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Neurological evidence suggests that disturbed vestibular processing may play a key role in 
triggering out-of-body experiences (OBEs). Little is known about the brain mechanisms during 
such pathological conditions, despite recent experimental evidence that the scientifi c study 
of such experiences may facilitate the development of neurobiological models of a crucial 
aspect of self-consciousness: embodied self-location. Here we apply Bayesian modeling to 
vestibular processing and show that OBEs and the reported illusory changes of self-location 
and translation can be explained as the result of a mislead Bayesian inference, in the sense 
that ambiguous bottom-up signals from the vestibular otholiths in the supine body position are 
integrated with a top-down prior for the upright body position, which we measure during natural 
head movements. Our fi ndings have relevance for self-location and translation under normal 
conditions and suggest novel ways to induce and study experimentally both aspects of bodily 
self-consciousness in healthy subjects.
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 gravity and acceleration. Since subjects are usually moving in their 
environment, the brain has to continuously disambiguate these 
signals. The way the brain performs this computation is currently 
not completely known. In order to estimate self-motion, however, 
the brain probably integrates vestibular bottom-up and top-down 
signals derived from, for example, other gravitoreceptors in the body, 
from the visual system (MacNeilage et al., 2007), and at a subcorti-
cal level probably also from the semicircular canals (Angelaki et al., 
2001). The Bayesian approach is a natural framework to model this 
integration and has become a widely accepted analogy to informa-
tion processing in the brain (Friston, 2005; Knill and Richards, 1996; 
Pouget et al., 2003; Rao and Ballard, 1999) as it is supported by 
experimental (Ernst and Banks, 2002; Körding and Wolpert, 2004; 
MacNeilage et al., 2007; van Beers et al., 1996) and theoretical studies 
relating it to neuronal activations (Denève et al., 2007; Huys et al., 
2007; Ma et al., 2006; Rao, 2004; Sahani and Dayan, 2003).

Here we apply the Bayesian approach to model the brain’s 
processing of vestibular signals (see also Laurens and Droulez, 2007) 
as such processing has been proposed to encode not just location 
and movements of one’s body, but also aspects of the self such as 
self-location and the fi rst-person perspective. Neurological evidence 
showed that the occurrence of OBEs in neurological patients is 
associated with disturbed otholithic processing (Blanke and Mohr, 
2005). The experienced spatial location of the self (self-location) 
is a key aspect of (self) consciousness (Blanke et al., 2004), and 
it likely depends on self-motion signals like the vestibular signals 
via, for example, path integration mechanisms (McNaughton et al., 
2006). Recent behavioural and neuroimaging research has utilized 
the illusory characteristics of disembodied self-location during OBE 
to design experiments for the study of embodied self-location under 
normal conditions (Arzy et al., 2006; Blanke et al., 2005; Ehrsson, 

INTRODUCTION
Out-of-body experiences (OBEs) are illusions, where people expe-
rience themselves as being located outside their physical body 
 (disembodied self-location) and often report sensations of fl ying 
and to see the world from an elevated perspective. Investigating 
such neurological conditions is a promising approach to study the 
neuronal basis of the bodily self and might facilitate the devel-
opment of neurobiological models of bodily self-consciousness 
(Ehrsson, 2007; Lenggenhager et al., 2007; Metzinger, 2008; Vogeley 
and Fink, 2003; Vogeley et al., 2004). This has been demonstrated in 
recent experiments where key aspects of the bodily self (self-loca-
tion and self-identifi cation) have been manipulated experimentally 
(Ehrsson, 2007; Lenggenhager et al., 2007; Mizumoto and Ishikawa, 
2005), but further conceptual advances depend on explicitly mod-
eling aspects of the bodily self.

For almost every sensory system, the bottom-up signals from 
the sensory periphery are ambiguous and need to be disambiguated 
based on previous experience (see Poggio et al., 1985 for a promi-
nent example in vision). Such a disambiguation could be done in 
computationally different ways. For example, it could be computed 
close to the sensory periphery, where previous experience may have 
shaped neuronal circuits such that the interpretation of the ambigu-
ous sensory signals is always biased towards the same most plausible 
interpretation. Other disambiguations have to be fl exible if they 
depend on the particular context via, for example, signals from 
other modalities or the recent history of sensory stimulation. Top-
down signals, which could change more rapidly than less adaptive 
processes closer to the sensory periphery, are a possible mechanism 
for the latter kind of computation.

The signals from the otholithic vestibular system are inherently 
ambiguous, because the otholiths cannot distinguish between 
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2007; Lenggenhager et al., 2007). Using virtual reality, these stud-
ies showed that self- location can be manipulated systematically 
by multisensory mismatch of bodily information (Ehrsson, 2007; 
Lenggenhager et al., 2007) and that self-location depends on tempo-
roparietal activity (Arzy et al., 2006) compatible with neurological 
data (Blanke et al., 2004; De Ridder et al., 2007; Devinsky et al., 1989; 
Maillard et al., 2004). Here, we propose that OBEs and associated 
illusory changes in self-location can be explained as the result of a 
mislead Bayesian inference, in the sense that the ambiguous bottom-
up signals from the vestibular otholiths in the supine body position 
are integrated with a top-down prior for the upright body position, 
which is not appropriate for the current (supine) body position.

We then show that the variances of the top-down priors for 
the head acceleration and pitch rotation are crucially affecting 
an inferred illusory self-translation, which here we identify with 
pathological self-location. We measure these variances via analyz-
ing natural head movements and fi nd that illusory self-translations 
are predicted especially for subjects engaged in rapid sport-like 
activities, but less so for slowly walking or stationary subjects. 
Collectively, our results suggest a solid interpretation for patho-
logical self-location and other vestibular illusions during OBEs. 
These fi ndings also have relevance for embodied self-location under 
normal conditions and suggest novel ways to induce and study 
experimentally this crucial aspect of bodily self-consciousness in 
healthy subjects.

MATERIALS AND METHODS
In order to obtain quantitative estimates of the top-down prior 
information for the upright position, we instructed nine subjects 
(seven male, age 29 ± 4) to perform three kinds of natural move-
ments for a duration of 4–5 min each. In the standing condition, 
the subjects were standing and moved only their head and partly 
the upper torso in order to inspect all locations surrounding them. 
In the waiting condition, subjects walked continuously around 
the capture area (3 m × 3 m) as if they were waiting and look-
ing for someone on a plaza. In the action condition, subjects were 
instructed to move as if they were playing tennis, such that they 
serve, play with the forehand and backhand, make fast movements 
to the net, etc.

Subjects were wearing a headband, on which we mounted 
n = 4 infrared markers. Each condition started with a period of 
5 s, during which the subjects were standing and looking straight 
ahead. The time-averaged three-dimensional coordinates of 
the markers recorded during this period were then used as the 
base pose x

i
, i = 1,…, n. The base pose was translated such that 

n hi i
T− ∑ =1 0 0x ( ), , , where we set h = 15 cm for all subjects. In other 

words, the base pose was shifted to the origin in the horizontal 
plane and 15 cm along the vertical axis. This way, rotations and 
translations of the base pose are relative to the approximate center 
of the head. We also used larger and smaller values of h, but the 
measured statistics did not depend strongly on these choices of h. 
As a recording device we used a ReActor 2 motion capture system 
(Ascension Technology) operating at a sampling rate of 30 Hz.

Using this system, we measured for each time the translation 
and rotation of the recorded marker position relative to the base 
pose. While a few commercial products are available for this com-
putations, we decided to implement our own postprocessing, since 

the implementation details are often only poorly documented. 
Details of our prostprocessing, which intentionally does not apply 
any temporal smoothing, are documented in the Supplementary 
Material.

RESULTS
THE OTHOLITHS AS GRAVITOINERTIAL SENSORS
We model the afferent signals as if coming from a single device 
 sensing the gravitoinertial acceleration f = g −a , where g = 
(0,−9.81 m/s2,0)T is the gravitational vector and a is the accelera-
tion of the head, i.e. −a is the inertial acceleration. Each of the 
vectors f, g and a are given in world-coordinates. In order to obtain 
the gravitoinertial acceleration x sensed by the otholiths, f needs to 
be transformed into the coordinate system of the head, which we 
assume to be a rotated version of the world-coordinate system. This 
transformation depends on the orientation of the head, which we 
always describe in terms of yaw, pitch and roll angles (see Materials 
and Methods for details). Let the rotation of the head be given by a 
pure rotation matrix R, such that R−1 = RT. Then, with

x = R−1f = RTf = RTg − RTa = RTg − ahd (1)

one obtains the sensed gravitoinertial acceleration x in head-
 coordinates. With ahd = RTa we refer to the acceleration of the head 
in head-centered coordinates. The conventions for the coordinate 
system and rotation angles are shown in Figure 1A.

The same sensed gravitoinertial acceleration could be produced 
by a multitude of head rotations and accelerations. Figures 1B–D 
illustrate such ambiguities. For example, based only on the otholith 
signals the brain cannot distinguish between a stationary back-
ward tilt and an upright body position with a forward acceleration 
(Figure 1B). This ambiguity plays a key role in our explanation 
of illusory self-motion as reported in OBEs. If subjects are in a 
supine body position, but they internally assume to be upright, 
then the brain’s “explanation” for the sensory-bottom up signals 
consistent with the upright body position is a forward acceleration. 
Figures 1C,D illustrate two other ambiguities for the stationary 
upright body position.

THE EFFECT OF A NON-APPROPRIATE UPRIGHT PRIOR – MODEL
We consider the acceleration of the head, ahd, in the head-centered 
coordinate system and the rotation of the head, R, relative to gravity 
as the two relevant so-called hidden variables, which the brain may 
use to account for the sensed gravitoinertial acceleration. Given a 
particular sensed gravitoinertial acceleration x, the posterior for 
the two hidden variables is obtained by Bayes’ rule as

P
P P

P
hd

hd hd

( )
( )

a R x
x a R a R

x
,  | 

 | , , )= ( ) (
,

 
(2)

where

P Nhd T hd
n( ) ( )( )x a R R g a x | , , 2= = −μ σ  (3)

is the likelihood, which describes the way the two hidden variables 
give rise to a sensed gravitoinertial acceleration x. In other words, 
it is a forward model of the sensory signals, where we assume that 
these signals are perturbed by additive Gaussian noise. Here, N(μ, 
σ2)(x) denotes a Gaussian probability density with mean μ and 
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covariance matrix σ2I evaluated at x. P(ahd, R) is the top-down prior 
assumed before any sensory signals are observed, and P(x) is the 
overall probability of x. When comparing different possible expla-
nations of a particular value of x (in terms of values for ahd and R), 
P(x) becomes a constant factor not affecting such a comparison.

We now consider the case, where ahd and x are vectors in the 
xy-plane (see Figure 1A), and the rotation matrix implementing 
only pitch rotations. We fi rst set x R g= =φ 0

T  to the stimulation cor-
responding to a stationary upright position. In this case, the otholith 
signals do not distinguish between the correct stationary upright 
position and other alternatives (Figures 1C,D).

For such a sensory stimulus, the likelihood for the accelerations 
in the x- and y-direction in head-centered coordinates are shown in 
the fi rst two panels of Figure 2A. In the fi rst panel, the likelihood 
is plotted for no acceleration in the y-direction. The combina-
tion of the true values with no pitch, φ = 0, and no acceleration, 
a ax

hd
y
hd= = 0, has the highest likelihood. However, high values are 

also assigned to combinations with φ < 0 and ax
hd > 0 (forward tilt 

and forward acceleration) and φ > 0 and ax
hd < 0 (backward tilt and 

backward acceleration). The second panel shows the likelihood with 
ax

hd = 0 and varying acceleration in the y-direction. Again, high val-
ues are assigned to the true parameter combination with φ = 0 and 
a ax

hd
y
hd= = 0. However, an upside-down rotation of the head, φ = ±π, 

with an acceleration of ay
hd = ⋅2 9 81. m/s2 is also consistent with the 

stationary upright position and no forward acceleration.
The last three panels in Figure 2A show the posterior for the 

two hidden variables, where we have integrated over ax
hd, ay

hd and φ, 
respectively. In other words, the last three panels are different views 
of the information one obtains about the state of the head in terms 
of the pitch φ and acceleration ahd, if the sensory data x is combined 
with the top-down prior. Here, the posterior assigns a high value to 
the true parameter combination. This is the expected result, because 
we set the sensory data x to a value corresponding to a stationary 
upright position, and the top-down prior implemented the assump-
tion of a stationary upright position. In this scenario, there is no 
confl ict between the sensory data and the top-down prior.

Let us now consider the case of a sensory stimulation corre-
sponding to a supine position, where we set x R g= φ

T  with φ = ⋅0 9 2. .π  

A

B

C

D

FIGURE 1 | Conventions and illustration of otholith ambiguities. (A) We use 
a right-handed coordinate system with the y-axis pointing up. The yaw, pitch and 
roll angles are denoted by −π ≤ θ ≤ π, −π πφ2 ≤ ≤ 2 and − ≤ ≤π ψ π. We follow the 
Fick-gimbal convention, where we fi rst carry out the yaw rotation, then the pitch 
rotation in the rotated coordinate system, and fi nally the roll rotation in the 
coordinate system already rotated by yaw and pitch. The head is shown with 

θ = 0, φ = 0 and ψ = 0. Positive pitch corresponds to an upward tilt. 
(B–D) Illustration of three otholith ambiguities. In a stationary backward tilt, 
(B), the bending of the hair cells is the same as in an upright position with 
forward acceleration as it is the case for a stationary backward tilt and a forward 
acceleration in an upright position, (C), and for the stationary upright position 
and a forward acceleration with a forward tilt, (D) (see text for further detail).
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Figure 2B shows the likelihoods, priors and posteriors. Again, the 
highest values for the likelihoods (fi rst two panels in Figure 2B) 
are for the parameter combination we actually used to compute 
the sensory stimulation x. However, due to the otholith ambiguity, 
other parameter combinations are also consistent with this sen-
sory stimulation. With no acceleration in the y-direction, the face-
down position with a forward acceleration of ax

hd = ⋅2 9 81. m/s2 
is consistent with the stationary supine position (fi rst panel in 
Figure 2B). For no acceleration in the x-direction, positions with 
an even further tilt backwards and positive accelerations ay

hd > 0 
as well as less tilt backwards and negative accelerations ay

hd < 0 are 
also consistent with the stationary supine position (second panel in 
Figure 2B). Now, however, there is a confl ict between this bottom-
up sensory information and the top-down prior, which we assume 
to implement the assumption of an upright position. How do they 
interact according to Bayesian inference and what are the predicted 
perceptual consequences in the sense of the posteriors?

The last three panels in Figure 2B show the obtained posteri-
ors. Two features are worth noting. First, the pitch rotations with 
the highest posterior probabilities are closer to the value φ = 0 for 
the upright position. Second, non-vanishing accelerations in the 
x- and y-directions are predicted. In other words, combining the 
ambiguous otholith signals in a supine position with a prior for 
the upright position leads to an inferred state of the head with a 
forward and downward acceleration in head-coordinates and less 
tilt backward than the supine position.

In our model, this prediction is a direct consequence of the 
multiplication of two Gaussians. Let N N x1 1 1

2= ( )( )μ σ,  and N
2
 =

N x( )( )μ σ2 2
2,  be two Gaussians for some random variable x with 

diagonal covariance matrices σ1
2I and σ2

2I. Then, their product is 
given as

N N N x1 2
1
2

2 2
2

1

1
2

2
2

1
2

2
2

1
2

2
2

⋅ = +
+ +

⎛
⎝⎜

⎞
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σ μ σ μ
σ σ

σ σ
σ σ

, ( ),

 

(4)

which is also a Gaussian, but with the new mean computed as 
the weighted sum of the means of the individual Gaussians. In 
 particular, the variance σ1

2 of the fi rst Gaussian, normalized by 

σ σ1
2

2
2+ , becomes the weight for the mean μ

2 
of the second Gaussian 

and vice versa. This basic relation is the key property of Bayesian 
models of multisensory integration (Alais and Burr, 2004; Battaglia 
et al., 2003; Ernst and Banks, 2002). In such models, Eq. 4 describes 
the posterior (assuming a non-informative prior) over a state vari-
able x of interest (like the location of a target), and N

1
 and N

2
 

describe how x is inferred via the individual modalities (like vision 
and audition). Equation 4 shows how the reliability of the indi-
vidual modalities, as quantifi ed by their variances, affects the mean 
of the posterior distribution. If one modality becomes less reli-
able (the variance increases), then the mean of the posterior is 
shifted towards the mean predicted by the other modality. The 
same  relation, however, also dictates how a Gaussian likelihood is 
combined with a Gaussian prior within a single modality, which 
is the case we are considering.

For the sake of illustration, let us consider the Bayesian infer-
ence of only the head acceleration ahd with the true pitch φ* used 
to compute a sensory stimulation x R g( )φ φ* *= T  and the internally 
assumed pitch φ as parameters, and let us assume that the mean of 
the acceleration prior is zero, μ

acc
 = 0. Then, the posterior for the 

head acceleration ahd is given as

P
P

P P

N

hd hd hd

T hd
n

( ( ) )
( ( ))

( ( ) ) ( )

(

a x
x

x a a

R g a

| * ; * | ;

,

φ φ
φ

φ φ

σφ

=

∝ −

∗

1

22 2

2

0)( ( )) ( )( )

([ ] )( ) (

x a

R R g a

φ μ σ

σφ φ

* ,

,

⋅ =

∝ − ⋅∗

N

N N

acc acc
hd

T T
n

hd μμ σacc acc
hd= 0 2, )( )a

 
(5)

If φ* = φ, the mean of the head acceleration posterior is zero, 
independent of the values of σacc

2  and σn
2. In other words, if the inter-

nally assumed pitch φ and the true pitch φ* coincide, [ ]R R gφ φ
T T− =* ,0  

then the inferred head acceleration in terms of the mean of the pos-
terior is zero (Figure 2A). If φ ≠ φ*, however, then the mean of the 
posterior is a weighted sum (see Eq. 4) of μ

acc
 = 0 and [ ]R R g.φ φ

T T− *  
Here, large values of σn

2 bias the solution of the otholithic ambi-
guity towards the zero head acceleration with μ

acc
 = 0. Conversely, 

large values of σacc
2  bias the solution of this ambiguity towards the 

A

B

FIGURE 2 | The effect of an upright prior. (A) The fi rst two panels show the 
likelihoods for the pitch angle φ and the accelerations in the x- and y-directions in 
head-centered coordinates for a sensory stimulus x corresponding to the upright 
position. The third panel shows the prior for these accelerations and the pitch 

angle. The last three panels show the posteriors with different variables being 
integrated over. (B) Panel order is the same as in (A), but for a sensory stimulus 
x corresponding to the supine position with φ = 0. .9 π

2  All priors are Gaussians 
with zero mean and σx = σy = 1 and σφ = 0.1. For the sensory noise we set σn = 1.
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non-zero head acceleration [ ]R R g,φ φ
T T− *  which can account for the 

mismatch between the internally assumed and the true pitch.
This non-zero “compensatory acceleration” is shown in Figure 3A 

in the xy-plane for the supine body position (the true pitch φ*), but 
different internally assumed pitch rotations. If φ* = φ (“face up” 
in Figure 3A), then no compensatory acceleration is needed to 
account for the sensory signals, but if the internally assumed pitch 
is the upright position (“upright” in Figure 3A), the brain has to 
assume a non-zero acceleration in order to account for the bot-
tom-up signals in the supine body position. The absolute value of 
this compensatory acceleration is shown in Figure 3B for different 
internally assumed pitch rotations.

In order to compute the full Bayesian acceleration posteriors 
(last panels in Figures 2A,B) with the internally assumed pitch φ 
being also a random variable, one evaluates

P d P P dhd hd( ) ( ) ( )a x a x, ; φ φ φ φ φ| | .=∫ ∫  
(6)

Now both the acceleration and the pitch are the hidden state 
variables of interest, which we assumed to be independent, i.e. 
P(ahd, φ) = P(ahd)P(φ). Interestingly, we fi nd that the variance σ

pitch
 

of the pitch prior P(φ) affects the strength of the inferred illusory 
self-translation, because the absolute value of the compensatory 
self-translation (Figure 3B) depends in a non-linear way on the 
internally assumed pitch. In other words, P(φ) averages over a non-
linear function (the compensatory acceleration for a given sensory 
stimulation x), and the range over which this averaging is performed 
affects its result. Figure 3C shows that for large σ

pitch
 the absolute 

value of the illusory self-translation becomes smaller, because at 
the internally assumed upright position, φ = 0, the absolute value 
of the compensatory acceleration decays more rapidly towards 
the supine position than it increases towards further tilts forward. 
Figure 3C also shows that for larger σ

acc
, or conversely for smaller 

σ
n
, the inferred illusory self-translation increases.

THE EFFECT OF A NON-APPROPRIATE UPRIGHT PRIOR – PREDICTIONS
In the last section we have demonstrated, using a toy model of otho-
lithic processing, that an otherwise optimal processing strategy can 

lead to illusory perceptions, when the internally assumed upright 
body position differs from the actual body position. In particular, 
if the actual body position is supine, but the internally assumed 
position is upright, then the brain may explain this discrepancy in 
terms of an illusory self-translation, which we predict to be forward 
and downward in head-centered coordinates. Moreover, we have 
derived two additional testable dependencies of the magnitude of 
the illusion. We predict that the illusion is stronger, if the subjects 
are more uncertain about their acceleration (larger values of σ

acc
, 

Figure 3C), and that the uncertainty regarding the pitch of the head 
should be minimized (small values of σ

pitch
, Figure 3C) for stronger 

illusions. While testing these predictions is a methodological chal-
lenge (see Discussion), a valuable fi rst step is a characterization 
of the range these two values take in everyday life. We did this by 
measuring the head movements of subjects using a motion capture 
system.

THE EFFECT OF THE MEASURED UPRIGHT PRIORS
We assume that the brain may have inferred the priors based on 
stimuli it is exposed to during everyday life. These priors certainly 
change on different time-scales and depend on the actual context. 
To the best of our knowledge, however, no statistics of natural 
head movements are reported in the literature. In order to obtain 
a fi rst approximation to these statistics, we measured the head 
movements of subjects in the three different conditions stand-
ing, waiting and action (see Materials and Methods). The results 
are shown in Figures 4A–D as histograms and Gaussian fi ts to 
the histograms. While the measured σ

pitch
 is similar for the wait-

ing and action  conditions, it is larger for the standing condition 
(Figure 4A), where standing subjects moved their head in order 
to inspect their surrounding. The measured σ

acc
 is largest for the 

action, smaller for the waiting and even smaller for the standing 
condition (Figures 4B–D). Hence, given the dependence of the 
illusory self-translation on σ

pitch
 and σ

acc
, it will be largest for the 

action condition. Figures 4E–G show that this is indeed the case. 
Interestingly, Figures 4E–G show that in the waiting condition 
almost no illusory self-motion is predicted whereas in the action 

A B C

FIGURE 3 | Compensatory acceleration to account for the mismatch 

between the supine and upright position. (A) Compensatory acceleration in 
the xy-plane to account for the sensory signals in a stationary supine position in 
terms of accelerations in the upright position. (B) Magnitude of the 

compensatory acceleration as a function of the internally assumed pitch 
rotation. If the actual supine position, 90°, and the internally assumed position 
coincide, no compensatory acceleration is necessary. (C) Dependence of the 
compensatory acceleration on the variance of the acceleration and pitch priors.
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condition the larger values of σ
acc

 lead to a notable self-translation 
of approx. 1/2 g in magnitude. This dependence of the magni-
tude of the illusory self-translation in the supine position on the 
variance of the acceleration prior may also underlie the everyday 
experience of some vestibular aftereffects like, for example, illusory 
self-motion when lying in bed after a day in the theme park or 
after a day of skiing.

DISCUSSION
The main result of this paper is the interpretation of the vestibu-
lar component of OBEs as a mislead Bayesian inference and that 
this accounts for disembodied and elevated self-location. We have 
shown that a mismatch between the actual body position and an 
internally assumed upright body position can lead to illusory self-
translations due to the otholithic ambiguity. While this ambiguity 
has been the subject of previous studies (see Angelaki et al., 2001 
for a review), we have shown that illusory self-motions are also 
crucially affected by the variances of the accelerations and pitch 
priors. Since most previous studies have not considered these vari-
ances as candidates for the independent variable in experimental 
designs, our model makes strong testable predictions for future 
behavioral experiments with healthy subjects. Moreover, we have 
measured the top-down priors by analyzing natural head move-
ments and determined the approximate values of these variances. 
Together with our model this data suggests that subjects who use a 
top-down acceleration prior corresponding to, for example, rapid 
sport-like movements may experience illusory self-translation in 
a supine body position.

Based on neurological observations, it has been proposed that 
the vestibular component of OBEs may both induce and allow 
distinguishing OBEs from related bodily illusions. OBEs have been 

induced by electrical stimulation of vestibular cortex (Blanke et al., 
2002; Penfi eld et al., 1955) and share many similarities with bod-
ily illusions of healthy subjects in microgravity conditions such 
as orbital and parabolic fl ights (Kornilova, 1997; Lackner, 1992). 
Hence, in terms of aspects relevant to the study of the bodily self, 
the present study suggests that using a top-down prior refl ecting 
an upright body position in order to disambiguate otholith signals 
in a supine body position may account for the following key ele-
ments of an OBE. Disembodied self-location would be due to illusory 
self-translation affecting self-location by means of, for example, 
path integration mechanisms (McNaughton et al., 2006), while the 
actual body position is static. Elevation of self-location would be due 
to the illusory upright body position while the actual body is in 
a supine position. However, it could also be a consequence of the 
illusory self-translation in the forward direction. The vestibular 
sensations of fl oating and fl ying would be a direct consequence of 
the predicted illusory self-translation.

We argue that the concept of combining empirically measured 
statistics of vestibular (and other sensory) signals with computa-
tional modeling is an important step towards the systematic and 
detailed description of how the brain computes a phenomenon like 
self-location by the integration of basic bodily sensory signals.

SIGNALS FROM THE SEMICIRCULAR CANALS AND OTHER MODALITIES
An apparently strong limitation of our model is its focus on only 
the otholithic signals. We do not model the information from the 
semicircular canals, which signal angular acceleration and help to 
disambiguate the otholithic signals (Angelaki et al., 2001). However, 
we are considering a scenario with a mismatch between the actual 
static supine position and an internally assumed upright position. 
The inferred orientation as described by the Bayesian posterior is 

A

C

B

D

E

F

G

FIGURE 4 | Estimated probabilities from the recorded head movements and 

the resulting posteriors. (A) Histogram for the pitch rotations in the casual 
condition as calculated with a parametrization of the fi tted rotation matrices 
according to a Fick-gimbal convention and Gaussian fi ts obtained by minimizing 

the Kullback–Leibler divergence KL(p || q) between the Gaussian fi ts p and the 
histograms q (see Supplementary Material for the values). (B–D) Histograms and 
fi ts for the measured accelerations in head-coordinates. (E–G) Resulting 
acceleration posteriors for the standing, (E), waiting, (F), and action, (G), condition.
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almost upright as well. Hence, the semicircular canals are neither 
actually contributing sensory signals, nor would there be any fur-
ther discrepancy between the inferred (almost) upright position 
and the upright position imposed by the prior in terms of canal 
signals. However, a more complete model would certainly have to 
account for the signals form the semicircular canals and how they 
interact with the otholithic signals. Moreover, an apparently arbi-
trary choice we made is setting the noise for the otholithic signals to 
σn

2 1= . This sensory noise can be measured experimentally, but esti-
mates for the detection threshold of movement onset vary widely 
depending on the method of measurement (Korhuber, 1974). If 
our explanation of the vestibular component in OBEs is correct, 
we have to assume low sensory noise. Hence, we selected a value for 
the sensory noise, which corresponds to the upper end of measured 
range of detection threshold and is a conservative estimate.

In normal life, however, being in a supine position and imagin-
ing oneself standing does not induce OBE-like experiences. This is 
certainly due to the fact that the top-down priors used to disam-
biguate the otholithic signals (beside their subcortical interactions 
with the canal signals) change on many different time-scales and 
depend on the context. For example, visual signals (like optic fl ow) 
and proprioceptive signals (like neck muscle activity to sustain the 
head against gravity) are certainly used by the brain in order to infer 
self-location and self-translation. Moreover, when healthy subjects 
are lying awake in a supine position, they usually know that they 
are lying, which affects their interpretation of the sensory signals. 
Hence, our assumption of an upright prior in a supine position 
is a simplifi cation, which may only be appropriate when signals 
from other modalities are attenuated. We hypothesize that this is 
the case in some neurological conditions leading to OBEs, but it 
may also be the case in dreams or transitions from wakefulness 
to sleep. In other words, in OBEs the actual processing of sensory 
and top-down information would still be intact (or even optimal 
in the Bayesian sense), but “wrong” inputs to an otherwise optimal 
processing could lead to illusions such as OBEs as suggested by the 
induction of OBE-like experiences via multisensory stimulation 
(Ehrsson, 2007; Lenggenhager et al., 2007). It is a methodological 
challenge to render other modalities non-informative when experi-
mentally testing our model with healthy subjects.

THE ANALOGY OF BAYESIAN INFERENCE
Bayesian inference is a mathematical theory rooted in logic and 
statistics (Cox, 1961; Jaynes, 2003), which deserves justifi cation 
when used to model brain functions (Knill and Richards, 1996). 
We selected it, because the Bayesian approach formalizes a task the 
brain has to solve during processing of sensory information and it 
provides a solution to it. The task is to infer the state of the body (or 
other objects in the world) based on ambiguous and noisy sensory 
signals in terms of values of hidden variables like the orientation 
of the head relative to gravity, which cannot be measured directly. 
Bayesian inference is the solution to this task, because within such 
a setting, where information can have different degrees of certainty, 
it can be derived as the optimal way of combining prior infor-
mation with new (sensory) information (Cox, 1961). Behavioral 
experiments have shown that in some sensory (Ernst and Banks, 
2002; MacNeilage et al., 2007) and sensory-motor (Körding and 
Wolpert, 2004; van Beers et al., 1999) tasks the human performance 

is well described by the Bayesian posterior. In order to link this 
approach to OBEs we assumed that the posterior distributions are 
a proper description of subjects’ experiences. Sharing this assump-
tion, a recent Bayesian model of vestibular processing (Laurens and 
Droulez, 2007) explains a set of other vestibular illusions.

Linking our approach to brain activations is also possible, but at 
this point it is hindered for two reasons. First, although neuronal 
implementations of Bayesian computations have been suggested 
(Denève et al., 2007; Huys et al., 2007; Ma et al., 2006; Rao, 2004; 
Sahani and Dayan, 2003), the mere similarity of the performance 
or perception of subjects to Bayesian inference does not imply that 
the brain indeed performs computations analogous to Bayesian 
inference. Second, the vestibular system is a distributed processing 
network (Guldin and Grüsser, 1998) whose functions and patterns 
of activation have not been described in as much detail as those 
of other sensory systems (Berthoz, 1996; Brandt and Dieterich, 
1999). This would complicate the interpretation of neuroimaging 
results using Bayesian modeling. The Bayesian approach, however, 
leads to clearly testable predictions for behavioral experiments. 
For example, illusory translations should occur if the top-down 
prior is manipulated such that it refl ects an upright position (i.e. 
by manipulating visual inputs) and while subjects are in a supine 
body position, but such experiments may turn out to be challenging 
methodologically (see above).

PREVIOUS WORK ON OBES AND SELF-LOCATION
Strictly speaking, our model may be described only as a model 
of a vestibular illusion. But as its predictions are consistent with 
reported vestibular sensations during OBEs we expect merit for 
studying the bodily self under normal conditions. Possible con-
ceptual advances could derive from our explicit postulate of iden-
tifying the Bayesian posterior with the experience of the subject 
as compared to a description of subjects’ behavioral performance. 
Consequently, here we suggest that the bodily self is a statistical 
model of body-related multisensory signals with the vestibular 
modality playing a key role, because it delivers information about 
the whole body in space. Does this perspective help to interpret 
previous empirical fi ndings regarding the computational role of 
particular brain regions? Direct evidence for the causal implica-
tion of temporal-parietal cortex in OBEs came from the induction 
of OBEs by electrical stimulation of this area (Blanke et al., 2002; 
De Ridder et al., 2007; Penfi eld et al., 1955) as well as brain dam-
age to this area (Blanke et al., 2004). These neurologically induced 
OBEs were characterized by disembodied and elevated self-location 
and fi rst-person perspective as well as vestibular sensations. It is 
also activated when employing mental imagery using self-location 
(Arzy et al., 2006; Blanke et al., 2005) and mental perspective taking 
(Vogeley et al., 2004). Hence, this brain region could be part of a 
(statistical) model of the bodily self. In other words, it may serve 
as an area representing aspects of the bodily self like self- location 
and self-translation relative to gravity, and its involvement in visuo-
spatial perspective taking could refl ect its role as the source for 
imagined self-motion signals.

Recently, it has been shown that self-location can be manipulated 
experimentally in healthy subjects by creating confl icts between 
multisensory bodily signals using virtual reality (Ehrsson, 2007; 
Lenggenhager et al., 2007). Extending a similar paradigm about the 
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perception and integration of multisensory arm signals, the so-called 
“rubber hand illusion” (Botvinick and Cohen, 1998; Tsakiris and 
Haggard, 2005), to the entire body, changes in self- location and 
self-identifi cation could be induced. In Lenggenhager et al. (2007) 
subjects saw their own body (virtual body) in 3D through a head-
mounted display (HMD) as if standing 2 m in front of them. They 
saw their virtual body being stroked synchronously or asynchro-
nously with respect to a felt stroking on their back. This stimulation 
led to visual capture and systematic errors in self-location as the 
subjects localized themselves as drifted towards the virtual body in 
the synchronous condition but not in the asynchronous condition. 
Although, none of the subjects reported disembodied self-location 
(as in OBEs), these data suggest that participants localized their 
bodily self outside their corporeal borders. This was corroborated 
by participants’ heightened self-identifi cation with the virtual body 
and self-attribution of the visual stimuli applied to the “skin” of 
the virtual body. These behavioural data as well as the present data 
suggest that self-location can be manipulated relatively easily using 
confl icting sensory stimulation. Hence, online processing of body-
related multisensory information in the brain is more like ongo-
ing puzzle solving of which the normally experienced embodied 
self-location is just a fragile and only temporarily stable solution, 
which is a setting that is naturally suited for the Bayesian approach 
to sensory information processing. However, in order to model the 
experimentally identifi ed aspects of self-location one has to refer 
to particular coordinate systems. In our model, we assumed an 
body-centered coordinate system and identifi ed the illusory self-
motion with altered self-location. More precisely, we suggest that 
the illusory body-centered self-motion signals are used in predic-
tive models (Kilner et al., 2007; Rao and Ballard, 1999; Wolpert 
et al., 1995) for body- and world-related sensory signals. Since the 
physical body is not actually moving, this leads to prediction errors 
in other modalities, and those may correspond to other aspects 
of multisensory OBEs. By explaining disembodied self-location as 
illusory self-translation while the actual body position is static and 
elevated self-location during OBEs due to the illusory upright body 
position while the actual body is in a supine position our results 
suggest a solid interpretation for pathological self-location during 
OBEs. These fi ndings are likely to have relevance for the continu-
ously calculated embodied self-location and suggest novel ways 
to induce and study experimentally this crucial aspect of bodily 
self-consciousness under normal conditions.
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SUPPLEMENTARY MATERIAL
POSE DETERMINATION
We have computed the statistics of the natural head movements 
in terms of motion parameters that the brain may use in order 
to estimate the orientation and movement of the body in space. 
In particular, we were interested in the statistics of the accelera-
tions in head-centered coordinates, ahd, and the angles character-
izing the rotation matrix R. However, these motion parameters 
could not be measured directly, but had to be estimated based 

on the three-dimensional Cartesian coordinates of the markers 
we attached to the head of our subjects. In order to estimate the 
translation and rotation of the head relative to the base pose, we 
solved the so-called pose determination problem by means of a 
least-squares estimate: Given a base pose x

i
, i = 1,…,n, and another 

set of points y
i
, i = 1,…,n, for the locations of the n markers at some 

other time during the movement, we seek a rotation matrix R and 
a translation vector r such that

ε2

1

21
( )R r y Rx r, = − +

=
∑

n i
i

n

i|| ( )||
 

(7)

is minimized. Let μx i in= ∑−1 x  and μ y i in= ∑−1 y . It has been shown 
(Umeyama, 1991) that

R = USVT

 r = μ
y
 − Rμ

x
 (8)

is a unique solution to Eq. 7, with ∑ =xy
TUDV  being a singular 

value decomposition of the covariance matrix

∑ = − −
=
∑xy i
i

n

y i x
T

n

1

1

( )( )y xμ μ .
 

(9)

The diagonal matrix S in Eq. 8 is defi ned as

S
U V

=
=I                               if det( ) det( )

diag(1

1

,,1,..., 1)  if det( ) det( )− = −
⎧
⎨
⎩ U V 1

 

(10)

for rank(Σ
xy

) = m − 1 and

S
xy=

∑ ≥I                                if det( )

diag(1,1,.

0

..., 1)  if det( )− ∑ <
⎧
⎨
⎩ xy 0

 

(11)

for rank(Σ
xy

) ≥ m − 1, where m = 3 is the number of dimensions 
of the points x

i
 and y

i
. In this way, we obtained for each time t 

during the movement a rotation matrix Rt and a translation rt by 
transforming the base pose to the measured coordinates of the 
markers at time t.

HEAD ACCELERATION AND ORIENTATION
Given a sequence of rotation matrices Rt and translation vectors 
rt, we computed (1) the accelerations of the head in head-centered 
coordinates, ahd, and (2) the orientation of the head in terms of 
yaw, pitch, and roll angles. The accelerations are obtained by fi rst 
computing the accelerations in world-coordinates based on the 
translation vectors rt. Then, these accelerations were transformed 
into the head-centered coordinate system.

The head orientations were characterized using yaw, pitch and 
roll rotations as follows: We denote the angles for the yaw, pitch 
and roll rotations as θ, φ and ψ, respectively. The corresponding 
rotation matrices for these individual rotations are given as

R

R

θ

θ θ

θ θ

φ

φ φ

φ φ

=
−

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

=
−⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

c s

s c

c s

s c

0

0 1 0

0

0

0

0 0 1
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Rψ ψ ψ

ψ ψ

= −
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1 0 0

0

0

c s

s c

,

where we used shorthand notations cθ for cos (θ), sθ for sin (θ), etc. 
A rotation matrix R = (RθRφ)Rψ given as

c c c s c s s s s c c s

s c c s c

c s c s s s c s s

φ θ ψ φ θ θ ψ ψ φ θ ψ θ

φ φ ψ ψ φ
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⎞

⎠

⎟
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⎟

 

(12)

corresponds to a sequence of rotations, where we fi rst carry 
out the yaw rotation in world coordinates, then the pitch rota-
tion in the rotated coordinate system, and fi nally the roll rota-
tion in the coordinate system already rotated by yaw and pitch 
rotations.

Now, for each rotation matrix R estimated using the least-
squares estimate, we computed the values of θ, φ, and ψ. For 
|1 − R

21
| < 0.001 they are given as θ = arctan2(R

13
, R

33
), φ = π

2 , and 
ψ = 0. For |−1 − R

21
| < 0.001 the values are θ = arctan2(R

13
, R

33
), 

φ = −π
2 , and ψ = 0. Otherwise, they are given by

 θ = arctan2(−R
31

, R
11

)

 φ = arcsin(R
21

)

ψ = arctan2(−R
23

, R
22

) (13)

Here, arctan2 (y, x) is the four-quadrant inverse tangents. The 
case distinction was introduced in order to account for the singu-
larities at the north and south pole. In other words, head orienta-
tions with a pitch of ± π

2  are described as only yaw and pitch, but 
no roll rotations.

GAUSSIAN FITS TO THE HISTOGRAMS
As we were mainly interested in the variances of the priors, we sub-
tracted the mean for the pitch angles and accelerations for each sub-
jects before combining the histograms. Given histograms computed 
over all subjects, we derived Gaussian fi ts to these histograms by 
minimizing the Kullback–Leibler divergence (Cover and Thomas, 
2006) between the Gaussians fi ts and the histograms. The results 
of these fi ts are given in Table S1.

Table S1 | Values for the Gaussian fi ts to the histograms.

Condition Standing Waiting Action

μφ <0.01 <0.01 0.02

σφ 0.41 0.28 0.21

μx <0.01 <0.01 0.11

σx 0.39 1.03 2.25

μy <0.01 −0.03 0.01

σy 0.16 0.6 2.4

μz <0.01 <0.01 <0.01

σz 0.35 1.08 2.27
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