis (fMRI) → guidance (DTI/FEM) → closed-
loop optimization (EEG/MEG + AI)–is designed to bridge group-
level prior knowledge with individual-level variability, thereby 
enhancing both generalizability and personalization in clinical 
TMS applications. 

The objective of this review is to systematically summarize 
the advances in integrating neuroimaging and AI technologies for 
precision TMS. We discuss the underlying technical principles and 
implementation mechanisms related to target selection, parameter 
optimization, and real-time feedback, while also analyzing current 
challenges and future trends. The structure of this review is as 
follows: an introduction to TMS and its conventional applications, 
a discussion of the progress in neuroimaging and AI for TMS 
targeting, an examination of the technical and ethical challenges, 
and finally, a perspective on future directions aimed at facilitating 
the clinical translation and individualized treatment design of TMS. 
This review uniquely emphasizes the deep integration of artificial 
intelligence and machine learning algorithms with multimodal 
neuroimaging, particularly focusing on how AI drives personalized 
target optimization, treatment response prediction, and real-
time feedback modulation, thereby oering a forward-looking 
perspective on AI-driven precision neuromodulation. 

2 Review of the basic principles and 
clinical applications of TMS 

2.1 Physical principles and major 
technical modalities of TMS 

Transcranial Magnetic Stimulation (TMS) is a non-
invasive neuromodulation technique based on the principle 
of electromagnetic induction. By generating a brief, high-intensity 
magnetic field within the stimulation coil, the magnetic flux 
penetrates the skull and induces an electric current in the cortical 
tissue, thereby altering the membrane potential of neurons to either 
activate or inhibit local neuronal activity (Barker et al., 1985). 

With technological advancements, TMS has evolved from 
its initial form of single-pulse stimulation (sTMS) to repetitive 
TMS (rTMS). Repetitive TMS, which delivers trains of pulses 
either continuously or intermittently, not only provides immediate 
modulation of neural activity but also induces long-term 
neuroplastic changes, thereby enabling sustained therapeutic eects 
in clinical applications (O’reardon et al., 2007). 
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In recent years, theta burst stimulation (TBS) has emerged as 
an eÿcient TMS modality that has attracted considerable attention. 
TBS typically employs a series of high-frequency (approximately 
50 Hz) pulses over a short period to mimic the brain’s intrinsic 
theta rhythm. Its stimulation protocols are generally categorized 
into intermittent TBS (iTBS), which enhances cortical excitability, 
and continuous TBS (cTBS), which suppresses cortical activity 
(Cappon et al., 2022; Huang et al., 2005). This approach has 
demonstrated distinct advantages in clinical practice by achieving 
lasting neuromodulatory eects within a considerably shorter 
stimulation period. 

2.2 Clinical applications and efficacy 
evaluation of TMS in neuropsychiatric 
disorders 

In the treatment of psychiatric disorders, rTMS has received 
approval from the United States Food and Drug Administration 
(FDA) and has shown significant eÿcacy, particularly in treatment-
resistant depression (TRD) (Ilhan and Arikan, 2024; Philip 
et al., 2018). Multi-center randomized controlled trials have 
demonstrated that rTMS targeting the left dorsolateral prefrontal 
cortex (DLPFC) not only eectively alleviates depressive symptoms 
but also exhibits a favorable side-eect profile (Croarkin et al., 
2021). Moreover, individualized TMS protocols that integrate 
neuroimaging modalities such as functional magnetic resonance 
imaging (fMRI) or electroencephalography (EEG) hold promise for 
further enhancing treatment precision and improving long-term 
patient outcomes (Pettorruso et al., 2021). 

A revolutionary breakthrough in this domain is the Stanford 
Neuromodulation Therapy (SNT, formerly SAINT). This protocol 
synergistically combines personalized targeting with optimized 
stimulation parameters: it uses resting-state fMRI to individually 
target the DLPFC subregion most anticorrelated with the subgenual 
anterior cingulate cortex (sgACC), and then applies a high-dose, 
accelerated intermittent theta-burst stimulation (iTBS) protocol 
over 5 days. A pivotal double-blind randomized controlled trial 
demonstrated remission rates of nearly 80% in patients with 
treatment-resistant depression, establishing a new paradigm for 
rapid and eective TMS therapy (Cole et al., 2020). 

Beyond depression, the application of TMS is expanding 
in other psychiatric disorders, including anxiety, obsessive-
compulsive disorder (OCD), and post-traumatic stress disorder 
(PTSD). For example, deep TMS (dTMS) has been employed 
to modulate the functional activity of the anterior cingulate 
cortex (ACC) and the caudate nucleus, thereby improving clinical 
symptoms in patients with OCD (Pettorruso et al., 2021). 
Additionally, the incorporation of neuronavigation systems for 
precise targeting has enhanced both the accuracy and eÿcacy of 
TMS treatments in conditions such as anxiety disorders. 

In the realm of neurological disorders, TMS has also garnered 
significant attention. Research has shown that rTMS applied to the 
primary motor cortex (M1) in patients with Parkinson’s disease 
(PD) can improve motor function and alleviate tremor symptoms 
(Chung et al., 2020; Yap et al., 2020). In stroke rehabilitation, 
rTMS has been found to promote functional reorganization of the 
aected hemisphere and facilitate neuroplastic recovery, thereby 

accelerating the rehabilitation process (Li et al., 2022; Zhu et al., 
2024). Preliminary studies further suggest that TMS may have 
potential clinical applications in alleviating chronic pain, treating 
addictive behaviors, and ameliorating cognitive deficits (Kim et al., 
2023). 

2.3 Limitations of current TMS targeting 
methods and future directions 

Despite significant progress in various clinical domains, 
traditional TMS targeting methods remain constrained by several 
limitations. For example, the “5-cm rule” is essentially based on 
population-averaged anatomical landmarks to approximate the 
location of the DLPFC. Its primary limitation lies in neglecting 
substantial inter-individual cortical variability–such as dierences 
in gyral and sulcal morphology–that can cause the stimulation site 
to deviate considerably from the intended functional region (Fox 
et al., 2013). 

To address these shortcomings, an increasing number of 
studies have begun to explore connectivity-based target selection 
methods. By employing neuroimaging techniques such as fMRI 
to assess individual brain network connectivity, researchers aim 
to provide more precise, personalized TMS treatment protocols 
(Cash et al., 2021; De Matola and Miniussi, 2025; Fox et al., 
2012; Hollunder et al., 2022; Padberg et al., 2021). Moreover, 
the substantial heterogeneity in cortical morphology, functional 
connectivity, and white matter pathways among patients has 
underscored the need for individualized targeting approaches, 
as standardized methods are insuÿcient for optimal therapeutic 
outcomes in certain populations (Ekhtiari et al., 2019; Hollunder 
et al., 2022). 

Importantly, cortical variability cannot be fully addressed by 
optical navigation systems alone, since they do not account for skull 
thickness, cerebrospinal fluid layers, or cortical folding patterns, all 
of which significantly shape the induced electric field distribution. 
In recent years, finite element modeling (FEM), also referred 
to as electric-field (E-field) modeling, has emerged as a critical 
tool for overcoming this limitation. By constructing individualized 
head models from MRI data, FEM enables precise simulation of 
the E-field generated by a TMS coil at specific positions. This 
allows target optimization that is tailored to each patient’s unique 
anatomy, ensuring that the peak E-field intensity accurately engages 
the desired cortical region rather than adjacent sulcal walls or 
cerebrospinal fluid (Balderston et al., 2022; Cao et al., 2024; 
Windho et al., 2013). 

Maximizing the use of individual-level information, 
particularly through advanced connectivity-guided targeting 
(which forms the mainstream of personalized clinical protocols), 
is crucial for improving eÿcacy. In this context, AI has the 
unparalleled potential to facilitate and further enhance this 
process. Therefore, in response to these ongoing challenges and 
the need for deeper individualization, emerging machine learning 
and artificial intelligence (AI) techniques are being integrated 
into TMS research. By developing deep neural network models 
that leverage multimodal data–including fMRI, DTI, and EEG– 
researchers can predict individual responses to TMS and optimize 
stimulation parameters, thereby enhancing treatment precision 
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and eÿcacy (Eleni Karakatsani et al., 2024; Tokatly Latzer et al., 
2025). However, the combination of TMS and AI-based strategies 
also faces several hurdles. First, the integration of multimodal data 
remains challenging, as eective fusion of data from disparate 
sources (fMRI, DTI, and EEG) is required to fully capture the 
characteristics of individual brain networks (Tokatly Latzer 
et al., 2025). Second, the generalizability of current AI models is 
limited when applied across dierent datasets and clinical settings, 
constraining their reliability and applicability (Ilhan and Arikan, 
2024). Additionally, the deep integration of TMS and AI has 
raised concerns regarding data privacy and ethical compliance, 
which collectively pose significant barriers to widespread clinical 
translation (Cappon et al., 2022). 

Looking ahead, the future development of TMS technology is 
expected to focus on enhancing treatment precision and optimizing 
personalized therapeutic protocols, encompassing both gradual 
adjustments of targets and parameters across treatment sessions 
and, more ambitiously, closed-loop adjustments within a single 
session. The incorporation of real-time neuroimaging feedback 
and the establishment of closed-loop control systems could 
enable dynamic monitoring and adjustment of TMS parameters, 
thereby providing specific advantages over pre-determined 
targets/parameters by allowing immediate adaptation to a patient’s 
fluctuating brain state and optimizing neuromodulatory eects 
in real-time, further improving clinical outcomes (Esposito et al., 
2020; Hanoglu et al., 2023). Simultaneously, leveraging big data 
and advanced AI techniques to refine individualized treatment 
strategies will provide robust theoretical support for connectivity-
based target selection (Mutz et al., 2019). Furthermore, conducting 
large-scale, multi-center randomized controlled trials will be 
critical for validating the eÿcacy and safety of personalized 
TMS protocols across various neuropsychiatric conditions 
(Kannampallil et al., 2022; Nyeler and Müri, 2010). 

3 Applications and advances of 
neuroimaging techniques in precise 
TMS targeting 

3.1 Overview of neuroimaging 
techniques and their role in TMS therapy 

Neuroimaging employs various non-invasive imaging 
modalities–including computed tomography (CT), magnetic 
resonance imaging (MRI), functional MRI (fMRI), diusion tensor 
imaging (DTI), and positron emission tomography (PET)–to 
assess the brain’s structure, function, and connectivity. These 
techniques are increasingly pivotal in clinical diagnosis, disease 
monitoring, and precision treatment (Kleimaker et al., 2020; Wang 
et al., 2025). With continuous improvements in imaging resolution 
and data processing methods, multimodal neuroimaging has 
provided a robust foundation for detecting aberrations in brain 
networks, thereby broadening its application in the precise 
diagnosis and treatment of neuropsychiatric disorders (Lefaucheur 
et al., 2024; Marzouk et al., 2020). In the context of TMS therapy, 
neuroimaging not only oers objective criteria for accurately 
localizing stimulation targets but also enables the evaluation 

of dynamic changes in brain functional networks before and 
after treatment, which is essential for optimizing therapeutic 
protocols (Kotoula et al., 2023; Xia et al., 2024). Furthermore, 
the integration of diverse imaging modalities holds the promise 
of constructing a comprehensive profile of an individual’s brain 
network, a development that is critical for enhancing the precision 
and personalization of TMS interventions. 

3.2 Application of fMRI in optimizing TMS 
targeting 

Functional magnetic resonance imaging (fMRI) remains one 
of the most widely used modalities for assessing brain function by 
detecting blood oxygen level-dependent (BOLD) signals that reflect 
localized neural activity (Kleimaker et al., 2020; Xia et al., 2024). 
By utilizing both resting-state fMRI (rs-fMRI) and task-based 
fMRI (task-fMRI), researchers are able to construct functional 
connectivity maps of the brain and identify key networks such 
as the default mode network (DMN) and the executive control 
network (ECN) (Lefaucheur et al., 2024; Peterchev, 2024). In 
various neuropsychiatric conditions, these networks often exhibit 
abnormal connectivity patterns that can serve as important 
indicators for optimizing TMS targeting (Jiang et al., 2024; Kumari, 
2024; Marzouk et al., 2020). Recent advancements in individualized 
fMRI analysis have enabled the precise identification of optimal 
stimulation sites among patients, which significantly enhances the 
response rate to TMS therapy. For instance, De Filippis et al. (2024) 
demonstrated through real-time fMRI monitoring that TMS-
induced changes in neural excitability could provide clinicians with 
immediate feedback for adjusting treatment parameters, thereby 
achieving more precise modulation. This strategy, which is based 
on functional connectivity data, oers both theoretical and practical 
support for the development of personalized TMS treatment 
protocols (Zhong et al., 2025). 

3.3 FMRI-based targeting in depression 
and anxiety: clinical case studies 

In the treatment of depression, fMRI has proven instrumental 
in precise target localization. Wang et al. (2025) reported that 
resting-state fMRI revealed a strong correlation between the 
functional connectivity patterns of the prefrontal cortex and 
the clinical response to TMS, thereby providing robust support 
for selecting the optimal stimulation target based on individual 
dierences. Moreover, Cash et al. (2021) found that optimizing 
TMS targeting using fMRI data resulted in an improvement of 
treatment response rates by over 30% compared to conventional 
targeting methods, further validating the feasibility of connectivity-
based approaches. In the realm of anxiety disorders, Vaccarino 
et al. (2024) observed significant aberrant functional connectivity 
between the prefrontal cortex and the amygdala during task-
based fMRI, suggesting a central role of these regions in the 
pathophysiology of anxiety (Gottschalk and Domschke, 2017). 
Guided by these findings, researchers have used fMRI data to 
direct TMS protocols, with outcomes indicating that enhanced 
functional connectivity between the left DLPFC and the amygdala 
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is closely associated with improvements in anxiety symptoms, 
thus providing a novel perspective for personalized treatment 
(Coppola et al., 2019). Collectively, these clinical cases underscore 
the substantial value of fMRI not only in identifying pathological 
network abnormalities but also in determining precise TMS 
stimulation targets, thereby increasing treatment response and 
eÿcacy and laying a solid foundation for the future development 
of individualized TMS therapies. 

3.4 DTI and its role in analyzing white 
matter connectivity 

In recent years, diusion tensor imaging (DTI) has made 
significant strides in neuroimaging and has become a core tool for 
studying white matter structure and connectivity. DTI measures 
the anisotropic diusion of water molecules, thereby reconstructing 
the three-dimensional trajectories of white matter fibers and 
providing crucial insights into structural connectivity between 
dierent brain regions (Aydogan et al., 2025). This technique 
has been pivotal in research on neurodegenerative diseases such 
as Alzheimer’s disease, psychiatric disorders like depression and 
schizophrenia, as well as brain injuries (Luigjes et al., 2019). 
For example, DTI studies in Alzheimer’s disease have revealed 
significant reductions in the integrity of white matter fibers in the 
corpus callosum, internal capsule, and frontal regions, which may 
serve as potential biomarkers for early diagnosis (Amlien and Fjell, 
2014; Clark and Werring, 2002). In addition, DTI has demonstrated 
abnormal patterns of white matter damage in key pathways, such 
as those within the fronto-limbic network, in both depression 
and schizophrenia, findings that are likely related to deficits in 
emotional regulation and cognitive function (Repple et al., 2023; 
Xu et al., 2024). Recent studies indicate that the reduction in white 
matter integrity in schizophrenia is particularly pronounced in 
regions such as the corpus callosum, cingulum, and corticospinal 
tract, thereby providing a structural basis for the observed cognitive 
and aective dysfunctions (Ahdab et al., 2010; Zhong et al., 2025). 
Similarly, in anxiety and obsessive-compulsive disorder (OCD), 
decreased white matter fiber density in the prefrontal–amygdala 
pathway has been identified, oering a structural rationale for 
selecting TMS targets based on abnormal connectivity (Stoby et al., 
2022; Zrenner et al., 2020). 

3.5 Personalized TMS targeting strategies 
based on DTI data 

Accurate target selection is critical for the therapeutic eÿcacy of 
TMS. Although diusion tensor imaging (DTI) provides valuable 
insights into white matter connectivity, it must be emphasized that 
the most established and widely applied personalization strategy 
for TMS is based on functional connectivity (FC) derived from 
fMRI. Seminal studies by Fox et al. (2012) have demonstrated 
that identifying dorsolateral prefrontal cortex (DLPFC) subregions 
functionally anticorrelated with the subgenual anterior cingulate 
cortex represents the current gold standard for improving 
antidepressant response to TMS. In this framework, DTI serves 
as a complementary tool to validate and optimize stimulation 

pathways, ensuring that modulation signals propagate eÿciently 
along the most relevant structural tracts (Denche-Zamorano 
et al., 2023). Studies have shown that, in the treatment of 
depression, targeting TMS based on DTI-derived connectivity 
yields significantly higher treatment response rates than traditional 
anatomical methods (Antal et al., 2022; Garnaat et al., 2018). 
Furthermore, in patients with Parkinson’s disease, DTI-based 
analyses of cortico-cortical or cortico-thalamic connections have 
enabled the identification of more appropriate stimulation sites, 
thereby improving motor function (Wang et al., 2019; Zhang and 
Burock, 2020). Optimizing TMS stimulation pathways using DTI 
not only facilitates more eÿcient transmission of the stimulation 
signal but also targets specific pathological networks, thereby 
further enhancing therapeutic outcomes (Luber et al., 2022; Muir 
et al., 2022). For instance, Liimatta demonstrated that integrating 
DTI data with TMS target selection in treatment-resistant 
depression resulted in a marked improvement in therapeutic 
eÿcacy, with post-treatment assessments of white matter plasticity 
providing objective data for parameter optimization (Aydogan 
et al., 2025; Morriss et al., 2024). 

3.6 Clinical applications of DTI and future 
directions 

Diusion tensor imaging, as an advanced neuroimaging 
modality, exhibits considerable promise in refining TMS targeting 
and optimizing stimulation pathways. Personalized TMS protocols 
that incorporate DTI data not only enhance the precision of target 
selection but also improve treatment outcomes by optimizing 
the stimulation route. Future research is expected to focus on 
integrating DTI with other neuroimaging modalities (such as fMRI) 
and AI algorithms to achieve more refined target localization and 
treatment protocol design through big data analysis (Aydogan et al., 
2025). Additionally, multi-center, large-scale clinical trials will be 
crucial for validating and promoting TMS strategies based on 
DTI, providing high-quality evidence for their clinical application 
(Morriss et al., 2024). With ongoing advances in the integration 
and evolution of these technologies, DTI-assisted TMS treatment 
strategies are anticipated to play a more significant role in precision 
medicine for neuropsychiatric and other neurological disorders. 

4 Applications of multimodal 
neuroimaging data fusion in 
precision TMS treatment 

4.1 Background and applications of 
multimodal neuroimaging data 
integration in TMS 

Multimodal neuroimaging data fusion seeks to integrate 
information obtained from various imaging modalities–such 
as functional magnetic resonance imaging (fMRI), diusion 
tensor imaging (DTI), electroencephalography (EEG), and 
magnetoencephalography (MEG)–to comprehensively elucidate 
the interrelationships between brain structure and function 
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(Pszczolkowski et al., 2022). Each modality oers distinct 
advantages: fMRI captures patterns of neural activity, DTI focuses 
on delineating the structural connectivity of white matter fibers, 
while EEG and MEG provide high temporal resolution of neural 
dynamics (Kuhn et al., 2025). By synthesizing these multimodal 
datasets, researchers can achieve a more holistic representation 
of the brain, which is critical for the diagnosis and personalized 
treatment of neuropsychiatric disorders. In recent years, the 
application of multimodal imaging in neuromodulation has 
expanded considerably. Notably, integrating fMRI with DTI data 
has enabled the precise localization of aberrant functional networks 
in patients with depression, thereby providing individualized TMS 
targets that significantly enhance therapeutic outcomes and 
promote neural plasticity (Mcnabb et al., 2025; Raymond et al., 
2022; Yang et al., 2024). 

4.2 Advantages of multimodal data fusion 

The core advantage of multimodal data fusion lies in its 
ability to leverage the strengths of various imaging techniques 
to obtain a panoramic understanding of brain structure and 
function. As depicted in Figure 1, this approach integrates 
structural connectivity (via DTI), functional activation (via fMRI), 
and dynamic neural oscillations (via EEG) to map both spatial 
and temporal dimensions of brain activity, oering a marked 
improvement over traditional unimodal targeting methods that 
often fail to capture the dynamic interplay between network 
nodes. For example, the combination of fMRI, DTI, and magnetic 
resonance spectroscopy (MRS) has been shown to improve the 
accuracy of disease diagnosis by precisely identifying white matter 
lesions in Alzheimer’s disease and predicting disease progression 
(Gerwig et al., 2012). Moreover, when fMRI is combined with 
high-temporal resolution data from EEG, the integration of 
EEG’s millisecond-scale temporal resolution with fMRI’s spatial 
precision (as shown in the real-time feedback module of Figure 1) 
enables closed-loop adjustment of TMS parameters based on 
phase-specific neural states, thereby facilitating the optimization 
of stimulation parameters and target selection to enhance 
individualized treatment outcomes (Peterchev, 2024). Additionally, 
the integration of diverse data sources enriches the input for 
machine learning and AI algorithms, significantly strengthening 
the modeling of neural networks. The computational modeling 
framework (Figure 1) demonstrates how these multimodal inputs 
are synthesized through machine learning algorithms to generate 
personalized stimulation protocols, overcoming the limitations 
of “black-box” open-loop approaches that ignore endogenous 
brain dynamics. This improved modeling capability enhances the 
precision of disease progression forecasts and treatment response 
analyses, ultimately revealing neurobiological dierences among 
patients and providing robust data support for developing more 
precise TMS stimulation protocols (Cash et al., 2021; Downar et al., 
2024). 

4.3 Challenges in multimodal data fusion 

Despite the significant potential demonstrated by multimodal 
neuroimaging data fusion, its widespread application faces several 

challenges. First, the heterogeneity of imaging modalities–each 
with distinct temporal and spatial resolutions as well as signal-
to-noise ratios–presents a formidable obstacle to eective data 
integration (Sui et al., 2023). Second, multimodal data fusion 
generally relies on complex machine learning algorithms, such 
as deep learning and graph neural networks, which impose 
high demands on computational resources and increase data 
processing and storage costs (Mingyu et al., 2022; Stefanini 
et al., 2023). Furthermore, the lack of standardized protocols 
across research institutions for data acquisition and preprocessing 
leads to variability in data formats and processing pipelines, 
ultimately compromising the comparability and fusion eÿcacy of 
the data (Sui et al., 2023). Lastly, although substantial progress 
has been made in research settings, the clinical translation of 
these advanced multimodal imaging techniques for the diagnosis, 
monitoring, and personalized treatment of neuropsychiatric 
disorders remains challenging and requires further validation (Liu 
et al., 2018). 

4.4 Future prospects and summary 

Looking ahead, rapid advancements in artificial intelligence 
and computational neuroscience are expected to significantly 
enhance the role of multimodal neuroimaging data fusion in 
precision medicine. By establishing standardized protocols for 
data acquisition, optimizing fusion algorithms, and leveraging 
high-performance computing platforms, future developments 
will not only overcome current challenges related to data 
heterogeneity and computational demands but also further 
improve the accuracy of individualized TMS targeting and 
treatment eÿcacy. Large-scale, multi-center clinical trials will 
be essential for validating and promoting the application of 
multimodal fusion techniques in neuropsychiatric disorders. 
Overall, multimodal neuroimaging data fusion oers novel 
perspectives for elucidating the complex interactions between 
brain structure and function. Despite the remaining challenges, 
ongoing technological progress is poised to advance this field to 
unprecedented levels, ultimately enhancing the precision of TMS 
treatment in clinical practice. 

5 Individualized TMS efficacy 
prediction using artificial 
intelligence and machine learning 

5.1 Fundamental principles and 
applications of machine learning in 
medical data analysis 

In precision TMS treatment, artificial intelligence (AI) and 
machine learning (ML) play a dual role that bridges population-
level generalization with individual-level personalization. At the 
group level, AI primarily learns from large-scale, multicenter 
clinical and neuroimaging datasets to identify robust biomarkers 
predictive of treatment response, thereby constructing models 
with strong generalizability that overcome the limitations of 
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FIGURE 1 

Application of multimodal neuroimaging techniques in TMS target optimization. 

traditional statistical approaches when handling high-dimensional, 
heterogeneous data. At the individual level, these generalized 
models are then applied to each patient’s unique data (e.g., 
fMRI connectivity patterns, DTI tractography) to generate highly 
personalized treatment strategies, such as predicting optimal 
stimulation targets or the likelihood of clinical response. Thus, AI 
in precision TMS can be summarized as “trained on the group, 
applied to the individual,” where population-level insights provide 
the foundation for true individualized optimization. 

In recent years, artificial intelligence (AI) and machine 
learning (ML) techniques have been widely applied in the 
treatment of neuropsychiatric disorders, with particular promise 
in predicting individual responses to transcranial magnetic 
stimulation (TMS) (Chen et al., 2022). Traditional TMS target 
selection largely relies on anatomical landmarks or group statistical 
data, which fail to account for individual dierences in neural 
network organization, thereby limiting treatment eÿcacy (Kuhn 
et al., 2025). As a data-driven approach, machine learning 
automatically detects latent patterns within complex datasets 
and makes predictive inferences. Its workflow typically involves 
data preprocessing, feature extraction, model training, parameter 
optimization, and model validation (Dong et al., 2024). In 
this context, support vector machines (SVMs) are frequently 
employed for their robust classification capabilities when handling 
high-dimensional data, distinguishing between responders 
and non-responders to TMS (Mcnabb et al., 2025). Random 
forests (RF) enhance model generalizability by aggregating 

predictions across multiple decision trees (Raymond et al., 2022). 
Meanwhile, deep learning methods–such as convolutional 
neural networks (CNNs) and recurrent neural networks 
(RNNs)–excel at processing neuroimaging and time-series 
data, capturing intricate neural patterns. Additionally, graph 
neural networks (GNNs) have demonstrated unique advantages 
in analyzing connectomic data by modeling relationships 
among brain regions to predict individual TMS responses 
(Cash et al., 2021), and ensemble learning techniques improve 
overall prediction accuracy and stability by integrating multiple 
model outputs (Zhong et al., 2025). Together, these approaches 
provide a robust framework for medical data analysis and oer 
diverse technological options for predicting TMS treatment 
response. 

5.2 Multimodal data integration and 
construction of TMS efficacy prediction 
models 

A key element in predicting TMS eÿcacy lies in the integration 
of multiple data sources to comprehensively characterize a patient’s 
neurobiological status. Researchers typically aggregate multimodal 
information from neuroimaging (e.g., fMRI, DTI, EEG), clinical 
assessments (such as depression rating scales, medical history, 
and medication usage), and genomic data (Kraguljac et al., 2021). 
After performing feature engineering to extract critical features 
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associated with TMS response–for instance, functional connectivity 
patterns, cortical thickness, and gene expression levels–machine 
learning methods (such as SVMs and deep learning) are employed 
to construct predictive models (Hopman et al., 2021; Nobakhsh 
et al., 2023). To ensure robust generalization, cross-validation 
methods (e.g., K-fold cross-validation) are routinely used to 
assess model performance. Additionally, interpretability techniques 
such as SHAP (SHapley Additive Explanations) are applied to 
elucidate key factors in the model’s decision-making process, 
thereby enhancing clinical interpretability (Dong et al., 2024; 
Elbau et al., 2023). For example, Arkin et al. (2020) trained 
a deep learning model using multimodal data to predict the 
response of patients with schizophrenia to repetitive TMS (rTMS), 
achieving an area under the ROC curve (AUC) of 0.84, which 
underscores the advantages of multimodal data in enhancing 
predictive accuracy (Arkin et al., 2020). Integrating information 
from diverse sources not only compensates for the limitations 
inherent in single-modal data but also provides comprehensive 
support for the development of individualized TMS treatment 
protocols. 

5.3 Existing research, model evaluation, 
and future perspectives 

Several studies have already demonstrated significant progress 
in constructing TMS response prediction models using machine 
learning techniques. Some investigations have successfully 
integrated EEG, fMRI, and clinical evaluation data within 
deep learning frameworks to predict TMS response in patients 
with schizophrenia, with reported AUC values reaching 0.85– 
highlighting the critical role of multimodal data in enhancing 
predictive accuracy (Sachdeva et al., 2023). Furthermore, the 
application of explainable AI (XAI) techniques in conjunction 
with fMRI-derived functional connectivity data has not only 
improved predictive performance but also enhanced the clinical 
interpretability of the models, enabling clinicians to better 
understand the underlying decision processes (Herrmann and 
Ebmeier, 2006). Other studies have found that patients exhibiting 
the strongest TMS responses often display specific functional 
connectivity features, and SVM-based classification models built 
on these neuroimaging markers have further refined the precision 
of individualized TMS treatments (Jin et al., 2024). Common 
evaluation metrics for these models include accuracy, AUC-ROC, 
and the F1-score. Typically, model accuracies range between 80% 
and 90%, with AUC values exceeding 0.8 considered indicative 
of excellent predictive performance; higher F1-scores suggest 
balanced performance across classes, particularly in imbalanced 
datasets (Mcinnes et al., 2024). 

Despite these encouraging advances, challenges remain. The 
lack of standardized data acquisition across research institutions 
introduces significant heterogeneity, limiting the generalizability of 
the models. Furthermore, large-scale, high-quality datasets are still 
scarce, constraining the potential of deep learning models. Future 
research should focus on optimizing data integration strategies 
and exploring privacy-preserving techniques such as federated 
learning to facilitate cross-institutional data sharing. In addition, 
combining biomarker data with optimized TMS parameters may 

pave the way for truly individualized treatment. In summary, as AI 
and computational neuroscience continue to evolve, multimodal 
data-integrated TMS eÿcacy prediction models will provide a 
more robust technical foundation for the precision treatment 
of neuropsychiatric disorders and further advance the field of 
personalized medicine. 

6 Individualized TMS targeting 
strategies and clinical prospects 
based on multimodal neuroimaging 
and AI integration 

6.1 Theoretical foundations and 
technical approaches 

In recent years, the integration of neuroimaging techniques– 
such as functional MRI (fMRI), diusion tensor imaging (DTI), 
and electroencephalography (EEG)–with artificial intelligence (AI) 
has provided novel data-driven methodologies for TMS target 
localization. Conventional TMS targeting methods predominantly 
rely on anatomical landmarks or group-level statistical data, which 
do not suÿciently account for inter-individual dierences in 
brain functional and structural networks, thereby contributing 
to substantial variability in treatment response (Haxel et al., 
2024; Humaidan et al., 2024). To overcome these limitations, 
current research has explored optimization strategies based on 
functional connectivity, structural connectivity, and real-time 
neurodynamics through the application of deep learning, machine 
learning, and multimodal data fusion. Theoretically, resting-state 
fMRI can be employed to analyze an individual’s functional 
connectivity network, enabling the identification of aberrant 
connections and the subsequent prediction of optimal TMS 
targets using AI algorithms. Concurrently, DTI provides crucial 
information regarding the strength of structural connections 
between dierent brain regions, which can be leveraged to optimize 
the TMS stimulation pathway. Moreover, the millisecond temporal 
resolution of EEG facilitates the capture of dynamic neural 
responses induced by TMS, allowing for real-time adjustments 
of stimulation parameters to achieve a personalized treatment 
approach (Moser et al., 2024; Tubbs and Vazquez, 2024; Vasileiadi 
et al., 2023). In addition, the application of deep learning 
models and graph neural networks (GNNs) has enabled the 
automatic extraction and integration of multimodal neuroimaging 
data, thereby enhancing both the precision and robustness of 
individualized TMS protocols. 

6.2 Integration framework for 
neuroimaging data and machine learning 
models 

The overall framework for guiding TMS target optimization 
using multimodal neuroimaging data typically encompasses 
several sequential stages: data acquisition, preprocessing, feature 
extraction, model training, and clinical feedback optimization. 
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Initially, multimodal datasets–comprising fMRI, DTI, and EEG– 
are collected through standardized protocols and preprocessed 
to ensure compatibility and comparability across modalities. 
Subsequently, advanced deep learning models (such as CNNs, 
RNNs, or GNNs) are employed to extract salient features that 
reflect key indicators of brain functional connectivity, white matter 
structure, and neurodynamics. These features are then used to 
construct machine learning models capable of predicting TMS 
treatment responses in real time or in a pre-treatment setting 
(Bi et al., 2024; Ran et al., 2022). Based on an individual’s brain 
network status, these models can recommend optimal stimulation 
targets and fine-tune stimulation parameters (e.g., frequency, 
intensity, and pulse patterns) (Liu et al., 2015). This integrated 
framework not only consolidates methods for analyzing functional 
and structural connectivity, as well as EEG-guided modulation, 
but also leverages data fusion and model ensemble techniques 
to provide a comprehensive depiction of the brain’s multi-level 
information. For example, Akhonda et al. (2022) demonstrated that 
analyzing abnormalities in the default mode network and executive 
control network via machine learning on fMRI data significantly 
optimized TMS target placement in patients with depression. 
Similarly, Bi et al. (2024) employed a multitask deep learning 
framework combined with real-time electric field simulation to 
automatically recommend optimal TMS coil positioning, thereby 
further enhancing personalized treatment outcomes. This deep 
integration of data and modeling not only improves prediction 
accuracy but also provides actionable clinical decision support. 

6.3 Success stories and future 
perspectives for clinical translation 

Several studies have already illustrated the significant eÿcacy 
of integrating multimodal neuroimaging with AI for TMS 
target optimization. For instance, a strategy based on fMRI-
derived functional connectivity to optimize TMS for depression 
has successfully improved treatment response rates and has 
been validated in multi-center trials (Mandal et al., 2023). In 
another study, the combination of EEG data with AI prediction 
models enabled real-time TMS modulation, resulting in marked 
improvements in patients’ emotional states; systems developed on 
this basis are now progressing toward commercialization and are 
being applied clinically in the treatment of anxiety and depression 
(Rahaman et al., 2024). Moreover, DTI-based applications in 
Parkinson’s disease have shown that by identifying critical white 
matter fiber tracts, TMS stimulation protocols can be optimized 
to achieve approximately a 30% improvement in motor function 
recovery, a method that is gradually being incorporated into 
individualized TMS treatment guidelines for Parkinson’s disease 
(Liu et al., 2015). 

While these successful examples validate the utility of 
multimodal data fusion for enhancing TMS eÿcacy, several 
challenges remain. Issues related to data heterogeneity, 
computational resource demands, model interpretability, and 
cross-institutional data sharing persist. The operational framework 
for such an advanced system is detailed in Figure 2. This closed-
loop architecture demonstrates how real-time neural monitoring 
(e.g., EEG/fMRI) can feed into an AI model, which in turn provides 

specific, actionable guidance for dynamically adjusting critical TMS 
stimulation parameters. As shown in the figure, this includes the 
coil’s precise position (X, Y, Z) and orientation (yaw, pitch, roll), 
as well as the stimulation intensity, frequency, and timing relative 
to neural oscillations. This methodological framework provides 
a concrete pathway for overcoming current limitations. Future 
research should aim to further optimize data acquisition and 
preprocessing standards, develop more eÿcient and robust fusion 
algorithms that can process inputs like connectivity matrices and 
EEG spectra, and employ privacy-preserving techniques such as 
federated learning to enable large-scale, multi-center data sharing. 
Moreover, the integration of biomarkers with optimized TMS 
parameters holds the potential to realize truly individualized and 
precise treatments, where the closed-loop architecture (Figure 2) 
could dynamically adapt stimulation protocols based on neural 
feedback. In summary, as advancements in AI and neuroimaging 
continue, the clinical translation of multimodal data fusion for 
TMS target optimization is poised to revolutionize precision 
medicine for neuropsychiatric disorders. 

7 Current challenges, limitations, 
and future prospects: from technical 
bottlenecks to personalized 
neuromodulation 

7.1 Challenges and limitations in current 
technologies and clinical applications 

Despite the substantial promise demonstrated by integrating 
TMS with neuroimaging and artificial intelligence for optimizing 
treatment targets and achieving personalized, precise therapy, 
numerous challenges remain in its clinical application. First, 
regarding neuroimaging, although fMRI and DTI play pivotal roles 
in optimizing TMS targets, they still face limitations in spatial and 
temporal resolution. fMRI is constrained by the indirect nature 
of the BOLD signal, and DTI may be insuÿcient in resolving 
fine white matter fiber connections. Simultaneously, while EEG 
oers millisecond-level temporal resolution, its relatively low 
signal-to-noise ratio and significant inter-individual variability 
can adversely aect the stability and accuracy of TMS target 
selection (Gebodh et al., 2023; Gu et al., 2023; Seriramulu 
et al., 2024; Winchester et al., 2023). Furthermore, AI-based 
TMS prediction models are typically developed using relatively 
limited clinical datasets, and they lack robust generalizability across 
multiple centers and diverse patient populations. In addition, 
deep learning models are often considered “black boxes” due to 
their opaque decision-making processes, which not only impairs 
their performance across dierent pathological states but also 
diminishes clinicians’ trust and acceptance (Moser et al., 2024; Sun 
et al., 2023). Data privacy and ethical issues further complicate 
matters; the high sensitivity of neuroimaging data necessitates 
strict management protocols during data collection, storage, and 
sharing to prevent breaches of patient privacy and data misuse 
(Cappon et al., 2022; Trajkovic et al., 2024). Together, these 
technological bottlenecks and ethical concerns constitute major 
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FIGURE 2 

Methodological framework of an AI-driven closed-loop TMS system. The diagram illustrates the operational framework of a closed-loop TMS 
system for personalized neuromodulation. The process begins with real-time monitoring of neural signals (e.g., EEG, fMRI). These data, represented 
as inputs like a functional connectivity matrix or EEG power spectrum, are fed into the AI Analysis & Feedback module. The AI model processes this 
information to generate real-time, optimized recommendations. This output directly guides the Parameter Adjustment module, which demonstrates 
the dynamic optimization of key TMS parameters. These include the precise coil position (X, Y, Z), orientation (e.g., yaw, pitch, roll), stimulation 
intensity (% MSO), frequency/pattern (e.g., 10 Hz, iTBS), and timing (e.g., phase-locked to neural oscillations). The adjusted parameters are then 
applied in the TMS Stimulation stage, completing the adaptive feedback loop. 

barriers to the widespread clinical adoption of personalized 
TMS treatment. 

7.2 The need for multi-center validation 
and standardization of ethical protocols 

At the clinical level, the precision treatment strategies that 
combine TMS with AI require validation through large-scale, 
multi-center studies. Currently, variations in imaging acquisition 
protocols, spatial resolution, and preprocessing methods across 
institutions result in poor comparability of data, thereby limiting 
the generalizability and reproducibility of AI models in multi-
center settings (Haxel et al., 2024; Humaidan et al., 2024; Tubbs 
and Vazquez, 2024). Moreover, the lack of mature, standardized 
protocols for multimodal data integration further restricts the 
stability and scalability of these predictive models. Ethical 
challenges also remain critical, particularly regarding the extent of 
patient informed consent and the interpretability of AI-generated 
treatment recommendations in the formulation of personalized 
TMS protocols. In vulnerable populations (e.g., patients with 
autism or schizophrenia), diminished cognitive capacity may 
further complicate patients’ ability to fully understand and accept 
AI-derived treatment plans, adding another layer of complexity to 
ethical decision-making (Dannhauer et al., 2022; Figee et al., 2022). 

7.3 Future directions and prospects for 
technological breakthroughs 

Looking forward, the future of personalized TMS treatment 
in neuromodulation is promising, yet it demands breakthroughs 
in technology, data integration, and ethical standards. The 
development of closed-loop TMS systems is widely regarded 
as a critical future direction; by integrating real-time EEG 
or fMRI monitoring of brain states with AI-driven dynamic 
adjustment of stimulation parameters, such systems could achieve 
adaptive control and significantly enhance treatment precision and 
flexibility (Duprat et al., 2025; Oliver et al., 2024). Additionally, the 
advancement of real-time feedback control systems, which leverage 
fMRI data and deep learning algorithms to automatically analyze 
brain signal changes during treatment and adjust stimulation 
patterns accordingly, may further refine individualized therapy 
by closely matching the patient’s dynamic brain network state 
(Sitaram et al., 2012; Tervo-Clemmens et al., 2023). Future 
research is also anticipated to focus on the deep fusion of 
multimodal data–including fMRI, DTI, EEG, PET, and genetic 
information–using advanced algorithms such as graph neural 
networks (GNN) or Transformer models to construct accurate, 
individualized brain network models that can robustly inform 
TMS target selection (Cappon et al., 2022; Fujimoto et al., 2024). 
Clinically, as standardization of data acquisition, cross-center 
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collaboration, and large-scale validation advance, it is expected that 
within the next 5–10 years, AI-driven personalized TMS treatment 
strategies will be incorporated into standard clinical guidelines and 
achieve breakthrough outcomes in treating psychiatric disorders, 
neurodegenerative diseases, and pain management (Lin et al., 
2020). 

7.4 Long-term prospects for personalized 
and precise neuromodulation 

As AI and neuroimaging technologies continue to mature, 
personalized TMS treatment is poised to usher in a transformative 
era in neuromodulation. Precision psychiatry models built on 
neuroimaging and genetic data will enable the prediction of optimal 
TMS parameters for individual patients, thereby facilitating truly 
personalized medical interventions. Moreover, the development of 
AI-assisted brain-computer interfaces (BCIs) is expected to oer 
new avenues for neurorehabilitation, by potentially synergizing 
with TMS interventions. For instance, BCIs could be used to detect 
a patient’s volitional motor intent (e.g., in stroke rehabilitation), 
which then triggers or modulates TMS stimulation to reinforce 
the desired neural pathway activation, thereby enhancing motor 
recovery in stroke patients through targeted plasticity induction. 
Overall, although current challenges persist in terms of technology, 
ethics, and clinical validation, ongoing standardization of data 
collection, multi-center large-scale trials, and the emergence of 
advanced algorithms are anticipated to drive the full clinical 
translation of personalized, precision neuromodulation. This 
evolution will likely propel the treatment of neuropsychiatric 
disorders into a new era (Moon et al., 2020). 

8 Discussion 

This review systematically examined the progress in applying 
neuroimaging techniques and artificial intelligence for precision 
TMS treatment, with a particular focus on the role of multimodal 
neuroimaging (e.g., fMRI, DTI, and EEG) in elucidating individual 
variations in brain structure and function, as well as on the 
application of machine learning and deep learning methods 
for TMS target localization, treatment response prediction, and 
real-time feedback modulation. The evidence indicates that the 
integration of these technologies provides robust data support 
and a solid theoretical foundation for individualized, precise 
TMS treatment, thereby significantly overcoming the limitations 
inherent in conventional anatomical targeting methods (Cao et al., 
2021; Zrenner and Ziemann, 2024). 

Multimodal neuroimaging can reveal abnormal brain network 
patterns at dierent levels. fMRI captures functional connectivity 
through the BOLD signal, DTI provides insights into the integrity 
and structural connections of white matter fibers, and EEG oers 
millisecond-level temporal resolution to track dynamic neural 
activity. The complementary nature of these imaging modalities 
enables a more comprehensive modeling of an individual’s brain 
network (Klooster et al., 2022). For example, a multi-center study 
by Kim et al. (2023) and Klooster et al. (2022) demonstrated 
that constructing individual brain network maps using fMRI and 

DTI data could successfully predict TMS treatment responses in 
depression, highlighting the substantial potential of multimodal 
data integration for personalized therapy. 

Moreover, artificial intelligence and machine learning 
techniques have shown significant promise in processing 
multimodal data and building predictive models. Deep learning, 
graph neural networks, and ensemble learning methods have been 
employed to extract critical features from complex neuroimaging 
and clinical datasets, enabling the prediction of TMS treatment 
response and optimization of stimulation parameters (Marcu 
et al., 2020). Kale et al. (2024) reported that a deep learning model 
integrating EEG, fMRI, and clinical data achieved an area under 
the ROC curve (AUC) of 0.87, underscoring the advantage of 
these algorithms in enhancing prediction accuracy. Nevertheless, 
current models face challenges related to limited sample sizes, the 
lack of standardized data acquisition protocols across centers, and 
limited generalizability, which restrict the robustness and clinical 
interpretability of these predictive systems (Cao et al., 2021). 

In addition, data privacy and ethical considerations pose 
critical challenges for the integration of TMS and AI technologies. 
High-sensitivity neuroimaging and genetic data require stringent 
management during collection, storage, and sharing to protect 
patient privacy and prevent misuse (Kale et al., 2024). Kale et al. 
(2024) emphasized that ensuring data security and obtaining 
informed consent are prerequisites for facilitating large-scale, 
multi-center collaborations that can drive the clinical translation 
of personalized TMS treatments. 

Within the context of interdisciplinary collaboration and 
technological convergence, the development of closed-loop 
TMS systems and real-time feedback modulation represents 
a promising avenue for future treatment paradigms. By 
continuously monitoring brain states and dynamically adjusting 
stimulation parameters, such systems could achieve highly 
adaptive, individualized treatment (Zrenner and Ziemann, 
2024). Additionally, the deep fusion of multimodal data and 
the application of novel machine learning algorithms–such as 
Transformer models and advanced graph neural networks– 
are expected to further enhance model prediction accuracy 
and clinical applicability (Kale et al., 2024). Future research 
should prioritize improvements in imaging resolution and data 
quality, the standardization of cross-center data protocols, the 
enhancement of AI model generalizability and interpretability, and 
the reinforcement of data privacy safeguards (Cao et al., 2021; Kale 
et al., 2024). 

Overall, the application of neuroimaging and AI in precision 
TMS has opened new avenues for improving individualized 
treatment protocols. While these advanced techniques oer 
promising solutions to overcome the limitations of conventional 
anatomical targeting, challenges remain in data integration, 
model generalization, and ethical regulation. Only through 
interdisciplinary collaboration, continuous technological 
innovation, and rigorous clinical validation can these cutting-
edge methods be fully translated into clinical practice to improve 
patient outcomes and quality of life. As large-scale, multi-center 
data sharing and advanced algorithms evolve, personalized TMS 
strategies based on multimodal data integration are poised to 
achieve broader clinical application in the treatment of psychiatric 
disorders, neurodegenerative diseases, and neurorehabilitation. 
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9 Conclusion 

This review systematically examines the advancements in 
transcranial magnetic stimulation (TMS) for the treatment 
of neuropsychiatric disorders, emphasizing the pivotal roles 
of neuroimaging technologies–including functional magnetic 
resonance imaging (fMRI), diusion tensor imaging (DTI), 
and electroencephalography (EEG)–alongside artificial intelligence 
(AI) and machine learning methodologies in precise TMS 
target localization and personalized therapy. The integration of 
multimodal neuroimaging data elucidates the intricate networks 
of individual brain function and structure, while machine learning 
algorithms enhance the precision and predictive accuracy of TMS 
treatment protocols. This synergy not only refines target selection 
and stimulation pathways but also underpins the development 
of real-time feedback mechanisms and closed-loop TMS systems, 
thereby facilitating personalized precision therapy. 

Furthermore, this article underscores the significance of 
interdisciplinary research. The convergence of neuroscience, 
computer science, engineering, and clinical medicine oers 
novel perspectives to address current challenges, such as data 
heterogeneity, model generalizability, and ethical considerations 
regarding privacy. Through standardized data acquisition, inter-
center collaboration, and the continuous optimization of advanced 
algorithms, there is potential to enhance the clinical eÿcacy of TMS 
across domains including psychiatric disorders, neurodegenerative 
diseases, and pain management. 

Looking ahead, personalized precision TMS therapy is poised 
to advance the field of precision psychiatry. With the support of 
emerging technologies like AI-assisted brain-computer interfaces, 
its applications may extend to broader areas of neurorehabilitation 
and functional restoration. In summary, as neuroimaging and AI 
technologies continue to evolve and multimodal data integration 
methods mature, individualized neuromodulation strategies based 
on precise TMS are expected to play an increasingly vital 
role in clinical translation and widespread application, oering 
transformative breakthroughs in patient outcomes and quality of 
life enhancement. 
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