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further be distorted during mounting on glass slides (Schormann and 
Zilles, 1998). Hence, the original geometry of the brain and fi bre tracts 
has been lost. Thus, the image stack of 2D PLI vector data has to be 
corrected for distortions and 3D-reconstructed to study fi bre tracts.

Tools for the 3D reconstruction of microtome sections have 
been developed for different data modalities. These include his-
tological cytoarchitectonic (Schormann et al., 1995; Schormann 
and Zilles, 1998; Ourselin et al., 2000; Amunts and Zilles, 2001; 
Bettio et al., 2005; Chakravarty et al., 2006; Yushkevich et al., 2006; 
Dauguet et al., 2007a; Schmitt et al., 2007; Palm et al., 2008; Singh 
et al., 2008) and autoradiographic images (Hibbard and Hawkins, 
1988; Andreasen et al., 1992; Goldszal et al., 1995; Kim et al., 
1997; Rangarajan et al., 1997; Hess et al., 1998; Nikou et al., 2003; 
Malandain et al., 2004; Lee et al., 2005; Holschneider et al., 2006; 
Dubois et al., 2007, 2008) as well as tracing fi bre tracts (Dauguet 
et al., 2007b), confocal laser scanning microscopy (Čapek et al., 
2009) and blockface imaging of the embedded brain during cutting 
(Annese et al., 2006).

Some 3D reconstruction approaches were based on the align-
ment of consecutive sections, which is a well suitable approach for 
rather small data sets or brains without intense cortical folding 
like brains of rat (Hibbard and Hawkins, 1988; Goldszal et al., 
1995; Nikou et al., 2003; Lee et al., 2005; Holschneider et al., 2006; 
Dubois et al., 2007, 2008; Schmitt et al., 2007), gerbil (Hess et al., 
1998) and rabbit (Andreasen et al., 1992) as well as those from 

INTRODUCTION
Polarised light imaging (PLI) has been shown to reveal the spatial 
orientation of nerve fi bres at an ultra-high resolution (Axer et al., 
2001; Larsen et al., 2007; Gräßel et al., 2009). It utilises the birefrin-
gent properties of the myelin sheaths, which surround the nerve 
fi bres. Due to birefringence their optical properties are not iso-
tropic. PLI measures the light transmittance at systematically var-
ied polarisation states and, thereby, estimates a three- dimensional 
(3D) fi bre vector representation characterised by an in-plane angle 
(direction) and an out-of-section angle (inclination). Thus, rotat-
ing the polarisation plane of the incident light enables the measure-
ment of the orientation of myelinated fi bres in space.

Polarised light imaging is applied to microtome sections of post-
mortem brains with an optimum thickness of about 100 µm (Axer 
et al., 2001) to allow light transmittance as well as detection of the 
birefringence effect. Transmittance is detected by a charged-coupled 
device (CCD) camera yielding a series of 2D images in each brain 
section corresponding to the polarisation states. As a result, a spatial 
distribution of 3D vector information within each brain section is 
available at microscopic resolution. This resolution is necessary, if 
the diameter range of 1–20 µm of single fi bres within the human 
brain is taken into account (Gasser, 1941).

Geometrical distortions are inevitable during the preparation of 
microtome sections. Distortions include local shearing and tearing, 
which occur during sectioning (Ourselin et al., 2000). Sections may 
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other  non-human primates (Bettio et al., 2005; Dauguet et al., 
2007b). Others have used reference data like blockface (Kim et al., 
1997; Čapek et al., 2009) or magnetic resonance (MR) images 
obtained prior to histological processing of mouse (Yushkevich 
et al., 2006), rat (Palm et al., 2008) or monkey (Rangarajan et al., 
1997; Malandain et al., 2004) brains to align section images. 
Especially for large human brains, reference data are necessary 
considering the complex shape of the surface. Commonly, block-
face images as well as MR data were taken as reference modalities 
(Schormann et al., 1995; Schormann and Zilles, 1998; Amunts 
and Zilles, 2001, 2005; Dauguet et al., 2007a,b; Yelnik et al., 2007; 
Singh et al., 2008).

The 3D reconstruction of PLI vector data differs from the above 
mentioned methods with respect to two main aspects: First, PLI 
images consist of 3D vector data in contrast to scalar modalities like 
histological images and autoradiographs. Second, PLI is sensitive 
to small remaining distortions since they may cause discontinuities 
of the fi bre tract resulting in erroneous tractography.

In the past, PLI data were 3D-reconstructed using a rigid 
transformation, which was applied to images of the human 
brain stem (Axer et al., 2002). Here we introduce a method for 
3D  reconstruction of PLI images of human whole-brain sections, 
which inevitably show severe deformations. Different transforma-
tions with increasing degrees of freedom (rigid, affi ne and non-
linear with affi ne pre-processing) were compared to determine the 
appropriate approach for subsequent fi bre tracking. In addition 

to the spatial image transformation and considering the vector 
nature of PLI data, we propose a reorientation of fi bre orientation 
vectors (FOVs) (Figure 1). For this purpose, methods for spatial 
transformations of diffusion tensor images (DTI) (Alexander et al., 
2001) were modifi ed and applied.

MATERIALS AND METHODS
IMAGE MATERIAL
The study is based on sections of a human post-mortem brain from 
the body donor program of the University Düsseldorf, Germany, 
in accordance with legal requirements. After brain removal and 
fi xation in formalin, the brain was embedded in gelatine and fro-
zen. Sectioning was performed on a cryostat microtome (coronal 
plane, 100 µm thickness). For each section a digital colour image 
of the frozen block was obtained before the block was cut. These 
 blockface images (2050 × 1600 pixel) with an isotropic in-plane 
spatial sampling of 125 µm per pixel are the reference for subse-
quent registration of PLI images (see Section Rigid and Affi ne PLI 
Registration and Non-linear PLI Registration). For the develop-
ment of registration tools and further analysis, we used a tissue 
block of 7 mm from the central region of the brain.

POLARISED LIGHT IMAGING
The setup of PLI includes a light source which emits unpolarised 
(ideally monochromatic) light, two linear polarisers with a rotation 
offset of 90° between their transmission axes, one-quarter-wave 

FIGURE 1 | Schematic description of the image processing steps from polarised light imaging towards fi bre tracking.
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retarder and a CCD camera system (Figure 2). The light source 
consists of 1296 green light-emitting diodes with a centre wave-
length of 520 nm arranged in a 2D array (iiM AG Measurement 
and Engineering, Meiningen, Germany). The two linear polarisers 
and the 140 nm quarter-wave retarder (ITOS, Mainz, Germany) 
have a diameter of 24 cm. The type of camera is AxioCam HRc 
(Carl Zeiss MicroImaging GmbH, Jena, Germany) equipped with 
an APO-Rodagon-N object lense (Rodenstock GmbH, Munich, 
Germany).

Histological brain sections are positioned in-between the two 
crossed polarisers (“preparation”, Figure 2B). The myelin sheaths 
surrounding the fi bre bundles transform the linearly polarised light 
into elliptically polarised light depending on the spatial orientation 
of the fi bres due to their birefringent properties. The component 
parallel to the transmission axis of the second polariser passes the 
system and is captured by the camera (Axer et al., 2001; Larsen 
et al., 2007). The transmission intensity depends on the orientation 
of the fi bre in relation to the orientation of the optical axis of the 
quarter-wave retarder introduced into the system to solve a 90° 
ambiguity of the transmission.

Keeping the position of the histological section fi xed, both the 
transmission axes of the polarisers and the quarter-wave retarder 
are simultaneously rotated. As a result, a sequence of PLI raw images 
of a single brain section at different rotation angles is obtained 
(Figure 3). Images differ with respect to their grey value distribu-
tion. As a result of the rotation, the intensity measured in each pixel 
varies sinusoidally (intensity profi le) with a phase shift dependent 
on the fi bre orientation at this pixel position.

The angle of the minimal transmittance defi nes the in-plane 
direction of the fi bre, whereas the inclination can be derived from 
the amplitude of the light variation depending on the thickness of 
the histological section (Larsen et al., 2007; Axer et al., 2008). The 
in-plane resolution of our custom-built PLI system (see Figure 2A) 

was adjusted to the same value as the section thickness (100 µm) 
in order to generate a data set of isotropic voxel size with an image 
size of 1388 × 1040 pixels.

PLI yields a direction (Figure 4A) and an inclination map 
(Figure 4B). The maps determine the fi bre orientations at each 
pixel position and can be transformed into a vector array with (X, Y, 
Z)-components normalised to length 1. The normalised vectors 
defi ne the so-called fi bre orientation map (FOM), which serves 
as an input for the registration-induced vector reorientation (see 
Section Reorientation of FOV Direction).

Segmentation of PLI images
The segmentation of the PLI images, i.e., the separation of brain tis-
sue from surrounding image components, consists of the following 
steps. In the fi rst step, the background of the transmittance image 
was identifi ed by histogram thresholding, and then set to zero. To 
be robust against contaminations on the slide, pixels with constant 
intensity profi les along the rotation angle of the optical system were 
discarded prior to histogram computation. Morphological opening 
and closing operations were applied subsequently to remove noise 
and remove holes of the object. Finally, a convex hull algorithm was 
used to distinguish inside and outside of the tissue object. The PLI seg-
mentation procedure was based on in-house software written in IDL. 
The estimation of FOVs (see Section Estimation of Fibre Orientation 
Vectors) was restricted to the pixels of the PLI tissue segment.

Estimation of fi bre orientation vectors
To estimate the estimation of FOVs at each pixel position, PLI raw 
images at equidistant rotation angles with a sampling of 10° were 
captured in a 180° half-circle. After automatic segmentation (see 
Section Segmentation of PLI Images) the images were calibrated 
using an independent component analysis (ICA) correcting the 
measured signal for noise and artefacts (Dammers et al., 2010). 

A B

FIGURE 2 | View of the PLI system (A) and scheme (B) with two polarisers, one-quarter-wave retarder, a light source as well as a CCD camera system.
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A B

C D

FIGURE 3 | PLI raw images of a histological section corresponding to a set of four rotation angles (0º (A), 50º (B), 100º (C) and 150º (D)) of the optical 

system.

A B

C D

FIGURE 4 | Example of PLI output images: direction ϕ (A) and inclination map (B), transmittance I
0
 (C) and retardation map |sin δ| (D). I0, ϕ and |sin δ| are 

introduced in Section “Estimation of Fibre Orientation Vectors”.
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In-house software was used to fi t a sinusoidal curve through the 
measurements as well as to estimate the fi bre direction and incli-
nation (Axer et al., 2008). In brief, the application of a discrete 
harmonic Fourier transform allows extracting the parameters I

0
, 

ϕ and |sin δ| from the intensity of transmission derived from the 
Jones calculus (Jones, 1941):

I
I= ⋅ + − ⋅0

2
2 2[ ( ) ( )],1 sin sinρ ϕ δ

 
(1)

where I denotes the intensity captured by the camera and ρ the 
azimuth of the transmission axis of the fi rst polariser with respect 
to the frame coordinate system. I

0
 (Figure 4C) is the intensity of 

incident light modifi ed by absorption independent of the bire-
fringence of the material. Therefore, for non-birefringent tissue I 
is equal to I

0
. I

0
 as well as the fi bre direction ϕ with respect to the 

coordinate system of the frame can be extracted directly. However, 
the true fi bre direction with respect to the tissue coordinates is only 
achievable by adequate reorientation (see Section Reorientation 
of FOV Direction). δ is called retardation and describes the maxi-
mum phase shift between the orthogonally polarised components 
of a light ray passing through birefringent material. Thus, images 
showing |sin δ| are called retardation maps (Figure 4D). They 
serve as the basis for image registration (see Section Rigid and 
Affi ne PLI Registration). The fi bre inclination α is related to the 
retardation via the tissue thickness (d), the birefringence (Δn) and 
the wavelength (λ) of the light (Larsen et al., 2007):

δ
λ

α= ⋅ ⋅ ⋅π
d nΔ cos2 ,

 
(2)

The incident linearly polarised light interacts locally with the 
myelin imposing a characteristic phase shift δ (retardation) on the 
electromagnetic light wave. The independence of δ of the sign of α 
implicitly indicates that there is an ambiguity in inclination estima-
tion. This ambiguity poses challenges for fi bre tracking in 3D. First 
approaches to solve this issue were introduced by Larsen and Griffi n 
(2004); they will be discussed in Section “Discussion”.

GENERATION OF THE BLOCKFACE VOLUME
As shown previously for microscopic images (Beare et al., 2008; 
Palm et al., 2009), section-based imaging modalities need a genu-
ine 3D reference to avoid effects of bias in restacking. We used 
blockface images stacked to a 3D volume as reference modal-
ity assuming the imaging setup unchanged during cutting 
(Schormann and Zilles, 1998; Amunts and Zilles, 2005; Dauguet 
et al., 2007b). The zero-position of the cryo-block varies slightly 
during the cutting due to vibrations of the cryostate. Thus, the 
blockface images had to be 3D reconstructed as well. The cryo-
block of the brain was positioned in front of a regular checker-
board pattern in order to enable a bias-free alignment and 3D 
reconstruction of the blockface images (Figure 5A). Tissue and 
non-tissue image parts are separated by a segmentation procedure 
(see Section Segmentation of Blockface Images). The non-tissue 
image parts, i.e., mainly the checkerboard pattern, were later used 
as a basis for a single-modality linear registration with normalised 
correlation (NC) similarity metric (see Section Registration of 
Blockface Images).

Segmentation of blockface images
The segmentation started with a KMeans clustering (Duda and 
Hart, 1973) of the histogram of the a* colour channel after trans-
formation from the RGB into the La*b* colour space (Wyszecki 
and Stiles, 1982) where the brain tissue shows reasonable con-
trast with respect to the rest of the image. Eventually a pixel-wise 
classifi cation of background and tissue followed by a fi ll-hole 
algorithm was performed. The registration of PLI images to pre-
aligned blockfaces employed the masked intensities within the 
tissue segment (Figure 5B).

Registration of blockface images
The following 2D affi ne transform without shearing was used for 
the registration of the blockface images:

T θ

ϕ ϕ
ϕ ϕ1

0
( )

cos sin

sin cos
p p t=

−⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

s

s
x

y0
+

 
(3)

A B

FIGURE 5 | Example of a blockface image before (A) and after segmentation (B). The block was mounted in front of a regular checkerboard pattern. Non-tissue 
image components, i.e., mainly the checkerboard, were used to calculate the similarity metric in order to reduce the registration bias.
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where p = (p
x
, p

y
)T, p

x
, p

y
 ∈ Z denotes the pixel position. s = (s

x
, s

y
), 

t = (t
x
, t

y
), and ϕ are the scaling factors, the translation vector and 

the rotation angle, respectively. Consequently, T θ1
 is described by 

fi ve parameters θ
1
.

The blockface images were acquired as RGB images. They were 
transformed into greyscale images by computing the means of 
the red, green and blue colour channels. To tolerate slight illu-
mination inhomogeneities, NC was chosen as single-modality 
similarity metric for two blockface images f and m instead of the 
Sum-of-Squared-Distances:

NC( , )f m
d f d m

d f d m

i

N

i

=
( ) ( )

( ) ( )
=

−

=

−
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∑
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0
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0
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(4)

with d(f
i
) = f(p

i
) − µ(f) and d(m

i
) = m(p

i
) − µ(m), where f(p) = w f 

defi nes the value at p of f, m(p) = w m defi nes the value at p of m, 
and µ(f ) and µ(m) represent the mean value for the overlapping 
region of f and m, respectively.

The exclusion of the brain tissue from registration is important 
to avoid a restacking bias. Therefore, NC( f, m) in Eq. 4 was restricted 
to those values f(p

i
) and m(p

i
) for which p

i
 is outside of the brain 

tissue. Therefore, the blockface images were segmented prior to 
registration (see Section Segmentation of Blockface Images). The 
pixels, which contribute to NC, were restricted to the background 
segment, i.e. mainly the regular checkerboard pattern.

Registration is an optimisation approach to fi nd the best param-
eters, which maximises NC:

ˆ arg max ( , )| ( )θ
θ

θ1
1

1
= ′ ′NC f m m m={ }T .

 
(5)

f and m are called reference image and moving image, respectively. 
The registration was started from the middle image of the stack 
as reference; the registration of the whole stack proceeded then, 
up and down. The already registered previous image was hereby 
treated as the new reference image.

After the generation of a 3D blockface reference volume, affi ne 
registration (see Section Rigid and Affi ne PLI Registration) and non-
linear registration (see Section Non-linear PLI Registration) were 
performed in order to correct for the loss of 3D consistency of the 
microtome sections, and to remove local deformation artefacts.

RIGID AND AFFINE PLI REGISTRATION
The PLI analysis provides several maps of one and the same histologi-
cal section representing the fi tted parameters of Eq. 1, i.e. retardation 
and direction maps as well as 2D vector arrays coding the 3D fi bre 
orientation at each pixel position. All maps of each histological sec-
tion share the same reference space. As a consequence, it is suffi cient 
to align one of them with the corresponding blockface image before 
applying the resulting transformation to the other maps. The retarda-
tion images were chosen for registration, because they show maxi-
mum contrast between grey and white matter. Retardation intensity 
is approximately inversely proportional to the inclination of a fi bre 
(see Eq. 2). That is, fi bres, which run mainly within the cutting plane 
show high retardation values, whereas the retardation intensity in the 
grey matter is rather faint due to low birefringence (Figure 4D).

Normalised mutual information (NMI) was taken as a well 
established multi-modality similarity metric (Studholme et al., 
1999):

NMI( )
( ) ( )

( )
f m

f m

f m
,

,
= H H

H

+

 
(6)

with f and m being the reference (blockface) and the moving (retar-
dation map) image, respectively. The blockface colours are trans-
formed to grey values calculating the mean value beforehand. H(f ) 
and H(m) denote the single entropies,

H

H

W

W

( ) ( )log

( ) ( )log ( )

f p w p w

m p w p w

f f

w
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w
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m
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= −

=
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−
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∑
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,

0
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1
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(7)

whereas H(f, m) defi nes the joint entropy of the input images:

H
WW

( ) , log ,f m p w w p w wf m f m

ww mf

, = − ( ) ( )
=

−

=

−

∑∑
0

1

0

1

 
(8)

with intensities wf and wm ∈ {0,…,W − 1}, W ∈ N.
The rigid transformation T θ2

 of a pixel p:

T θ

ϕ ϕ
ϕ ϕ2

( )
cos sin

sin cos
p p=

−⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
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t

t
x

y  
(9)

with 3 degrees of freedom, (t
x
, t

y
) and ϕ. The affi ne transforma-

tion T θ3
:

T θ3

11 12

21 22

( )p Ap t p= + =
⎛
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is parameterised by θ
3
 = (a

11
, a

12
, a

21
, a

22
, t

x
, t

y
). Analogue to Eq. 5, 

θ
2,3

 are estimated according to:

ˆ arg max ( )| ( ) ( ) .,
,

,
θ

θ
θ2 3

2 3

2 3
= = ( ){ }NMI f, m m m′ ′ p pT

 
(11)

NON-LINEAR PLI REGISTRATION
The affi nely aligned retardation maps served as basis for subsequent 
non-linear registration. The non-linear transformation T

u
 with a 

deformation fi eld u:

T u p p u p( ) ( )= +  (12)

is a necessary step in order to correct for inevitable, non-linear 
deformations introduced during the cutting and mounting of the 
section. Up to now, a physical model of section cutting considering 
the infl uence of the embedding material as well as freezing effects 
has not been established. Mathematical models like Free-Form-
Deformation utilising B-Splines (Rückert et al., 1999) and physics-
related transformations such as elastic (Bajcsy and Kovacic, 1989; 
Hömke, 2006) and fl uid deformation (Christensen et al., 1996) are 
used to make the ill-posed non-linear registration problem feasible 
(Modersitzki, 2004).
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In this study, the fl uid approach (D’Agostino et al., 2003; Crum 
et al., 2005) was applied. Advantages of this approach include the 
capability to model large deformations while ensuring the diffeo-
morphic property of the transformation. In brief, the Navier–Stokes 
equation of the fl uid model relates the velocity fi eld v and the body 
force fi eld b(u) which depends on the current estimate of u:

μ μ λ∇2 0v v b u+ + ∇ ∇⋅ + =( ) ( ) ( )  (13)

where ∇2 denotes the Laplacian operator. The viscosity parameters 
µ and λ are here set to 1 and 0, respectively (D’Agostino et al., 2003; 
Crum et al., 2005). The iterative fl uid registration solves Eq. 13 with 
respect to v and updates the current estimate of u, û, by integrating 
v over a small time step. The parameter b is defi ned by the gradient 
of NMI (Eq. 6) with respect to u (D’Agostino et al., 2003). The reg-
istration of PLI images to blockface references is based on a multi-
 resolution approach with four hierarchic levels (Crum et al., 2005).

QUALITY OF REGISTRATION
Two quantitative metrics were defi ned in order to assess the quality 
of registration. The Dice coeffi cient (DC) measures the amount of 
overlap of regions. Comparing the tissue segments of PLI, a, and 
blockface, b, DC is given by

DC( )
( ) ( )

a b
a b

a b
, = −

−( )
+

1
N

N N  
(14)

where N(a), N(b) are the number of region pixels of the tissue 
segments and N(|a − b|) defi nes the number of differing pixels, 
i.e., the number of non-overlapping region pixels. The segmenta-
tion procedures for PLI images and for blockfaces are described 
in Sections “Segmentation of PLI Images” and “Segmentation of 
Blockface Images”, respectively. For both modalities, tissue and 
background are separated. The overlapping of the tissue segments 
of a corresponding image pair of PLI and blockface is basis for the 
computation of DC in Eq. 14.

The second metric, NMI, is defi ned in Eq. 6. In contrast to DC, 
NMI refl ects the correlation of the morphology within the tissue seg-
ment. High NMI values correspond to a high matching quality.

Anatomical correctness is a further independent criterion for 
the quality of registration. Anatomical correctness includes the 
smoothness of a structure orthogonal to the cutting direction of 
histological sections. That is, the shape of an anatomical struc-
ture and its surface should not depend on the sectioning plane. 
Smoothness was estimated as follows: A deep brain region was 
segmented manually in all histological sections before registra-
tion resulting in a sequence of label images. The label images were 
transformed according to the transformation parameters result-
ing from the registration optimisation yielding a 3D surface of 
the deep brain structure. The smoothness of the surface depends 
on the registration method and is characterised by the length L

m
, 

m ∈ {rigid, affi ne, affi ne + fl uid} of the contour in views orthogonal 
to the sectioning plane. To eliminate absolute length measures for 
comparison, each L is normalised by L

rigid
.

REORIENTATION OF FOV DIRECTION
Registration of retardation maps yields transformations charac-
terised by the parameters arising from the optimisation process. 
The registration results are propagated to the other PLI-related 

 modalities, in particular to the FOMs, by application of these trans-
formations. However, transformation of FOMs requires a reorienta-
tion of FOVs due to their vector nature. Otherwise, a FOV is located 
at a new image position but is with erroneous orientation.

In contrast to DTI, where a reorientation of vectors is also 
required (Alexander et al., 2001), no information related to frac-
tional anisotropy is available for PLI. Therefore, a FOV is repre-
sented by a single vector resembling an eigenvector of the greatest 
eigenvalue of a diffusion tensor lacking a proper reliability factor 
like anisotropy. It has been shown for affi ne transformations that 
reorientation should include shearing and non-uniform scaling 
depending on the vector orientation in addition to the rotation part 
(Alexander et al., 2001). Therefore, the full affi ne transformation 
matrix A is used for the reorientation procedure.

The reorientation of FOVs is performed once after the transfor-
mation of the PLI images. We assume an affi ne transformation Tθ3

,  
defi ned in Eq. 10, with matrix A and an additional non- linear trans-
formation T

u
 defi ned by the deformation vector fi eld u, defi ned in 

Eq. 12. Be v = (v
x
, v

y
, v

z
)T a FOV after transformation but before 

reorientation. Then, the reoriented FOVs vA and vA,u account for 
the transformations T θ3

 and T Tu( ).θ3

Be w = =( , ) : ( , )w w v vx y x y
T T  a vector consisting of the planar 

components of v. Note, that the FOVs are 3D vectors, but the trans-
formation is 2D. The z-component of the FOV remains unaffected. 
Adapting the preservation of principal direction strategy (Alexander 
et al., 2001) w is reoriented to w A A A= ( , )w wx y  using the estimated 
transformation parameters ˆ :,θ2 3

w A wA = ⋅ .  (15)

The non-linear transform T
u
 is approximated by a local aff-

ine transform Tθ(p)
 = A

p
 + t

p
. Differentiation with respect to p 

yields A
p
 = I + J with the identity matrix I and the Jacobian J of 

u(p). Including the estimated fl uid parameters û additionally to 
the affi ne parameters, the reoriented vector w A,u A,u A,u= ( , )w wx y  is 
achieved by:

w A J A wA,u = ⋅ + ⋅[ ] .
 (16)

The corresponding reoriented FOVs v A A A= (| |, | |, )w w T
x y zv  and 

v A,u A,u A,u= (| |, | |, )w w T
x y zv  are computed by normalisation with 

respect to the fraction length of the fi rst two FOV elements:

| | , | |w
w

w w
w

w

w w
x

x z

x y

y
y z

x y

v v
A

A

A A

A
A

A A

=
1 12

2 2

2

2 2

−

( ) + ( )
=

−

( ) + ( )
.

 

(17)

| | | |w wx y
A,u A,uand  are defi ned analogously. Thus, correcting the 

direction adjusting the FOVs to be consistent with the spatial 
transformation.

RESULTS
ANALYSES OF TRANSFORMATIONS
All experiments were performed on 36 sections using NMI as 
similarity metric. To preserve the high resolution of PLI during 
reconstruction, high resolution blockface images (Figure 6A) were 
used as reference.
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D E

A B C

FIGURE 6 | Example of a greyscale blockface image (A) used as a reference 

for the registration of the retardation map (B). Affi ne and subsequent fl uid 
registration yielded the registered retardation map (C). Difference images were 
calculated of the rigidly and the affi ne registered retardation maps (D), and of 
the affi ne and the fl uid registered retardation maps (E); hereby, zero differences 
are shown in grey tones, negative values (rigid < affi ne, affi ne < fl uid) are shown 

in black, and positive values are shown in white tones. That is, black and white 
values indicate differences between the transformation approaches. The 
comparison of (D) and (E) illustrates that the affi ne transformation is a global 
image transformation and, hence, all tissue parts were affected, whereas the 
fl uid transformation showed local effects, e.g., in the temporal lobe [arrow (i)] 
and the pons [arrow (ii)].

For optimisation of the rigid and affi ne registration, an (1 + 1)-
 evolutionary algorithm was applied instead of a gradient descent 
approach to enhance robustness (Styner et al., 2000). Evolutionary 
optimisation is able to leave a local maximum by randomly selecting the 
next position within the search space controlled by a probability func-
tion. The fl uid registration was performed hierarchically (Crum et al., 
2005) with four levels yielding grid sizes of (128 × 100), (256 × 200), 
(512 × 400) and (1024 × 800). Equation 13 was solved with a full multi-
grid method (Crum et al., 2005). The registration experiments were 
applied on basis of PLI retardation images (Figure 6B).

We examined three different transformation types: rigid, aff-
ine and a combination of affi ne and fl uid. Performing an affi ne 
transformation instead of a rigid transformation affected all tissue 
parts, which is illustrated by the difference image of both results 
(Figure 6D). The application of a non-linear transformation subse-
quently to the affi ne transformation (result is shown in Figure 6C) 
had local implications (Figure 6E), in particular with respect to the 
pons and the temporal lobe.

As expected, the smoothness of brain structures improved con-
siderably with increasing degrees of freedom of the transformations. 
Starting with rigid registration as baseline, smoothness increased 
but local deformations remained even after affi ne transformation. 
The application of a fl uid registration subsequently resulted in high 
matching quality (Figure 7).

The quality of registration was assessed by two quantitative 
measures (see Section Quality of Registration): the DC (Eq. 14) 
and the NMI (Eq. 6). The analysis of DC indicated, that affi ne 
registration already resulted in good matching (mean DC value 
of 0.962) (Table 1). However, the analysis of NMI values revealed 
further improvement of the consistency after subsequent fl uid 
registration raising the mean NMI value from 1.287 to 1.298 
(Table 1). Improvement was achieved in particular for deep brain 
structures (Figure 7).

The decreasing variance (0.041 to 0.034) proved the robustness 
of the matching (Table 1). The deformation vector fi eld showed 
large deformations in the frontal and temporal lobes and small 
deformations in the internal capsule (Figure 8).

The necessity of a non-linear transformation is further sup-
ported by the smoothness considerations regarding deep brain 
structures. The smoothness of the registration result was tested 
for the corpus callosum, a sharp delineated fi ber tract connect-
ing both hemispheres of the brain, using the smoothness metric 
introduced in Section “Quality of Registration” (Figure 9). The 
contour length L along a para-sagittal cutting line (see Section 
Quality of Registration) characterises the smoothness of the region 
after registration. The rigid result (Figure 9A) provides a basis for 
normalisation (L = 1). Whereas the decrease of L to L = 0.97 for 
the affi ne result (Figure 9B) is low, the decrease to L = 0.61 for the 
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Before reorientation the fi eld was smooth but did not refl ect the 
morphology precisely enough (Figures 10A–C). The reorientation 
enhanced the correlation between morphology and vector paths 
(Figures 10D–F). This was recognisable, e.g. by the well known 
fi bre orientations in the internal capsule and the corpus callosum. 
The reoriented FOMs after combining affi ne and fl uid registration 
parameters, v A,u , did not considerably increase the amount of fur-
ther reorientation in comparison to affi ne reorientation only.

A

B

C

FIGURE 7 | Results of transformations after rigid (A), affi ne (B), and affi ne 

followed by fl uid registration (C). Each 3D data set is shown in coronal (i), 
horizontal (ii) and sagittal (iii) view. The pseudo-colour-coded blockface image 
volume is fused with the greyscale retardation map volume via α-blending. Grey 
matter shows mainly red tones in the blockface image and low grey values in the 
retardation map combining to a brown colour in the fused visualisation. White 

matter shows green tones and high grey values, respectively, combining to light 
green for high matching quality and dark green for low matching quality. Regions 
(2) and (3) within (i) correspond to the zoomed insets 2 and 3 of the total data set 
(1). Structures with signifi cant improvement after fl uid registration are indicated 
by arrows (white matter of cingulate gyrus, hippocampal region). The combination 
of affi ne and fl uid registration yielded signifi cant improvements of consistency.

subsequent fl uid result (Figure 9C) is signifi cant. It indicates the 
increasing smoothness and, hence, increasing anatomical accuracy 
by non-linear registration.

ANALYSES OF REORIENTATION
Different ways of FOV reorientation were analysed using the 
corrected spatial positions after affi ne and subsequent fl uid 
registration.
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To compare affi ne and fl uid-based reorientation, 2D difference 
vectors d

1
 and d

2
 were computed:

d w w d w wA A A,u
1 2= − = −, .

 
(18)

d
1
 represents the local effect of affi ne reorientation in comparison 

with the original orientation whereas d
2
 represents the additional 

effect of fl uid-based reorientation. The affi ne reorientation showed 
largest effects for those vectors with small z-component and, thus, 
small inclination (Figure 11) especially within the corpus callosum 
and the internal capsule. The rotation was constant for all pixels 
and the shearing parameter was relatively small.

The absolute amount of the reorientation effect is presented in 
Table 2. The mean effect of affi ne-based reorientation (Figure 11A) 
was with 0.2007 signifi cantly higher than the additional effect of 

0.0022 by fl uid-based reorientation (Figure 11B). After registration 
and reorientation, the 3D volume of FOVs (Figure 12) can serve 
as input for subsequent fi bre tracking.

DISCUSSION
Polarised light imaging shows myelinated fi bres and fi bre bundles 
with microscopic resolution. For our polarimeter the optimal sec-
tion thickness was determined to be 100 µm (Axer et al., 2001), 
i.e., the resolution in the z-direction is of the same size. In this 
study, the in-plane resolution was also set to 100 µm to ensure 
isotropic data although the present set-up allows a maximum 
in-plane resolution of 25 µm and a corresponding image size of 
12 million pixels. Such superior spatial resolution as compared 
to in vivo methods, e.g. DTI, however, is a challenge to exploit in 

A B

C

FIGURE 8 | Superimposition of the deformation vector fi eld u resulting from the fl uid registration and the corresponding retardation map |sin δ|. The 
vectors are pseudo-coloured (for direction see circular colour legend). Additionally to the entire section (A) the two regions specifi ed in Figure 7 are shown in (B)–(C). 
Largest deformation occurred in the left hippocampal region.

Table 1 | The quality matching is measured by the Dice coeffi cient (DC) and by the normalised mutual information (NMI). DC ranges between 0 and 1 

(1 indicates full overlap). Lowest NMI value indicates worst image alignment. The maximum NMI value depends on the marginal entropy of the image. Bold 

values correspond to highest mean together with lowest variance values for DC and NMI metric.

 DC NMI

 Without Rigid Affi ne Affi ne and fl uid Without Rigid Affi ne Affi ne and fl uid

Mean 0.296 0.954 0.962 0.963 1.004 1.286 1.287 1.298

Variance 0.032 0.011 0.007 0.006 0.000 0.042 0.041 0.034

Minimum 0.254 0.934 0.943 0.943 1.002 1.228 1.235 1.265

Maximum 0.324 0.973 0.979 0.975 1.006 1.320 1.321 1.327
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A

B

C

FIGURE 9 | Surface rendering of the corpus callosum after manual 

segmentation together with one of the PLI retardation images in the 

background (i). The surface cut indicated by the grey line on top of the surface 
forms the shape in (ii) with contours highlighted in red. Different shapes result 

from different transformations after rigid (A), affi ne (B) and affi ne followed by 
fl uid registration (C). The length L of the red lines is measured and normalised to 
L = 1 for the rigid transformation. Assuming a smooth shape for anatomical 
correct registration, decreasing L means increasing accuracy.

fi bre tracking studies of the human brain based on histological 
sections. Fibre tracking becomes feasible only after high quality 3D 
reconstruction of the numerous serial sections through a whole 
human brain or regions of interest. We here present a processing 
pipeline for 3D reconstructions of series of cryosections. A further 
challenge of the setup is due to the vector nature of the PLI images. 
This implicates not only the multi-modality of the problem caused 
by different grey value distributions of blockface images and PLI 
parameter maps; it also implies that each spatial transformation 
entails a vector reorientation.

The high in-plane resolution was preserved using high-
 resolution blockface images as spatial reference during registra-
tion. Comparing spatial transformations with increasing degrees of 
freedom, i.e., from rigid to fl uid transformations, best realignment 
was achieved by a combination of affi ne and fl uid registration. In a 
fi rst step, the geometrical distortions of the cryosections have been 
removed by image transformation. Sequentially, FOVs have been 
reoriented relying on the transformation fi elds calculated initially. 
The results of spatial transformation and of vector reorientation 
are respectively discussed in the following paragraphs.
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A B

C

E

F

D

FIGURE 10 | Registered FOM overlaid by the corresponding retardation map. The vectors are shown before (A–C) and after reorientation by affi ne 
parameters (D–F). For visualisation the vectors of the FOM are subsampled. The zoomed images (B, C) and (E, F) show the same regions as marked in 
Figure 7 with the temporal (B, E) and mesial frontal cortex including the corpus callosum (C, F). The colour, length and thickness of the vectors encode the 
length of the 2D-projection of the 3D-fi bre vector. Red colours correspond to vectors within the imaging plane, blue ones to vectors orthogonal to the imaging 
plane, while green and yellow ones represent transitional inclinations.
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SPATIAL TRANSFORMATION
Global and local deformations of the brain tissue as well as artefacts 
like tears are unavoidable due to the cutting and preparation proc-
ess. They have to be corrected for fi bre tract mapping. Here we focus 
on the cutting distortions, which become apparent in the difference 
between blockface reference and PLI section. The registration of 
PLI sections onto the reference images yields a 3D volume, where 
affi ne deformations between the living human brain and the fi xed 
post-mortem brain remain. The correction of such deformations 
was successfully applied by registration of the blockface volume 
onto the individual MRI volume (Schormann et al., 1995).

We studied the quality of registration of PLI maps to blockface 
images, and compared transformations with increasing degrees of 
freedom (rigid, affi ne and non-linear with affi ne pre-processing) 
using the DC and NMI as quantitative metrics. DC relates on the 
shape of the whole-brain section after automatic segmentation of 
the tissue in blockface images as well as retardation (PLI) maps. 
DC represents the overlap of the tissue segments and focus on 
the alignment of the outer contours. NMI is derived from image 
intensities and characterises the image similarity. Hence, NMI con-

siders in particular contingent structure of deep brain regions. It 
was already applied as similarity metric for optimisation during 
registration, and, thus, is accompanied by DC and a smoothness 
metric to assess the registration quality.

The difference between the rigid transformation and higher 
 parametrical transformations is visually evident, although the 
differences between the overlap region of rigid and other trans-
formations are numerically low. With a mean value of 0.954 in 
comparison to 0.963 all transformations show DC values near the 
maximum. This shows, that the outer shape of the brain tissue is 
recovered more or less by all three transformations. NMI reveals the 
need of a non-linear transformation with a mean value of 1.298 in 
comparison with a rigid or affi ne transformation showing a mean 
NMI value of 1.287. Taking deep brain structures into account, non-
linear transformations increase the consistency of tissue imaging 
before and after cutting and mounting.

Additionally, a smoothness metric was calculated with respect 
to a deep brain structure, the corpus callosum. It revealed an 
increase of smoothness and, thus, an increase of registration 
quality of 37% for fl uid registration as compared to affi ne reg-
istration only. Moreover, regions with large deformation due to 
histological processing like the temporal lobe, also showed a high 
correspondence between the PLI image and the reference after 
fl uid transformation.

In general, the non-linear, fl uid registration is able to correct 
large deformations. However, a path of corresponding intensi-
ties and structures must be available to steer the gradient-based 
optimisation. This precondition was fulfi lled for the data included 
here. Data showed only marginal tearing effects, which resulted 
in a smooth deformation fi eld. The fl uid approach used a four 
level multi-resolution hierarchy and constant viscosity parameters 
(see Analyses of Transformations). The optimisation converged 
already at a grid size of (1024 × 800) due to the low contrast and 

A B

FIGURE 11 | Absolute vector difference images |d
1
| for reorientation after 

affi ne (A) and |d
2
| additional fl uid-induced transformation (B) with d

i
 

defi ned in Eq. 18. The colour encodes the length of the difference vectors. The 

contrast is enhanced for both images individually. The amount of reorientation 
induced by affi ne transformation was signifi cantly larger than the additional 
reorientation induced by non-linear transformation.

Table 2 | Length of the difference vectors as defi ned in Eq. 18 for 

reorientation after affi ne (d
1
, Figure 11 A) and additional fl uid 

transformation (d
2
, Figure 11B). For each 2D image, the mean of |d1| and 

|d2| is computed for all pixels with a z-component of less than 0.3. |di| is a 

dimensionless quantity with 0 ≤ |di| ≤ 1. Mean, minimum and maximum 

correspond to 36 slices included into the present analysis.

 |d
1
| |d

2
|

Mean 0.2007 0.0022

Minimum 0.0614 0.0001

Maximum 0.2544 0.0035
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low signal-to-noise ratio of the blockface reference. The choice of 
the viscosity parameters is quite robust and has in a wide range low 
effect on the registration results (Leporé et al., 2008).

Our study has shown in conclusion, that high-parametrical 
spatial transformations are necessary to correct for distortions 
introduced during sectioning and further tissue processing.

VECTOR REORIENTATION
The reorientation of the FOVs is necessary to recover the undistorted 
orientation of fi bre bundles after sectioning. The successful application 
of the here presented vector reorientation method demonstrated by 
the smoothness of the resulting FOV array, i.e. no abrupt jumps in the 
orientation of corresponding vectors occurred between neighbouring 
sections. The FOV arrays refl ected also the original brain morphol-
ogy. This was verifi ed in regions where the orientation of fi bres is well 
known such as the internal capsule and the corpus callosum.

The FOV is characterised by an ambiguity arising from the 
unknown sign of the inclination angle. The inclination again is 
independent of the vector direction and, therefore, independent of 
registration parameters. Solving the inclination ambiguity is crucial 
for subsequent fi bre tracking. Assuming the continuity of adjacent 
3D orientation vectors, smooth vector fi elds are likely to occur. 
Simulated annealing approaches were proposed for the smoothing 
of the vector fi elds (Larsen and Griffi n, 2004). Promising results 
were shown for small patches of simulated data. For fi bre tracking 
on human whole-brain sections, however, such methods have to 
be modifi ed and adapted.

The effects of the registration steps (affi ne, fl uid) on vector reo-
rientation differed from each other. To quantify the impact of a 
transformation on the FOV direction, the mean distance between 
original and reoriented vector was calculated. It showed, that the 
impact of the affi ne transformation on vector reorientation is up 
to a hundred times higher than the additional non-linear transfor-
mation. However, the non-linear approach is a crucial prerequisite 
for further analysis. This has been illustrated by the signifi cantly 
increased smoothness of the contours of the corpus callosum. 
Subsequent tractography would result in wrong pathways, if the 

alignment of corresponding nerve fi bres is less accurate than 1 mm, 
since this would create large parts of discontinuity of callosal fi bres. 
It has to be differentiated between spatial transformation and vec-
tor reorientation induced by spatial transformation. The low effect 
of non-linear transformation on vector reorientation is not sur-
prising, because the fl uid registration was applied additionally to 
the affi ne transformation, and, thus, global rotations were already 
compensated by the affi ne registration.

A second reason for larger effects of the affi ne as compared to the 
non-linear transformation is in the nature of the high- resolution 
deformation fi eld assigning one deformation vector to each pixel 
(see Figure 8). The smoothness of the fi eld is not only infl uenced 
by affi ne pre-alignment, but also by the mathematical regulari-
sation term and the gradient of NMI. The temporal pole may 
serve as an example. Here, even large deformations were  correctly 
removed. Rotation of small patches within the image, however, is 
only detectable within a narrow neighbourhood, in close proxim-
ity to the centre of rotation. With increasing distance to the centre 
of rotation, the direction of neighbouring displacement vectors 
is hardly distinguishable from a translation. In this respect, the 
approximation of the non-linear deformation fi eld by a local aff-
ine transform would underestimate the reorientation angle for the 
fi bre vectors. Improvements would be expected by estimating the 
parameters of piecewise or local affi ne transformations (Pitiot et al., 
2006; Commowick et al., 2008), which take information of larger 
neighbourhoods of the deformation fi eld into account.

PERSPECTIVES AND CONCLUSIONS
Diffusion tensor imaging and diffusion spectrum imaging are cur-
rently the methods of choice for in vivo studies of the human fi bre 
tracts (Basser et al., 1994; Basser and Jones, 2002; Schmahmann 
et al., 2007). Diffusion-based tractography allows the detection of 
fi bre pathways between distinct brain regions (Mori and van Zijl, 
2002). Presently, however, the results of DTI based fi bre tracking 
(Koch et al., 2002; Mori and van Zijl, 2002) cannot be validated due 
to a missing independent method for verifi cation. Additionally, DTI 
has a spatial resolution, which is considerably lower than would be 

A B

FIGURE 12 | Visualisation of 3D fi bre vectors for nine registered and reoriented sections (B) in the region of the temporal white matter. The viewing direction 
is marked by a white line in (A). The colour encodes the direction of the vectors: left-right (red), basal-dorsal (green) and rostral-occipital (blue).
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