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A functional single nucleotide polymorphism (SNP) in the 
catechol-O-methyltransferase (COMT) gene mapped to chro-
mosome 22q11 is thought to infl uence dopamine concentra-
tion in the prefrontal cortex (Akil et al., 2003; Chen et al., 2004; 
Lachman et al., 1996). COMT is a post-synaptic enzyme that 
catabolizes dopamine released in the prefrontal cortex, and a 
valine (Val) to methionine (Met) amino acid substitution at the 
158/108 locus of the peptide sequence affects the thermostabil-
ity of the enzyme. The Met/Met form of this polymorphism 
produces a less active enzyme resulting in higher dopamine 
levels than the Val/Val or the Val/Met polymorphism. In schiz-
ophrenic populations, as well as normal functioning young 
adults, the Met/Met form of the COMT polymorphism has been 
related to superior performance on a number of tests of execu-
tive function including the Wisconsin Card Sort Task (Egan 
et al., 2001; Joober et al., 2002; Malhotra et al., 2002) and the 
n-back task (Goldberg et al., 2003). In addition, people with the 
Met/Met form of the COMT polymorphism can elicit higher 
or lower levels of activity in the prefrontal cortex depending 
on the task characteristics and cognitive demands (Bertolino 
et al., 2006; Caldu et al., 2007; Egan et al., 2001; Ettinger et al., 
2008; Mattay et al., 2003; Winterer et al., 2006). However, some 
studies, including a recent meta-analysis have reported that 
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INTRODUCTION
Old age is often accompanied by cognitive impairment with 
the largest defi cits on executive control tasks that are reliant 
on prefrontal cortex function (Hedden and Gabrieli, 2004). 
Evidence from both humans and non-human animals sug-
gests that some cognitive defi cits observed in old age could be 
related to disruptions in the dopaminergic and neurotrophic 
systems (Bäckman et al., 2006; Pang and Lu, 2004). For this 
reason, genetic polymorphisms that affect the concentration 
or secretion of neurotrophic factors and neurotransmitters 
could contribute to some of the individual differences in cog-
nitive function in older adults (de Frias et al., 2004; Harris 
et al., 2006).
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the Met/Met form of the COMT polymorphism is not always 
associated with enhanced or more effi cient cognitive function 
or prefrontal activity compared to Val carriers (Barnett et al., 
2008; Bruder et al., 2005; Ho et al., 2005; MacDonald et al., 
2007; Tsai et al., 2003).

A few studies have examined whether individual differences 
in cognitive function in non-demented older adults could be 
attributed to the COMT polymorphism. One study found no 
association between the COMT polymorphism and cognitive 
function (O’Hara et al., 2006) while others have reported better 
cognitive performance in Met homozygotes compared to carri-
ers of the Val allele (de Frias et al., 2004; Liu et al., 2008). On the 
other hand, some studies have reported better cognitive func-
tion in the Val/Met heterozygotes than either of the homozy-
gotes (Harris et al., 2005), and yet others have reported that 
both Val/Met heterozygotes and Met homozygotes perform bet-
ter than the Val/Val counterparts (Starr et al., 2007). Some have 
speculated that this variation in the literature could be related 
to (a) an age-related shift in the U-shaped curve that refl ects 
dopamine signaling in the prefrontal cortex (Harris et al., 2005; 
Starr et al., 2007), (b) that COMT interactions with gender and 
age (O’Hara et al., 2006) could be masking or driving certain 
effects, or (c) the tasks that are employed in some studies do 
not adequately and specifi cally refl ect dopamine or prefron-
tal cortex engagement and therefore do not validly refl ect the 
impact that the polymorphism has on prefrontal function 
(O’Hara et al., 2006). There are also a number of other expla-
nations for the discrepancies found between studies including 
interactions or covariation between the COMT polymorphism 
and lifestyle factors, demographic variables, or other genes or 
polymorphisms.

Most of the studies described above have utilized cross-
 sectional designs, that is, they assess the relationship between 
the COMT polymorphism and cognitive function at one point 
in time. This method is capable of assessing whether any asso-
ciation exists between the COMT polymorphism and cognition 
but cannot determine if the polymorphism accounts for within-
subject change in cognitive function across the lifespan. In order 
to assess whether the polymorphism relates to the trajectory 
of cognitive decline in old age, longitudinal investigations are 
needed. Two longitudinal studies have examined the effects of 
the COMT polymorphism on the trajectory of cognitive decline 
in older adults. The fi rst study reported that Met homozygotes 
between 50 and 60 years old experienced a more rapid decline in 
episodic memory performance over a 5-year period than Val car-
riers of the same age (de Frias et al., 2004). However, the COMT 
polymorphism did not moderate changes in episodic memory in 
either middle-aged adults or adults between 65 and 80 years of 
age. The main conclusion was that change in episodic memory 
over a 5-year period is largely independent of the COMT poly-
morphism except in younger-old adults, that is people between 
50 and 60 years of age. A second longitudinal study, with a 
 follow-up period of 4 years, reported that there was no interac-
tion between the COMT polymorphism and time on cognitive 
function in people between 60 and 64 years of age. However, 
there was a signifi cant effect of the COMT polymorphism after 
controlling for general cognitive function at age 11, suggesting 
that there was a change in the effect that the polymorphism had 
on cognitive function over the lifespan (Starr et al., 2007). These 
results suggest that if the effect of the COMT polymorphism on 
cognitive performance changes as a function of age, the changes 
occur before the age of 60.

Although the dopaminergic system has been proposed to 
underlie some of the age-related cognitive defi cits in prefron-
tal function (Bäckman et al., 2006), it is likely that changes in 
the concentration or effi cacy for an array of molecules and 
receptors infl uences cognitive function in old age. For example, 
brain-derived neurotrophic factor (BDNF) is another molecule 
involved in cognition that may be related to cognitive impair-
ment and dementia. For example, the mature form of the BDNF 
(mBDNF) molecule enhances learning and memory and long-
term potentiation (Pang et al., 2004), induces synaptic plasticity 
(Lu, 2003), and promotes neurogenesis (Pencea et al., 2001) and 
there is evidence that age-related cognitive impairments might 
be related to a decrease in the production or secretion of BDNF 
(Hayashi et al., 2001; Pang and Lu, 2004).

A functional polymorphism in the gene for BDNF produces 
a single amino acid substitution of Val to Met at codon 66 in the 
pro-domain, with the Met allele selectively impairing the regu-
lated secretion and intracellular traffi cking of BDNF in primary 
cortical neurons and neurosecretory cells (Chen et al., 2004; Egan 
et al., 2003). Previous studies have found that  people with the Met 
allele have impaired episodic memory, working memory, and 
hippocampal function (Egan et al., 2003; Hariri et al., 2003; Ho 
et al., 2006) and lower hippocampal  levels of N-acetylaspartate, 
a putative measure of neuronal integrity (Egan et al., 2003). In 
addition, Met carriers have less gray matter volume throughout 
the prefrontal and middle temporal lobes compared to Val carri-
ers (Ho et al., 2006, 2007; Pezawas et al., 2004).

Only a few studies have examined the relationship between 
the BDNF polymorphism and age-related cognitive impairment. 
Inconsistent with the majority of studies in young adults and 
patients with depression, Met homozygotes at 64 and 79 years 
of age outperformed the Val homozygotes and heterozygotes 
(Harris et al., 2006) after controlling for sex and cognitive per-
formance at age 11. This fi nding suggests that the infl uence 
that BDNF has on cognitive function may change across the 
lifespan and that the Met allele may be neuroprotective during 
later stages of life. Consistent with this fi nding, there is some 
evidence that the Val allele may increase the risk for Alzheimer’s 
disease (Matsushita et al., 2005; Ventriglia et al., 2002), but some 
recent studies have failed to fi nd such a relationship (Akatsu 
et al., 2006; He et al., 2007). Others however have reported the 
opposite fi nding, that is older adults carrying the Met allele per-
form worse across a variety of cognitive domains compared with 
the Val homozygotes (Miyajima et al., 2008) and have a higher 
risk for developing late-life depression (Taylor et al., 2007) and 
white-matter hyperintensities (Taylor et al., 2008). However, 
similar to the research on COMT, the studies mentioned above 
on BDNF have been cross-sectional in nature and are therefore 
limited in their capability for drawing conclusions concerning 
the relationship between within-subject changes in cognitive 
function and the BDNF polymorphism. A longitudinal study 
would help resolve these issues.

The current study assessed whether cognitive decline over a 
10-year span in a group of older adults was moderated by the 
COMT and/or BDNF polymorphism. Our within-subject design 
provided us with more statistical power than previously con-
ducted cross-sectional studies. To assess whether individual dif-
ferences in cognitive decline varied as a function of the BDNF or 
COMT polymorphism we utilized a well-studied task-switching 
paradigm that requires participants to rapidly switch between 
one simple cognitive task to a different cognitive task (Rogers 
and Monsell, 1995). This paradigm was chosen because of its 
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established capability to tap prefrontal and executive resources 
(Braver et al., 2003; Kimberg et al., 2000) and to demonstrate 
age-related defi cits (Kramer et al., 1999a; Kray and Lindenberger, 
2000). Therefore, this paradigm allowed us to test the prediction 
that (a) the COMT and BDNF polymorphisms affect perform-
ance on tasks that depend on prefrontal function, and (b) age-
related executive defi cits vary as a function of the BDNF or 
COMT polymorphism. Furthermore, our 10-year longitudinal 
design doubles the length of previous longitudinal studies to 
date. A long span between testing periods increases the likelihood 
of fi nding changes in cognitive function across time, which then 
provides us with the variation necessary to assess whether the 
COMT and/or BDNF polymorphisms moderates the decline in 
performance. Based on the extant literature, we predicted that 
the COMT polymorphism would explain little of the changes in 
cognitive performance over the 10-year span given that the age 
of our sample at the fi rst time point was on average above the 
age in which interactions across the lifespan have been observed 
in prior investigations (de Frias et al., 2004). On the other hand, 
there have not been any longitudinal studies examining whether 
the BDNF polymorphism infl uences cognitive function across 
the adult lifespan. Some have argued that at younger ages, the 
Val/Val allelic combination provides some neuronal and cogni-
tive benefi ts, but with advancing age the Met allele, instead of 
being detrimental to cognitive and brain function and morphol-
ogy, actually carries some protection against the development 
of dementia and cognitive impairment (Harris et al., 2006). We 
explored these hypotheses in the current study.

MATERIALS AND METHODS
PARTICIPANTS
Fifty-three healthy older adults (14 male, mean age of 75.5 ± 5.3, 
range: 67–86) who had participated in a previous study ∼10 years 

ago (Kramer et al., 1999b) were recruited to participate in this 
study. Forty-three percent of the original sample of 124 par-
ticipants agreed to return. We assessed whether the participants 
who agreed to return for the follow-up session were different 
from those who declined the invitation to return for the fol-
low-up session in terms of male to female ratio or age. The male 
to female ratio was similar between those that agreed to return 
(m:f = 0.35) versus those that declined the invitation to return 
(m:f = 0.38), with slightly more men declining the invitation to 
return for the follow-up. Furthermore, the average age of the par-
ticipants was nearly equivalent for those that returned [average 
age = 65.33 (10 years ago)] compared with those that declined 
to return for the follow-up session [average age = 65.50 (10 years 
ago)]. Independent samples t-tests demonstrated that these dif-
ferences were not signifi cant (all p > 0.05). The University of 
Illinois Institutional Review Board approved the study, and all 
volunteers signed an informed consent.

TASK-SWITCHING
The task-switching paradigm examines subjects’ ability to rap-
idly disengage from the performance of one task and switch to 
another. Subjects performed two different tasks that alternated 
after every two trials – two trials of one task followed by two 
 trials of the other task and so on (see Figure 1). In one task sub-
jects performed an odd/even numerical judgment (i.e., is a single 
digit number odd or even). In the other task subjects performed 
a vowel/consonant judgment. When one type of trial (e.g., digit 
judgment) was followed by a trial of the same type (e.g., digit 
judgment) it was labeled a Repeat trial. However, when parti-
cipants needed to respond to a trial that was of a different task 
type than the previous trial, it was labeled as a Switch. Response 
times (RTs) to switch trials are higher than RTs to repeat trials 
and the accuracy rates are lower.

Figure 1 | Description of the task-switching paradigm. Letter and digit stimuli were presented simultaneously in a 2 × 2 grid and participants had to switch 
between responding to the letters versus responding to the numbers on every 3rd trial (adapted from Rogers and Monsell, 1995).
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The task stimuli, a letter and a single digit number, were 
presented together in a 2 × 2 matrix centered in the middle of 
the computer screen. When the letter and digit were located in 
one half of the matrix subjects performed the odd/even judg-
ment task, when the letter and digit were in the other half of 
the matrix subjects performed the consonant/vowel judgment 
task (e.g., perform odd/even judgment for upper two quadrants 
of the matrix and consonant/vowel judgment for lower two 
quadrants). The letter and digit were presented in the matrix 
in a continuous clockwise direction. Thus, the occurrence of a 
task switch was predictable. The location (i.e., left, right, upper, 
lower) of each task was counterbalanced across subjects (task 
adapted from Rogers and Monsell, 1995).

Each stimulus pair was presented until the subject responded 
and then the next stimulus pair was presented 400 ms following 
response. Subjects responded with one of two keys on the com-
puter keyboard for both of the tasks (e.g., one key was used to 
respond to an odd number or a consonant). The key representa-
tions were counterbalanced across subjects.

Subjects fi rst performed two 30 trial single task blocks fol-
lowed by one 30 trial task-switching block as practice. The prac-
tice blocks were then followed by four 60 trial task-switching 
blocks. The main dependent variables included mean RT and 
accuracy to both Repeat and Switch conditions.

MMSE AND IQ
To test for general cognitive function and possible dementia we 
employed a modifi ed and revised version of the Mini-Mental 
Status Examination (MMSE) that has a high score of 57 and a 
cut-off for possible dementia at 51. To assess the relationship 
between the BDNF and COMT polymorphisms and general 
intelligence (IQ) we employed the Kaufman Brief Intelligence 
Test. Both of these tests were conducted at the Time 2 session 
and were therefore not subjected to a repeated-measures analy-
sis to assess for change in either score.

GENOTYPING
Buccal cells were collected from all participants using 
MasterAmp™ Buccal Swab Brushes (Epicentre Biotechnologies). 
Genomic deoxyribonucleic acid (DNA) was extracted from the 
buccal swabs using MasterAmp™ DNA Extraction Solution 
(Epicentre Biotechnologies).

COMT
Primers COMT-F 5′-TCA CCA TCG AGA TCA ACC CC-3′ and 
COMT-R 5′-GAA CGT GGT GTG AAC ACC TG-3′ were used 
to amplify the 176 bp polymorphic COMT fragment (Barr et al., 
1999). The amplifi cation was done in 50 μl reactions containing 
∼125 ng genomic DNA, 200 μM deoxynucleoside triphosphates 
(dNTPs), 10 pmol/l of each primer, 10× HotStarTaq® buffer 
(QIAGEN), and 1 U HotStarTaq® DNA polymerase (QIAGEN). 
Polymerase chain reaction (PCR) conditions consisted of an ini-
tial denaturation step at 95°C for 15 min followed by 30 cycles 
on a thermocycler (denaturation at 94°C for 30 s, annealing 
at 52°C for 30 s, and extension at 72°C for 30 s) and fi nished 
with a fi nal extension at 72°C for 10 min. Eight microliters of 
the PCR product were digested with 10 U NlaIII (New England 
Biolabs) (Barr et al., 1999) at 37°C for 1 h and analyzed by gel 
electrophoresis on a 3.5% MetaPhor® agarose gel (Cambrex 
Bioscience, Inc./Lonza). The gel was immersed in an ethidium 
bromide solution for 15 min and visualized under ultraviolet 
light. Digestion resulted in bands of 82, 54, and 41 bp for the 

Val158 allele. The 82 bp fragment was cut into 64 and 18 bp bands 
for the Met158 allele.

BDNF
Primers BDNF-F 5′-GAG GCT TGA CAT CAT TGG CT-3′ and 
BDNF-R 5′-CGT GTA CAA GTC TGC GTC CT-3′ were used to 
amplify the 113 bp polymorphic BDNF fragment (Neves-Pereira 
et al., 2002). The amplifi cation was done in 25 μl reactions con-
taining ∼125 ng genomic DNA, 200 μM dNTPs, 10 pmol of each 
primer, 1.5 mM MgCl

2
, 1 U Taq DNA polymerase (Invitrogen) 

(adapted from Neves-Pereira et al., 2002). PCR conditions con-
sisted of an initial denaturation step at 95°C for 5 min followed 
by 30 cycles on a thermocycler (denaturation at 94°C for 30 s, 
annealing at 60°C for 30 s, and extension at 72°C for 30 s) and 
fi nished with a fi nal extension at 72°C for 5 min (Neves-Pereira 
et al., 2002). 6.5 μl of the PCR product were digested with 3 U 
Eco721 (Fermentas) at 37°C overnight and analyzed by gel electro-
phoresis on a 4% 3:1 NuSieve® agarose gel (Cambrex Biosciences, 
Inc./Lonza) (adapted from Neves-Pereira et al., 2002). The gel 
was immersed in an ethidium bromide solution for 10 min and 
visualized under ultraviolet light. Digestion resulted in an uncut 
band of 113 bp for the Met66 allele. The 113 bp fragment is cut 
into 78 and 35 bp bands for the Val66 allele.

STATISTICAL ANALYSIS
We analyzed the task-switching data (reaction time and accuracy) 
with repeated-measures analyses of variance with Time (1997, 
2007) and Condition (repeat, switch) as within-subject factors 
and group (COMT or BDNF genotype) as a between-subjects 
factor. Effect sizes were calculated and reported here as partial eta-
squared (η2

p
). IQ scores were used as a covariate for COMT (see 

‘Results’ section). One-way ANOVAs and independent samples 
t-tests were also employed to assess differences in demographic 
characteristics, IQ, MMSE scores, or task- switching performance 
as a function of the BDNF and COMT polymorphism at separate 
time points. All data was analyzed using SPSS 16.02 for Mac.

RESULTS
COMT
Demographics
One-way ANOVAs were used to test whether the COMT SNP 
was related to age or IQ (see Table 1). We found no effect of age 
[F(2,52) = 1.87; n.s; η2

p
 = 0.07], but we did fi nd a trend for an 

effect of IQ obtained from the Kaufman Brief Intelligence Scale 
[F(2,52) = 2.61; p < 0.08; η2

p
 = 0.09]. Post hoc tests revealed that 

those with the Val/Val form of the COMT gene had lower IQ 
scores than the heterozygotes (p < 0.04) and marginally lower 
scores than the Met homozygotes (p < 0.06). Met homozy-
gotes and Val/Met heterozygotes did not differ in IQ scores 
(p < 0.92).

MMSE
We employed a one-way ANOVA to examine whether the 
COMT SNP was related to performance on the MMSE task – a 
general and widely used measure to test for possible dementia 
and impaired cognitive function (see Table 1). There was no 
relationship between the COMT SNP and performance on the 
MMSE [F(2,51) = 1.84; n.s.; η2

p
 = 0.07].

Task-switching
Repeated-measures ANOVAs were run with COMT genotype 
(Val/Val; Val/Met; Met/Met) as a between-subjects factor and 
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Time (1997 – Time 1; 2007 – Time 2) and Condition (Repeat; 
Switch) as within-subjects factors on RTs and accuracy rates 
separately. We included IQ score as a covariate given its mar-
ginal relationship to the COMT polymorphism (see above). 
Therefore, all results described here can be considered to be 
 statistically independent from IQ.

We found that main effects of Time [F(1,42) = 1.75; n.s.] and 
Genotype [F(2,42) = 1.23; n.s.] were not signifi cant (Table 2). 
Furthermore, consistent with our hypotheses and results from 
previous studies (de Frias et al., 2004; Harris et al., 2005) we 
failed to fi nd a Time × Genotype interaction [F(2,42) = 0.34; 
n.s.; η2

p
 = 0.02] or a Time × Genotype × Condition interaction 

on the RTs from the task-switching paradigm [F(2,42) = 0.30; 
n.s.; η2

p
 = 0.01]  indicating that RTs (for both the repeat and 

switch conditions) did not change over the 10-year period as 
a function of the COMT polymorphism. Converting the RTs 
into a switch cost (switch RT – repeat RT) at each time point 
confi rmed this effect. We also conducted the same repeated-
measures analysis on the accuracy rates and found neither a 
signifi cant Time × Genotype interaction [F(2,42) = 0.86; n.s.; 
η2

p
 = 0.04] nor a Time × Genotype × Condition interaction 

[F(2,42) = 0.70; n.s.; η2
p
 = 0.03].

To assess performance on the task-switching paradigm at 
individual time points as a function of the COMT polymorphism 
we conducted a series of univariate ANOVAs with Genotype as a 
fi xed factor and RTs and accuracy rates for each condition as the 
dependent variable. There was no effect of Genotype on the RTs for 
either the switch condition or the repeat condition at either time 
point (all p > 0.05; all η2

p
 < 0.07). However, for the accuracy meas-

ures, we found that at Time 1 there was a  marginally  signifi cant 

effect of Genotype for the switch  condition [F(2,51) = 2.85; 
p < 0.06; η2

p
 = 0.11]. Post hoc comparisons revealed that the Met 

homozygotes had signifi cantly higher accuracy rates compared 
with the heterozygotes (p < 0.02), but were not reliably differ-
ent from the Val homozygotes (p < 0.63). No other comparisons 
reached signifi cance (all p > 0.05).

There were six participants who could not complete the 
task-switching paradigm at Time 2 because the task was too 
challenging, however these participants had been able to suc-
cessfully complete the task 10 years prior. Interestingly, fi ve out 
of the six participants had the Val/Val form of the COMT poly-
morphism and the other participant was heterozygous. None 
of the participants who failed to complete the task at Time 2 
were homozygous for the Met/Met form. We tested whether 
this distribution was signifi cantly different from chance using 
a χ2 non-parametric test with the respective sample sizes for 
each polymorphism as the null hypothesis (Val/Val = 16, Val/
Met = 19, Met/Met = 18). We found a non-signifi cant χ2 (1.05; 
p < 0.59) for the given  frequencies, indicating that although 
there were more Val homozygotes who failed to complete the 
task, the number of participants who fell into this category was 
not signifi cantly greater than chance. However, studies with 
larger samples could more validly test this trend.

BDNF
Demographics
We conducted independent samples t-tests to assess whether 
any demographics variables were related to the BDNF polymor-
phism (see Table 1). Neither age [t(1,51) = 0.78; n.s.] nor IQ 
[t(1,51) = 1.48; n.s.] was related to the BDNF polymorphism.

Table 1 | Demographic information, IQ, and MMSE scores are stratifi ed by both the COMT and BDNF polymorphism.

 N Sex Age (Time 1) IQ MMSE

COMT
 Val/Val 16 11F/5M 65.06 (5.60) 109.25 (14.09) 52.12 (5.29)
 Val/Met 19 16F/3M 68.16 (5.22) 116.16 (8.25) 53.42 (2.61)
 Met/Met 18 12F/6M 65.56 (4.68) 115.83 (6.28) 54.59 (2.78)
BDNF
 Val/Val 29 23F/6M 65.83 (5.47) 112.10 (10.45) 52.75 (4.44)
 Val/Met 24 16F/8M 66.96 (5.02) 116.21 (9.56) 54.17 (2.61)
 Met/Met  0 – – – –

Standard deviations are represented in parentheses. There was a trend for IQ to vary as a function of COMT genotype and the Val/Val form of the polymorphism reliably differed from 
the Val/Met form.

Table 2 | Mean response times and accuracy rates for repeat and switch conditions for both BDNF and COMT polymorphisms.

 Time 1 Time 2

 Repeat Switch Repeat Switch

 RT ACC RT ACC RT ACC RT ACC

COMT
 Val/Val 1607.81 (585.45) 93.4 (6.9) 2402.61 (735.38) 95.6 (7.2) 1761.99 (831.38) 87.5 (18.5) 2511.97 (1330.52) 82.0 (18.9)
 Val/Met 1384.06 (488.63) 96.3 (6.9) 2120.85 (733.84) 94.3 (5.3) 1474.34 (344.05) 93.8 (10.1) 2311.68 (556.09) 89.2 (13.2)
 Met/Met 1271.42 (342.84) 99.5 (.66) 1912.09 (671.48) 98.0 (1.5) 1623.44 (583.15) 93.7 (11.5) 2221.41 (917.41) 90.6 (12.4)
BDNF
 Val/Val 1262.56 (287.31) 97.7 (4.9) 1902.27 (552.69) 95.9 (5.5) 1680.62 (640.42) 95.1 (4.7) 2471.60 (981.44) 89.2 (9.8)
 Val/Met 1536.32 (588.06) 97.4 (6.2) 2329.38 (822.82) 96.1 (4.5) 1515.12 (507.37) 89.1 (17.8) 2163.52 (825.08) 86.7 (18.5)

Standard deviations are represented in parentheses.
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MMSE
In an independent samples t-test we found that there was no 
relationship between the BDNF polymorphism and perform-
ance on the MMSE [t(1,51) = 1.42; n.s. – see Table 1].

Task-switching
Similar to the COMT polymorphism described above, we 
assessed the infl uence of the BDNF polymorphism on  cognitive 
decline in the task-switching paradigm by employing a repeated-
 measures ANOVA with Genotype (Val/Val; Val/Met) as a between-
subjects factor and Time (1997 – Time 1; 2007 – Time 2) and 
Condition (Repeat; Switch) as within-subjects factors.

For BDNF, we found that main effects of Time [F(1,44) = 
2.13; n.s.] and Genotype [F(1,44) = 0.09; n.s.] were not sig-
nifi cant (Table 2). However, consistent with the view that the 

Met allele might  provide some protection in old age or that 
the Val  homozygotes might experience greater decline with 
advancing age, we found a signifi cant Time × Genotype inter-
action [F(1,44) = 7.54; p < 0.009; η2

p
 = 0.15] on RTs in the task-

 switching paradigm such that the Val homozygotes experienced 
a signifi cantly greater decline in performance over the 10-year 
period compared to the Met carriers (see Figure 2). There 
was also a trend for a Time × Genotype × Condition interac-
tion [F(1,44) = 3.15; p < 0.08; η2

p
 = 0.07] such that Val carri-

ers experienced a greater decline in performance for the switch 
condition compared with the repeat condition over the 10-year 
span compared to the Met carriers. This trend was confi rmed by 
examining switch cost (switch RT – repeat RT). For the accu-
racy measures, neither the Time × Genotype interaction or the 
Time × Genotype × Condition interaction reached signifi cance 

Figure 2 | Results from the task-switching paradigm as a function of the BDNF polymorphism and Time for each condition. Only the Val/Val homozygotes 
experienced a decline in performance for both the repeat and switch conditions, whereas the Val/Met carriers showed no decline over the 10-year span.
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 indicating that unlike the RTs, the accuracy rates were not 
 infl uenced by the BDNF polymorphism. However, we found a 
signifi cant Genotype × Condition interaction on the accuracy 
rates [F(1,44) = 4.94; p < 0.03; η2

p
 = 0.10] with the Val homozy-

gotes performing better than the heterozygotes on the repeat 
condition compared to the switch condition.

We conducted a series of independent t-tests at each time 
point and for each condition separately to test whether the two 
groups differed at either time point. There were no signifi cant 
differences between the two BDNF polymorphisms at either 
time point for RTs or accuracy measures (all p > 0.05).

Like the COMT polymorphism results described above we 
examined whether the participants who could not complete 
the task-switching paradigm at Time 2 had a particular form of 
the BDNF polymorphism. The results from the χ2 test was not 
signifi cant (0.04; p < 0.83) indicating that the BDNF polymor-
phism did not explain the failure to complete the task-switching 
paradigm at Time 2.

DISCUSSION
In this study we examined whether the BDNF or COMT poly-
morphisms could explain variation in the trajectory of cogni-
tive decline over a 10-year span in older adults. Our participants 
were older than the participants in a previous 5-year longitudi-
nal study examining the infl uence of the COMT polymorphism 
on cognitive performance in older adults (de Frias et al., 2004). 
Furthermore, this is the fi rst known longitudinal study of the 
effects of the BDNF polymorphism on age-related cognitive 
decline.

Consistent with prior studies, we found no evidence that the 
COMT polymorphism contributes to age-related declines in 
executive function as assessed by the task-switching paradigm 
(O’Hara et al., 2006; Starr et al., 2007). In a longitudinal study, 
an interaction with age was only reported for people between 
50 and 60 years of age (de Frias et al., 2004). The participants 
in our sample were 65 years of age on average in 1997 and 
∼75 years of age as of 2007, and therefore may have been out-
side the age range to detect an interaction if such an interaction 
is specifi c to the 5th decade of life (de Frias et al., 2004). Our 
results are more consistent with a 4-year longitudinal study of 
older adults that did not fi nd an interaction between the COMT 
polymorphism and age on cognitive function (Starr et al., 2007). 
In short, our results suggest that, after the 6th decade of life, the 
COMT polymorphism does not explain cognitive decline over a 
10-year period.

On the other hand, the BDNF polymorphism reliably 
explained variation in age-related decline in performance for 
both the repeat and switch conditions of the task-switching 
paradigm (Figure 2). In a cross-sectional study, Harris et al. 
(2006) reported that older adult Met homozygotes had better 
reasoning skills than Val homozygotes or heterozygotes. Partially 
consistent with this fi nding, we demonstrate that the Met carri-
ers have spared cognitive function over a 10-year period while 
the Val homozygotes showed a signifi cant decline in perform-
ance. These results, however, are generally inconsistent with the 
majority of the BDNF-gene literature, which typically reports 
poorer performance and functioning for Met carriers in both 
young and old adults (Egan et al., 2003; Taylor et al., 2007). This 
discrepancy between our fi nding and cross-sectional studies 
might be explained by the age of the sample studied. Based on 
our longitudinal results it is apparent that at an average age of 

65 the Val homozygotes tend to perform better than Met carri-
ers, however there is a crossover such that by the average age of 
75 Val homozygotes tend to perform worse than Met carriers. 
Cross-sectional studies that assess older adults around 65 years 
of age might fi nd cognitive enhancement associated with the 
Val/Val genotype, whereas studies examining a sample with an 
average age of 75 might produce the opposite pattern.

There are a number of possible reasons that could explain 
the crossover effect that we observed. First, we have no infor-
mation regarding the trajectory of cognitive decline earlier in 
life. Therefore, it is possible that Met carriers could have shown 
a decline in performance at an earlier age and then plateaued, 
while the Val homozygotes had spared cognitive function until 
the 6th to 7th decade of life.

Second, a number of factors that infl uence BDNF signaling 
could be altered during old age such that greater secretion of 
BDNF would be detrimental for cognitive and neural activity. 
For example, the precursor form of the BDNF (pro-BDNF) 
molecule and the mBDNF have distinct receptors and signal-
ing cascades resulting in opposing effects on the nervous system 
(Lu et al., 2005; Pang et al., 2004). Pro-BDNF enhances the capa-
bility for eliciting long-term depression, synaptic  retraction, and 
cell death; whereas mBDNF increases the capability for eliciting 
long-term potentiation, synaptic formation, and cell survival 
(see Lu et al., 2005). In neurons, pro-BDNF is usually converted 
to the mature form in the extracellular space by proteases includ-
ing tissue plasminogen activator (tPA). Cerebral levels of tPA 
decline with age and this decline is exacerbated in rodent models 
of Alzheimer disease (Cacquevel, et al., 2007). Therefore, greater 
secretion of BDNF may not enhance cognitive and neuronal 
function unless the cleavage molecules are present to convert it 
from its precursor form to its mature form. In fact, greater secre-
tion of pro-BDNF into the synaptic space without an adequate 
concentration of cleavage molecules (e.g., tPA) to convert it to its 
mature form might result in cognitive impairment and decline 
instead of cognitive enhancement (Lu et al., 2005; Pang et al., 
2004). The Val/Val form of the BDNF polymorphism increases 
the regulated secretion and traffi cking of the pro-BDNF mol-
ecule (Egan et al., 2003), and we fi nd that this polymorphism is 
associated with a more rapid decline in cognitive function than 
their genetic counterparts that have reduced secretion of pro-
BDNF. Our result is clearly in line with the hypothesis that the 
enhancing role of BDNF on cognition is dependent on a number 
of molecular factors including those that infl uence the presence 
or concentration of the cleavage molecules and that these sup-
porting molecules might also be affected by aging. In short, a 
complex array of molecules are involved in BDNF signaling, and 
increased cellular secretion due to a genetic polymorphism may 
not always be associated with better function.

Third, a number of environmental factors infl uence BDNF 
translation and concentration in rodents including environ-
mental enrichment (van Praag et al., 2000), physical exercise 
(Cotman et al., 2007), caloric restriction (Mattson et al., 2003), 
and estrogen administration (Scharfman and Maclusky, 2005). 
Interactions between the BDNF polymorphism and any of these 
environmental factors could be moderating the age-interaction 
observed in this study. In short, there are a multitude of reasons 
for why older adult Met carriers would demonstrate spared cog-
nitive function while Val homozygotes undergo a greater decline 
in cognitive function with advanced age.

It is also important to note that we did not fi nd that the 
BDNF polymorphism disproportionately affected one of the 
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task-switching conditions more than the other. That is, the switch 
cost (switch RT – repeat RT) was only marginally related to the 
BDNF polymorphism (p = 0.08). This result suggests that the 
BDNF polymorphism, and its role in infl uencing the trajectory of 
cognitive decline in old age, may primarily affect decline in speed 
of processing rather than a domain specifi c decline in executive 
function. More research employing a wider variety of tasks is war-
ranted to examine this hypothesis.

It is also interesting to consider our results within a cognitive 
reserve framework in which individuals with more education 
often demonstrate spared cognitive function despite having dis-
ease-related pathology (Fratiglioni and Wang, 2007). We found 
that BDNF heterozygous individuals that performed more 
poorly 10 years earlier showed more stability and reserve over 
the 10-year span. In our sample, IQ scores, which are often used 
as a measure of cognitive reserve, were unrelated to the BDNF 
genotype, suggesting that both homozygotes and heterozygotes 
had equivalent levels of ‘reserve’ as assessed by this measure. It 
might be possible that the BDNF genotype acts as a modera-
tor between cognitive reserve measures such as IQ or education 
and cognitive function. This hypothesis would predict that Val/
Val individuals with higher levels of education or IQ would not 
show the same rate of decline in performance as Val/Val indi-
viduals with lower education or IQ scores. A study with a larger 
sample size would be more capable of investigating this poten-
tial moderating relationship.

Finally, there are a number of limitations of the current study. 
First, although we have gained statistical power compared to 
cross-sectional studies by conducting within-subjects compari-
sons, we have lost statistical power by only being able to recruit 
53 out of the 124 original participants. Therefore, our small 
sample size could have precluded our ability to fi nd a signifi cant 
interaction with the COMT polymorphism. However, despite 
this small sample size, we were able to detect a signifi cant effect 
of the BDNF polymorphism on task-switching performance and 
our effect sizes were similar to those reported by prior studies 
(de Frias et al., 2004; Harris et al., 2005, 2006). Second, although 
we report that the individuals who returned for the follow-up 
session did not differ in age or sex from those who decline to 
return, it is possible that the 53 people who agreed to participate 
in this study were healthier, higher functioning, and may not be 
a representative sample of the BDNF or COMT polymorphisms 
in this age range. This potential bias could have affected the pat-
tern of results that we describe here. A longer longitudinal study 
with a larger sample size would be able to reduce this possible 
confound.

In sum, we report that the BDNF polymorphism, and not the 
COMT polymorphism, infl uences the rate of cognitive decline 
over a 10-year span in older adults. Both conditions of the task-
switching paradigm were affected by the BDNF polymorphism 
while general cognitive function as assessed by the MMSE and 
IQ tests was not related to the BDNF polymorphism. The Met 
carriers of the BDNF gene demonstrated spared function over 
the 10-year span while the Val homozygotes experienced a sig-
nifi cant decline in performance. This result is inconsistent with 
a growing literature on the impact of the BDNF polymorphism 
on depression, cognitive function, and neural activity in young 
adults, but is partially consistent with at least one study in older 
adults (Harris et al., 2006). More longitudinal studies with larger 
sample sizes that employ a wider range of cognitive tests and a 
more comprehensive array of factors that could explain some 
individual differences (e.g., physical fi tness measurements) and 

possibly covary or interact with the BDNF and COMT polymor-
phisms would greatly enhance the interpretation of the results 
described in this study.

CONFLICT OF INTEREST STATEMENT
The authors declare that the research was conducted in the 
absence of any commercial or fi nancial relationships that could 
be construed as a potential confl ict of interest.

ACKNOWLEDGEMENTS
This work was supported in part by a Seed Grant awarded to 
Kirk I. Erickson and Jennifer S. Kim from the Center for Healthy 
Minds, funded through the National Institute on Aging Grant 
(P30-AG023101) of the National Institutes of Health and grants 
from the National Institute on Aging (RO1 AG25667 and RO1 
AG25302). We would like to thank Brooke Bachelor, Zuha 
Warraich, Chris Grant, and Edward Malkowski for their help in 
genotyping and participant recruitment and testing.

REFERENCES
Akatsu, H., Yamagata, H. D., Kawamata, J., Kamino, K., Takeda, M., Yamamoto, T., 

et al. (2006). Variations in the BDNF gene in autopsy-confi rmed Alzheimer’s 
disease and dementia with Lewy bodies in Japan. Dement. Geriatr. Cogn. 
Disord. 22, 216–22.

Akil, M., Kolachana, B. S., Rothmond, D. A., Hyde, T. M., Weinberger, D. R., 
and Kleinman, J. E. (2003). Catechol-O-methyltransferase genotype and 
dopamine regulation in the human brain. J. Neurosci. 23, 2008–2013.

Bäckman, L., Nyberg, L., Lindenberger, U., Li, S. C., and Farde, L. (2006). The 
correlative triad among aging, dopamine, and cognition: current status and 
future prospects. Neurosci. Biobehav. Rev. 30, 791–807.

Barnett, J. H., Scoriels, L., and Munafo, M. R. (2008). Meta-analysis of the cog-
nitive effects of the catechol-O-methyltransferase gene Val158/108Met poly-
morphism. Biol. Psychiatry 64:137–144. [Epub, PMID: 18339359].

Barr, C. L., Wigg, K., Malone, M., Schachar, R., Tannock, R., Roberts, W., et al. 
(1999). Linkage study of catechol-O-methyltransferase and attention-defi cit 
hyperactivity disorder. Am. J. Med. Genet. 88, 710–713.

Bertolino, A., Blasi, G., Latorre, V., Rubino, V., Rampino, A., Sinibaldi, L., et al. 
(2006). Additive effects of genetic variation in dopamine regulating genes 
on working memory cortical activity in human brain. J. Neurosci. 26, 
3918–3922.

Braver, T. S., Reynolds, J. R., and Donaldson, D. I. (2003). Neural mechanisms of 
transient and sustained cognitive control during task switching. Neuron 39, 
713–726.

Bruder, G. E., Keilp, J. G., Xu, H., Shikgman, M., Schori, E., Gorman, J. M., et al. 
(2005). Catechol-O-methyltransferase (COMT) genoytpes and working 
memory: associations with differing cognitive operations. Biol. Psychiatry 58, 
901–907.

Cacquevel, M., Launay, S., Castel, H., Benchenane, K., Chéenne, S., Buée, L., 
et al. (2007). Ageing and amyloid-beta peptide deposition contribute to an 
impaired brain tissue plasminogen activator activity by different mecha-
nisms. Neurobiol. Dis. 27, 164–173.

Caldu, X., Vendrell, P., Bartrés-Faz, D., Clemente, I., Bargalló, N., Jurado, M. A., 
et al. (2007). Impact of the COMT Val108/158 Met and DAT genotypes on 
prefrontal function in healthy subjects. Neuroimage 37, 1437–1444.

Chen, J., Lipska, B. K., Halim, N., Ma, Q. D., Matsumoto, M., Melhem, S., et al. 
(2004). Functional analysis of genetic variation in catechol-O-methyltransferase 
(COMT): effects on mRNA, protein, and enzyme activity in postmortem human 
brain. Am. J. Hum. Genet. 75, 807–821.

Chen, Z. Y., Patel, P. D., Sant, G., Meng, C. X., Teng, K. K., Hempstead, B. L., et al. 
(2004). Variant brain-derived neurotrophic factor (BDNF) (Met66) alters the 
intracellular traffi cking and activity-dependent secretion of wild-type BDNF 
in neurosecretory cells and cortical neurons. J. Neurosci. 24, 4401–4411.

Cotman, C. W., Berchtold, N. C., and Christie, L. A. (2007). Exercise builds 
brain health: key roles of growth factor cascades and infl ammation. Trends 
Neurosci. 30, 464–472.

de Frias, C. M., Annerbrink, K., Westberg, L., Eriksson, E., Adolfsson, R., and 
Nilsson, L. G. (2004). COMT gene polymorphism is associated with declara-
tive memory in adulthood and old age. Behav. Genet. 34, 533–539.

Egan, M. F., Goldberg, T. E., Kolachana, B. S., Callicott, J. H., Mazzanti, C. M., 
Straub, R. E., et al. (2001). Effect of COMT Val108/158Met genotype on fron-
tal lobe function and risk for schizophrenia. Proc. Natl. Acad. Sci. USA 98, 
6917–6922.



www.frontiersin.org

9

BDNF and COMT on cognition

Egan, M. F., Kojima, M., Callicott, J. H., Goldberg, T. E., Kolachana, B. S., 
Bertolino, A., et al. (2003). The BDNF val66met polymorphism affects activity-
dependent secretion of BDNF and human memory and hippocampal function. 
Cell 112, 257–269.

Ettinger, U., Kumari, V., Collier, D. A., Powell, J., Luzi, S., Michel, T. M., et al. 
(2008). Catechol-O-methyltransferase (COMT) Val(158)Met genotype 
is associated with BOLD response as a function of task characteristic. 
Neuropsychopharmacology. [Epub ahead of print]. doi: 10.1038/sj.npp.1301658

Fratiglioni, L., and Wang, H. X. (2007). Brain reserve hypothesis in dementia. 
J. Alzheimers Dis. 12, 11–22.

Goldberg, T. E., Egan, M. F., Gscheidle, T., Coppola, R., Weickert, T., 
Kolachana, B. S., et al. (2003). Executive subprocesses in working memory: 
relationship to catechol-O-methyltransferase Val158Met genotype and schiz-
ophrenia. Arch. Gen. Psychiatry 60, 889–896.

Hariri, A. R., Goldberg, T. E., Mattay, V. S., Kolachana, B. S., Callicott, J. H., 
Egan, M. F., et al. (2003). Brain-derived neurotrophic factor val66met poly-
morphism affects human memory-related hippocampal activity and predicts 
memory performance. J. Neurosci. 23, 6690–6694.

Harris, S. E., Fox, H., Wright, A. F., Hayward, C., Starr, J. M., Whalley, L. J., et al. 
(2006). The brain-derived neurotrophic factor Val66Met polymorphism is 
associated with age-related change in reasoning skills. Mol. Psychiatry 11, 
505–513.

Harris, S. E., Wright, A. F., Hayward, C., Starr, J. M., Whalley, L. J., and Deary, I. J. 
(2005). The functional COMT polymorphism, Val 158 Met, is associated with 
logical memory and the personality trait intellect/imagination in a cohort of 
healthy 79 year olds. Neurosci. Lett. 385, 1–6.

Hayashi, M., Mistunaga, F., Ohira, K., and Shimizu, K. (2001). Changes in 
BDNF-immunoreactive structures in the hippocampal formation of the aged 
macaque monkey. Brain Res. 918, 191–196.

He, X. M., Zhang, Z. X., Zhang, J. W., Zhou, Y. T., Tang, M. N., Wu, C. B., et al. 
(2007). Lack of association between the BDNF gene Val66Met polymorphism 
and Alzheimer disease in a Chinese Han population. Neuropsychobiology 55, 
151–155.

Hedden, T., and Gabrieli, J. D. (2004). Insights into the ageing mind: a view from 
cognitive neuroscience. Nat. Rev. Neurosci. 5, 87–96.

Ho, B. C., Andreasen, N. C., Dawson, J. D., and Wassink, T. H. (2007). Association 
between brain-derived neurotrophic factor Val66Met gene polymorphism 
and progressive brain volume changes in schizophrenia. Am. J. Psychiatry 
164, 1890–1899.

Ho, B. C., Milev, P., O’Leary, D. S., Librant, A., Andreasen, N. C., and 
Wassink, T. H. (2006). Cognitive and magnetic resonance imaging brain 
morphometric correlates of brain-derived neurotrophic factor Val66Met 
gene polymorphism in patients with schizophrenia and healthy volunteers. 
Arch. Gen. Psychiatry 63, 731–740.

Ho, B. C., Wassink, T. H,. O’Leary, D. S., Sheffi eld, V. C., and Andreasen, N. C. 
(2005). Catechol-O-methyl transferase Val158Met gene polymorphism in 
schizophrenia: working memory, frontal lobe MRI morphology and frontal 
cerebral blood fl ow. Mol. Psychiatry 10, 287–298.

Joober, R., Gauthier, J., Lal, S., Bloom, D., Lalonde, P., Rouleau, G., et al. (2002). 
Catechol-O-methyltransferase Val-108/158-Met gene variants associated 
with performance on the Wisconsin Card Sorting Test. Arch. Gen. Psychiatry 
59, 662–663.

Kimberg, D. Y., Aguirre, G. K., and D’Esposito, M. (2000). Modulation of task-
related neural activity in task-switching: an fMRI study. Brain Res. Cogn. 
Brain Res. 10, 189–196.

Kramer, A. F., Hahn, S., and Gopher, D. (1999a). Task coordination and aging: 
explorations of executive control processes in the task-switching paradigm. 
Acta. Psychol. 101, 339–378.

Kramer, A. F., Hahn, S., Cohen, N. J., Banich, M. T., McAuley, E., Harrison, C. R., 
et al. (1999b). Ageing, fi tness and neurocognitive function. Nature 400, 
418–419.

Kray, J., and Lindenberger, U. (2000). Adult age differences in task switching. 
Psychol. Aging 15, 126–147.

Lachman, H. M., Papolos, D. F., Saito, T., Yu, Y. M., Szumlanski, C. L., and 
Weinshilboum, R. M. (1996). Human catechol-O-methyltransferase pharma-
cogenetics: description of a functional polymorphism and its potential appli-
cation to neuropsychiatric disorders. Pharmacogenetics 6, 243–250.

Liu, M. E., Hong, C. J., Liou, Y. J., Tsai, Y. L., Hsieh, C. H., and Tsai, S. J. (2008). 
Association study of a functional catechol-O-methyltransferase polymor-
phism and executive function in elderly males without dementia. Neurosci. 
Lett. 436, 193–195.

Lu, B. (2003). Pro-region of neurotrophins: role in synaptic modulation. Neuron 
39, 735–738.

Lu, B., Pang, P. T., and Woo, N. H. (2005). The yin and yang of neurotrophin 
action. Nat. Rev. Neurosci. 6, 603–614.

MacDonald, A. W. III, Carter, C. S., Flory, J. D., Ferrel, R. E., and Manuck, S. B. 
(2007). COMT val158Met and executive control: a test of the benefi t of spe-
cifi c defi cits to translational research. J. Abnorm. Psychol. 116, 306–312.

Malhotra, A. K., Kestler, L. J., Mazzanti, C., Bates, J. A., Goldberg, T., and 
Goldman, D. (2002). A functional polymorphism in the COMT gene and per-
formance on a test of prefrontal cognition. Am. J. Psychiatry 159, 652–654.

Matsushita, S., Arai, H., Matsui, T., Yuzuriha, T., Urakami, K., Masaki, T., et al. 
(2005). Brain-derived neurotrophic factor gene polymorphisms and 
Alzheimer’s disease. J. Neural Transm. 112, 703–711.

Mattay, V. S., Goldberg, T. E., Fera, F., Hariri, A. R., Tessitore, A., Egan, M. F., et al. 
(2003). Catechol-O-methyltransferase val158-met genotype and individual 
variation in the brain response to amphetamine. Proc. Natl. Acad. Sci. USA 
100, 6186–6191.

Mattson, M. P., Duan, W., and Gou, Z. (2003). Meal size and frequency affect 
 neuronal plasticity and vulnerability to disease: cellular and molecular mech-
anisms. J. Neurochem. 84, 417–431.

Miyajima, F., Ollier, W., Mayes, A., Jackson, A., Thacker, N., Rabbitt, P., et al. 
(2008). Brain-derived neurotrophic factor polymorphism Val66Met infl u-
ences cognitive abilities in the elderly. Genes Brain Behav. 7, 411–417.

Neves-Pereira, M., Mundo, E., Muglia, P., King, N., Macciardi, F., and 
Kennedy, J. L. (2002). The brain-derived neurotrophic factor gene confers 
susceptibility to bipolar disorder: evidence from a family-based association 
study. Am. J. Hum. Genet. 71, 651–655.

O’Hara, R., Miller, E., Liao, C. P., Way, N., Lin, X., and Hallmayer, J. (2006). 
COMT genotype, gender and cognition in community-dwelling, older adults. 
Neurosci. Lett. 409, 205–209.

Pang, P. T., and Lu, B. (2004). Regulation of late-phase LTP and long-term mem-
ory in normal and aging hippocampus: role of secreted proteins tPA and 
BDNF. Ageing Res. Rev. 3, 407–430

Pang, P. T., Teng, H. K., Zaitsev, E., Woo, N. T., Sakata, K., Zhen, S., et al. (2004). 
Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal 
plasticity. Science 306, 487–491.

Pencea, V., Bingaman, K. D., Wiegand, S. J., and Luskin, M. B. (2001). Infusion of 
brain-derived neurotrophic factor into the lateral ventricle of the adult rat 
leads to new neurons in the parenchyma of the striatum, septum, thalamus, 
and hypothalamus. J. Neurosci. 21, 6706–6717.

Pezawas, L., Verchinski, B. A., Mattay, V. S., Callicott, J. H., Kolachana, B. S., 
Straub, R. E., et al. (2004). The brain-derived neurotrophic factor val66met 
polymorphism and variation in human cortical morphology. J. Neurosci. 24, 
10099–10102.

Rogers, R. D., and Monsell, S. (1995). The costs of a predictable switch between 
simple cognitive tasks. J. Exp. Psychol. Gen. 124, 207–231.

Scharfman, H. E., and Maclusky, N. J. (2005). Similarities between action of estro-
gen and BDNF in the hippocampus: coincidence or clue? Trends Neurosci. 
28, 79–85.

Starr, J. M., Fox, H., Harris, S. E., Deary, I. J., and Whalley, L. J. (2007). COMT 
genotype and cognitive ability: a longitudinal aging study. Neurosci. Lett. 421, 
57–61.

Taylor, W. D., Züchner, S., McQuoid, D. R., Payne, M. E., Macfall, J. R., 
Steffens, D. C., et al. (2008). The brain-derived neurotrophic factor Val66Met 
polymorphism and cerebral white matter hyperintensities in late-life depres-
sion. Am. J. Geriatr. Psychiatry 16, 263–271.

Taylor, W. D., Züchner, S., McQuoid, D. R., Steffens, D. C., Speer, M. C., and 
Krishnan, K. R. (2007). Allelic differences in the brain-derived neuro-
trophic factor Val66Met polymorphism in late-life depression. Am. J. Geriatr. 
Psychiatry 15, 850–857.

Tsai, S. J., Yu, Y. W., Chen, T. J., Chen, J. Y., Liou, Y. J., Chen, M. C., et al. (2003). 
Association study of functional catechol-O-methyltransferase-gene polymor-
phism and cognitive function in healthy females. Neurosci. Lett. 338, 123–126.

van Praag, H., Kempermann, G., and Gage, F. H. (2000). Neural consequences of 
environmental enrichment. Nat. Rev. Neurosci. 1, 191–198.

Ventriglia, M., Bocchio Chiavetto, L., Benussi, L., Binetti, G., Zanetti, O., 
Riva, M. A., et al. (2002). Association between the BDNF 196 A/G polymor-
phism and sporadic Alzheimer’s disease. Mol. Psychiatry 7, 136–137.

Winterer, G., Musso, F., Vucurevic, G., Stoeter, P, Konrad, A., Seker, B., et al. (2006). 
COMT genotype predicts BOLD signal and noise characteristics in prefrontal 
circuits. Neuroimage 32, 1722–1732.


