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cortex exhibit increased activation to events that violate local tem-
poral patterns of stimuli, even when those patterns arise because 
of random chance and even in the absence of explicit awareness 
(Squires et al., 1976; Huettel et al., 2002; Fan et al., 2007). Such 
fi ndings fi t the broad theory that the dorsal executive network 
detects environmental changes and implements cognitive proc-
esses necessary for modifying behavior appropriately (Wise et al., 
1996; Botvinick et al., 2001; Miller and Cohen, 2001; Ridderinkhof 
et al., 2004; Walton et al., 2004; Mansouri et al., 2009). The resulting 
behavioral changes are postulated to refl ect biasing signals directed 
at other brain systems (Botvinick et al., 2001; Miller and Cohen, 
2001). However, most prior studies of executive control have used 
tasks with co-occurring contingency changes and engagement of 
executive control mechanisms.

Here, we adapted the classic two-option reversal-learning para-
digm to dissociate multiple forms of contingency learning. Across a 
series of rapidly presented trials, the environmental contingencies 
changed in three independent ways: (1) changes in outcome valence, 
which resulted in a behavioral change on the next trial; (2) changes 
in outcome magnitude, which affected obtained rewards but did 
not produce a behavioral change; and (3) changes in the physical 
effect of an action, through new visual feedback that was com-
pletely unrelated to rewards or required actions. We hypothesized 
that brain areas previously implicated in learning and responding 
to changes in action-outcome contingencies also process contin-
gency changes that are behaviorally and motivationally irrelevant. 

INTRODUCTION
Contingency learning is a fundamental component of cognition. By 
identifying the relationships between actions and events, humans 
and other animals can produce goal-directed and fl exible behav-
ior that accounts for changes in their environments. Models of 
goal-directed behavior, such as those of reinforcement learning, 
have traditionally examined the contingencies between actions 
and their rewarding or punishing outcomes (Thorndike, 1898; 
Pavlov, 1928; Skinner, 1938; Herrnstein, 1970). Such models can 
account for simple reward-seeking behaviors (e.g., foraging), and 
even describe quite complex aspects of behavior and decision mak-
ing (Sutton and Barto, 1998). However, effective behavior requires 
learning not only about relations between actions and received 
rewards, but also about environmental contingencies that do not 
themselves infl uence reward outcomes (Tolman, 1932), such as 
information about the available options, state space, or stimulus-
stimulus contingencies.

Studies of the neural basis of contingency learning – often using 
reversal tasks in which reward contingencies change  unexpectedly – 
have identifi ed a host of involved brain areas (Cools et al., 2002; 
O’Doherty et al., 2003; Remijnse et al., 2005; Xue et al., 2008). 
Collectively, many of these regions have been described as con-
stituting the dorsal executive network (Duncan and Owen, 2000) 
or central executive (Goldman-Rakic, 1996). This network may 
contribute to contingency learning in other non-rewarding con-
texts, as well. For example, regions of lateral and medial prefrontal 
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If obtained, such results would indicate that these regions support 
the generalized updating of models about the current environ-
ment, including but not limited to the changes in the anticipated 
value of actions, with other regions contributing to the executive 
control of action.

MATERIALS AND METHODS
PARTICIPANTS
Fourteen healthy, neurologically normal young-adult volunteers (six 
female; age range: 18–29 years; mean age: 22.4 years) participated in 
a single fMRI session. All participants acclimated to the testing envi-
ronment using a mock MRI scanner. Two participants were removed 
from the analyses, one because of technical issues with stimulus pres-
entation and the other because of excessive head motion. All partici-
pants gave written informed consent as part of a protocol approved 
by the Institutional Review Board of Duke University Medical Center. 
Subjects’ payment was contingent on the choices made during the 
experiment (mean payment: $49 out of a possible $50).

TASK
Participants engaged in a modifi ed two-alternative choice task 
(Figure 1A). As a framing story, each participant was told to act as 
an investment broker who selects between two factories in which 
to invest. On each trial, one of the two choice options resulted in a 
monetary gain, while the other resulted in an equal magnitude loss 
(range: ±18 to 93¢). The outcome comprised two simultaneously 
presented visual components: the received value and an abstract 
visual object (described as the product of the factory). A total of 
eight different objects were presented across all trials, constructed 
through the factorial combination of two values for each of three 
dimensions (shape, color, and orientation of a diagonal slash). 
Participants were given explicit instructions that the abstract objects 
were not predictive of future outcomes nor of changes in the value 
of those outcomes; moreover, they were told that outcomes could 
alter after as few as one trial, but that on average the outcomes 
would remain stable for several trials at a time. Participants were 
instructed that their commission (i.e., payment) was proportional 
to the total amount earned across all decisions.

Value and effect contingencies were altered independently, 
through four different possible trial types (see Figure 1B). The 
fi rst type comprised the Standard trials (76% of total), where no 
stimuli, rewards, or actions changed from the previous trial. The 
second was a Reversal Change (6% of trials) in which the associated 
values of each option switch sign (without changing magnitude); 
this trial type is equivalent to the critical events in the canoni-
cal reversal learning task. Given the complementary relationship 
between the valences of the two options, Reversal Changes should 
guide the participants to select the other option on the next trial. 
The third type of trials involved Value Change (6% of trials), such 
that the absolute magnitude of the current value was changed, either 
up or down, without a change of sign. Because the participants still 
received a positive reward (albeit not the expected amount), they 
should continue to select the same option on succeeding trials. The 
fourth type of trials, called Effect Change (12% of trials, split evenly 
between one- and two-dimensional), involved a behaviorally- and 
motivationally-irrelevant contingency change in the visual object 
associated with each action (i.e., the object shown on the screen). 

This could involve either a change in one dimension of the object 
(e.g., color alone) or two dimensions of the object (e.g., both color 
and shape), with equal probability. However, because the reward 
value remained constant, the participant should continue selecting 
the same option on future trials.

Participants fi xated on a cross at the center of the display 
throughout the experiment. Failure to respond in the allotted time 
(1.4 s after the trial start) resulted in a monetary loss equivalent 
to the value of the worse option on the current trial. To ensure 
comprehension of instructions and to provide experience with 
task contingencies, all participants performed a 7-min behavioral 
training session before the fMRI experiment.

Go signal

Outcome 

Choice 

5353

duration = 1.4 s

iti = .1 to .5 s
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-53-53

3333
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ii) Reversal Change

iv) Effect Change 

iii) Value Change

5353

i) StandardWait screen

duration = 1.4 s

FIGURE 1 | Task. (A) Example trial structure. Following an initial stimulus 
display, the onset of the trial was signaled by a change in color of the response 
circles. When the participant indicated the choice for that trial, the selected 
option changed color, whereupon the outcome of the trial was indicated by a 
visual object and a monetary reward. Trials were each 2.8 s, with 1.4 s for 
response and choice presentation and 1.4 s for outcome presentation. Intertrial 
intervals ranged between 0.1 and 0.5 s, to prevent subjects from predicting the 
onset of each trial. (B) Possible outcomes derived from different changes in 
contingencies. On Standard trials, the outcome was maintained from the prior 
trial. In Reversal Changes, the action-outcome contingencies switch, and thus 
the participant loses the amount of money they were expecting to gain. In 
Value Changes, the participant gains money, but either more or less than they 
expected. Finally, in Effect Changes, the participant receives the amount of 
money they were expecting, but the visual stimulus changes.
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Participants carried out four runs of this task while in the scan-
ner, each consisting of 150 trials including 10 reversal changes, 10 
value changes, 10 one-dimensional effect changes, and 10 two-
dimensional effect changes. We used a constant hazard probabil-
ity for contingency shifts of p ∼ 0.28. Each run also included four 
non-task pauses, in which the inter-trial interval was extended 
to 10–20 s. We predetermined the timing and order of contin-
gency shifts to maximize the statistical dissociation between the 
hypothesized hemodynamic responses evoked by each contingency 
shift type. The order of runs was randomized across participants. 
Stimuli presentation and behavioral data collection were carried 
out using the Psychophysics Toolbox for Matlab (Brainard, 1997), 
with stimuli presented through MR-Compatible LCD goggles and 
behavioral selections made using the fi rst two fi ngers on the right 
hand on an MR-compatible response box.

fMRI DATA COLLECTION AND ANALYSIS
We acquired data with a 4T GE scanner using an inverse-spiral 
pulse sequence with standard imaging parameters [TR = 2000 ms; 
TE = 30 ms; 34 axial slices parallel to the AC-PC plane; voxel size 
of 3.75 × 3.75 × 3.8 mm]. High resolution 3D full-brain SPGR 
anatomical images were acquired and used for normalizing and 
co-registering individual participants’ data.

Analyses were performed using FEAT (FMRI Expert Analysis 
Tool) Version 5.92, part of the FSL package (Smith et al., 2004; 
Woolrich et al., 2009). The following pre-statistics processing steps 
were applied: motion correction using MCFLIRT, slice-timing cor-
rection, removal of non-brain voxels using BET (Smith, 2002), spa-
tial smoothing with a Gaussian kernel of full-width-half-maximum 
of 8 mm, and 50 ms high-pass temporal fi ltering. Registration to 
high resolution and standard images was carried out using FLIRT 
(Jenkinson and Smith, 2001).

Our fi rst-level FEAT model contained fi ve factors: three coding 
the onsets of contingency changes (e.g., Reversal Changes, Value 
Changes, and Effect Changes) and the fourth a nuisance variable to 
code for the infrequent missed trials. An impulse of unit duration 
and unit weight was used for each of these events. The fi fth factor 
coded the timing of the non-task pauses by their duration and a 
unit weight. Each of these factors was then convolved with a double-
gamma hemodynamic response function to create the fi nal regres-
sors within our design matrix. Of note, this model uses the Standard 
trials as a task-related baseline. Thus, activations associated with 
the performance of Standard trials, such as stimuli presentation 
and motor response execution, are controlled by comparison to 
the baseline fMRI signal.

Second-level FEAT analyses to combine runs within-participants 
used a fi xed-effects model, while third-level, across-participants 
analyses used FLAME (stages 1 and 2) random-effects analysis, 
with automatic outlier de-weighting (Woolrich, 2008). All statistical 
inferences, including data visualization, use whole-brain-corrected 
cluster-signifi cance thresholds of p < 0.05 (z > 2.3). Finally, to quan-
tify the percent change in activation across different contingency 
change types, we created spheres with 8 mm radii around centro-
ids of our functionally-defi ned regions-of-interest (ROIs) using 
MRICRON (Rorden et al., 2007).

Activation cluster peaks presented in Tables 1, 2, and 4 were 
produced using FSL. For each table, 30 peaks were determined for 

each cluster, and labeled with their Harvard-Oxford designation 
using FSLview. Only the peak voxel for each anatomical designa-
tion is listed. Activation Table 3 was produced using MRICRON 
to calculate the centroid of each cluster.

RESULTS
BEHAVIORAL DATA
Following a random guess on the fi rst trial, optimal behavior in this 
task was to select the option that was rewarded on the previous trial 
(i.e., follow a win-stay/lose-shift strategy, WSLS). A feature of this 
task is that subjects should engage in one-trial learning, which 
minimizes the problems of temporal credit assignment that occur 
within probabilistic reversal learning tasks. Note that given the 
low likelihood and unpredictability of the reversal change trials, 
attempts to predict such shifts in value contingencies would reduce 
overall payment. Thus, we measured behavioral performance in 
reference to an optimal WSLS strategy. On average, participants 
performed the WSLS strategy on 99.4% of trials, with no individual 
run for any participant below 95% performance. All participants 
described (in their own words) following a WSLS strategy in a 
post-study questionnaire. In addition, very few trials were missed 
due to slow responses (mean: 0.7%), with only one participant 
missing over 2% of trials in any individual run.

To examine the effects of contingency changes upon subse-
quent behavior, we evaluated whether participants’ response 
times were slowed on the trial following each type of contingency 
change. Following standard trials, the mean response time across 
participants was 396 ms (SD: 144 ms). Response time increased 
signifi cantly following each type of contingency change (repeated 
measures ANOVA, main effect p < 0.05): for reversal changes, 
418 ms; for value changes, 411 ms; for one-dimensional effect 
changes, 410 ms; and for two-dimensional effect changes, 425 ms. 
Thus, our behavioral data indicate that participants performed at a 
nearly optimal level throughout the experiment, but were neverthe-
less infl uenced by each sort of contingency change.

fMRI DATA
We fi rst examined the main effect of Reversal Change, as a con-
trast between this event regressor and the Standard trials baseline. 
Signifi cant areas of activation included posterior parietal cortex 
(PPC), anterior insula cortex (aINS), lateral prefrontal cortex 
(LPFC), dorsomedial prefrontal cortex (DMPFC), precuneus, sup-
plementary motor cortex (SMC), and precentral cortex (Figure 2A 
and Table 1). This set of regions replicates that described by previous 
studies in which contingency changes involved behavioral shifts 
(Cools et al., 2002; O’Doherty et al., 2003; Remijnse et al., 2005; Xue 
et al., 2008). For example, Cools et al. (2002) found greater activation 
in the LPFC for reversal errors relative to probabilistic errors.

Next, we examined the main effect of Value Change, again as 
a contrast between this task-related regressor and the Standard 
trial baseline. No brain regions survived our standard statistical 
criterion. This absence of activation could be due to the specifi c 
bimodal distribution of value changes in our task, which contained 
both large negative events (i.e., Reversal changes) and small positive 
and negative changes (i.e., Value changes).

Finally, we identifi ed the main effect of Effect Change, contrasting 
this regressor with the Standard trial baseline. We found signifi cant 



Frontiers in Human Neuroscience www.frontiersin.org September 2009 | Volume 3 | Article 23 | 4

Mullette-Gillman and Huettel Neural substrates of contingency learning

activations in the striatum, PPC, LPFC, aINS, and temporal cortices 
(Figure 2B and Table 2). This pattern of activation contains many 
of the same regions as observed for Reversal Change trials,  consistent 
with the interpretation that similar networks process each sort of 
contingency change.

To determine regions whose activation increased signifi cantly 
for both Reversal Changes (i.e., valuative contingency shifts) and 
Effect Changes (i.e., non-valuative contingency shifts), we exam-
ined the intersection of voxels whose activation increased signifi -
cantly to both types of change, independently (voxelwise z > 2.3, 
with whole-brain cluster correction of p < 0.05). This conjunction 
analysis revealed activations in aINS, PPC, and LPFC (Figure 3 
and Table 3). ROI analyses were performed to compare the levels 
of activation produced by the reversal and effect changes. No sig-
nifi cant differences between the reversal and effect changes were 
found within these co-activated regions (Figures 3B–D).

To identify regions whose activation differed based on the 
nature of contingency change, we examined the contrasts of 
Effect Change > Reversal Change, and Reversal Change > Effect 
Change; (Figure 4 and Table 4). Effect Changes only produced 
signifi cantly greater activations in a small number of posterior 
regions (including the middle temporal gyrus) that have been 
previously implicated in object processing (Martin et al., 1996; 
Weisberg et al., 2007). Reversal Changes produced signifi cantly 
greater activations in the DMPFC, SMC, and precentral gyrus, 
regions previously implicated in the selection of actions and the 
production of motor responses. ROI analyses of these regions are 
presented in Figures 4B–D.

DISCUSSION
Humans, like many other animals, possess a high degree of behav-
ioral fl exibility. We can learn the values of different actions and can 
select new courses of behavior when those values change. However, 
human learning extends well beyond action-value contingencies to 
include learning about the physical effects of our actions, which can 
be generalized to novel situations with new valuative contingen-
cies. Although numerous studies have explored the neural basis of 
valuative contingency learning, many have confounded the change 
in the reward with the physical change in the rewarding stimulus. 
Here, we show that, when compared within the same task, the brain 
regions associated with learning reward-action contingencies are 
also engaged by behaviorally- and reward-irrelevant contingency 
changes.

VALUATIVE VS. NON-VALUATIVE CONTINGENCY PROCESSING
Our data suggest that the prefrontal and parietal cortex  activations 
associated with value learning could be attributable to the co-
 occurring physical changes in the rewarding stimulus. This strong 
interpretation is supported by the differential effects of prefrontal 
lesions across a range of species. Lesions in the ventromedial pre-
frontal cortex (including orbitofrontal areas) appear to remove the 
motivation or ability to learn values and respond appropriately, 
such as in the reversal-learning task (Doar et al., 1987; Bechara et al., 
1994; Dias et al., 1996; Hornak et al., 2004; Izquierdo et al., 2004; 
Rudebeck and Murray, 2008). In contrast, LPFC lesions disrupt 
the learning or accessing of contingency information, such as in 
an extradimensional set shifting task (Owen et al., 1991; Dias et al., 

Reversal change > baseline
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2.3 3 4 5
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z-10 z-2 z14 z28 z40 z52

z-10 z-2 z14 z28 z40 z52

Effect change > baseline
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B

FIGURE 2 | Neural activation in response to contingency changes. (A) On 
Reversal Change trials, the contingencies between actions and their rewarding 
outcomes switch, so that the participant should select a different action on the 
subsequent trial. Such changes evoke activation in a dorsal executive network 
comprising regions of medial and lateral prefrontal cortex, parietal cortex, and 

insular cortex, among other regions. (B) On Effect Change trials, only the visual 
effect of the action changes; the outcome has the same value, and the 
participant does not need to switch behavioral responses. Activation was again 
observed in lateral prefrontal and parietal cortices, along with regions of visual 
cortex.
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1996; Hornak et al., 2004; see also Barcelo et al., 2007). Alternatively, 
LPFC could contribute to both sorts of contingencies: the physical 
effect of our action and the valuation of that effect. These two inter-
pretations cannot be distinguished when examining value learning 
as a categorical change, as in the reversal learning task, as new value 
contingencies also refl ect newly rewarded stimuli.

The key to determining which of these interpretations is cor-
rect is to parametrically dissociate the change in value from the 
changes in the physical stimulus. Studies which have examined 
the processing of parametric value signals using fMRI and physi-
ological recording techniques have identifi ed several brain regions 

which appear to encode parametric value signals, including the 
medial prefrontal cortex, orbitofrontal cortex, amygdala, dorsal and 
ventral striatum, nucleus accumbens, and posterior parietal cortex 
(PPC) (O’Doherty et al., 2001, 2003; Delgado et al., 2003; Dorris 
and Glimcher, 2004; Knutson et al., 2005; Kable and Glimcher, 2007; 
Lau and Glimcher, 2007; Plassmann et al., 2007, 2008; Hare et al., 
2008; Schiller et al., 2008). Notably absent from this list of value-
encoding regions are the MFG, IFG, and aINS, in which activation 
was evoked during both the Reversal Change and Effect Change 
trials. This suggests these lateral prefrontal and insular cortices 
encode the non-valuative contingency information related to learn-
ing about the environment.

Of the brain areas we identifi ed as processing multiple sorts 
of contingency information, only the PPC has previously been 
implicated in processing parametric value information (Platt and 
Glimcher, 1999; Dorris and Glimcher, 2004). This suggests that 
the PPC may play a role in the integration of actions with both 

Table 1 | Regions exhibiting main effects of Reversal Changes.

z-stat X (mm) Y (mm) Z (mm) Hemisphere Region

3.63 0 16 38 Mid Anterior cingulate 

     gyrus (*DMPFC)

4.2 40 8 30 Right Precentral gyrus

3.68 18 4 50 Right Superior frontal 

     gyrus

3.58 40 4 52 Right Middle frontal 

     gyrus (*LPFC)

3.57 −10 2 50 Left Supplementary 

     motor cortex

4.1 −24 0 58 Left Superior frontal 

     gyrus

4.29 −32 −2 58 Left Middle frontal 

     gyrus (*LPFC)

3.93 −36 −4 52 Left Precentral gyrus

3.72 2 −12 −2 Right Thalamus

3.52 −10 −20 −2 Left Thalamus

3.37 −24 −26 −8 Left Hippocampus

4.36 −42 −30 46 Left Postcentral gyrus

3.44 10 −30 −6 Right Parahippocampal 

     gyrus

4.02 −36 −32 34 Left Supramarginal 

     gyrus, anterior 

     division

3.35 −10 −32 −10 Left Parahippocampal 

     gyrus

3.71 −46 −42 40 Left Supramarginal 

     gyrus, posterior 

     division

3.68 −32 −42 48 Left Superior parietal 

     lobule (*PPC)

4 34 −46 40 Right Superior parietal 

     lobule (*PPC)

3.59 −38 −46 38 Left Supramarginal 

     gyrus, posterior 

     division

3.46 42 −52 −18 Right Temporal occipital 

     fusiform cortex

3.6 28 −74 −12 Right Occipital fusiform 

     gyrus

Coordinates indicate the peak voxel (i.e., maximal z score) within each anatomical 
region. *Indicates functional label used in text.

Table 2 | Regions exhibiting main effects of Effect Changes.

z-stat X (mm) Y (mm) Z (mm) Hemisphere Region

3.38 −26 40 16 Left Frontal pole

3.41 48 36 26 Right Frontal pole

3.23 −28 36 20 Left Middle frontal gyrus

3.44 −30 26 −4 Left Frontal orbital cortex

3.24 −34 22 8 Left Frontal operculum 

     cortex

3.42 28 20 −2 Right Insular cortex

3.32 −32 18 8 Left Insular cortex 

     (*aINS)

3.55 36 14 38 Right Middle frontal gyrus

3.98 50 10 4 Right Inferior frontal gyrus 

     (*LPFC)

3.35 50 8 8 Right Precentral gyrus

3.54 62 4 22 Right Precentral gyrus

3.29 −20 −2 8 Left Putamen

3.25 −20 −4 0 Left Pallidum

3.74 16 −8 12 Right Thalamus

3.27 −10 −10 6 Left Thalamus

3.36 −52 −44 30 Left Supramarginal gyrus

3.87 58 −46 −16 Right Inferior temporal 

     gyrus

3.51 −26 −50 44 Left Superior parietal 

     lobule (*PCC)

3.43 −60 −54 16 Left Angular gyrus

3.88 64 −56 4 Right Middle temporal 

     gyrus

4.54 26 −68 −14 Right Occipital fusiform 

     cortex

3.82 8 −74 12 Right Intracalcarine sulcus

4.14 12 −76 60 Right Lateral occipital 

     cortex

3.65 −12 −80 4 Left Intracalcarine sulcus

4.13 −4 −82 −2 Left Lingual gyrus

Coordinates indicate the peak voxel (i.e., maximal z score) within each anatomical 
region. *Indicates functional label used in text.
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valuative and non-valuative outcomes (Assad, 2003). This agrees 
with the hypothesis that the PPC acts as a decision map, relating 
actions to the expected value of their effects (Platt and Glimcher, 
1999; Beck et al., 2008; Churchland et al., 2008). Such an inte-
grative role could provide a unitary framework for the myriad 
functions supported by PPC subregions, such as in multi-modal 
integration of sensory input (Cohen and Andersen, 2000; Toth 
and Assad, 2002; Cohen et al., 2004; Mullette-Gillman et al., 2005), 

the  attentional-intentional processes relating to motor planning 
(Colby and Goldberg, 1999; Snyder et al., 2000), working memory 
(Stoet and Snyder, 2004; Vingerhoets, 2008), and visuomotor learn-
ing (Grafton et al., 2008).

CONTINGENCY VS. CONTROL PROCESSING
An important question is how contingency processing interacts 
with the executive control processes responsible for producing 
behavioral changes when necessitated by a contingency change. 
The LPFC and aINS have long been hypothesized to play a criti-
cal role in working memory and other executive functions, based 
upon converging evidence from single-unit (Goldman-Rakic, 
1996; Chafee and Goldman-Rakic, 1998), lesion (Doar et al., 1987; 
Hornak et al., 2004), and fMRI studies (Elliott et al., 1997; Rowe 
et al., 2000). Our LPFC and aINS activations during both reversal 
changes and effect changes agree with the interpretation that the 
prefrontal cortex is involved in forming, updating, and accessing 
models that relate stimuli to actions (Passingham, 1975; Cohen 
and Servan-Schreiber, 1992; Grafman et al., 1994; Wise et al., 1996; 
Miller and Cohen, 2001).

Co-occurring LPFC, aINS, and DMPFC activity has also been 
observed across a large number of studies examining executive 
control processes, including auditory detection, pattern detection, 
working memory, and response selection (Goldman-Rakic, 1996; 
McCarthy et al., 1997; Duncan and Owen, 2000; Miller and Cohen, 
2001; Huettel et al., 2002; Robbins, 2007; Hyafi l et al., 2009). Models 
of executive control processing have suggested that the DMPFC 
(referred to as anterior cingulate cortex, ACC) detects changes in 
contingencies and then activates the LPFC, which exerts execu-
tive control over behavior by biasing activity in other brain areas 
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FIGURE 3 | Conjunction of activations for Reversal Changes and Effect 

Changes. (A) Shown are regions that exhibited signifi cant activation in both the 
Reversal Change and Effect Change conditions. Subsequent functional ROI 
analyses extracted the relative signal change evoked for each trial 

type – Reversal Changes, Value Changes, and Effect Changes – within the (B) 
right anterior insula cortex, (C) right posterior parietal cortex (PPC), and (D) right 
middle frontal gyrus (MFG). Horizontal lines indicate pairs of conditions with 
signifi cant differences in activation amplitude (p < 0.05).

Table 3 | Results of a conjunction analysis across Reversal Changes and 

Effect Changes.

# voxels X (mm) Y (mm) Z (mm) Hemisphere Region

308 34 22 −2 Right Anterior insula 

     (*aINS)

440 42 12 26 Right Inferior frontal 

     gyrus (*LPFC)

502 38 2 56 Right Middle frontal 

     gyrus (*LPFC)

315 −32 −52 46 Left Superior parietal 

     lobule (*PPC)

836 32 −54 48 Right Superior parietal 

     lobule (*PPC)

1893 30 −66 −10 Right Occipital fusiform

     gyrus

1077 −34 −72 −8 Left Occipital fusiform

     gyrus

Coordinates indicate the centroid of the activation within each anatomical region. 
Voxels are 2 mm3. *Indicates functional label used in text.
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(Botvinick et al., 2001; Miller and Cohen, 2001; Ridderinkhof et al., 
2004; Walton et al., 2004; Behrens et al., 2007; Mansouri et al., 2009). 
However, a recent study by Sridharan et al. (2008) using Granger 
causality analysis, found the aINS exhibited a causal infl uence on the 
LPFC and DMPFC (referred to as ACC, and anterior to our specifi c 
DMPFC activation) (Sridharan et al., 2008), an inversion of the 
directionality of infl uence suggested by the previously mentioned 
executive function models (see also Markela-Lerenc et al., 2004).

We suggest that these discrepancies refl ect, at least in part, the 
confl ation of contingency detection and control processes in many 
paradigms. For example, although activations of the LPFC during 
an oddball task are often described in terms of behavioral control 
or inhibition, these activations have been shown to be produced 
by contingency changes in the mapping of stimuli to responses 
independently of changes in the specifi c motor response (Huettel 
and McCarthy, 2004). Similarly, Carter et al. (2006) found activity 
in the LPFC (specifi cally, MFG) correlated with the trial-by-trial 
level of explicit contingency knowledge during a classical condi-
tioning paradigm in which there was no rewarded, or ‘correct’, 
response (Carter et al., 2006). These studies show that the LPFC 
processes contingency information in the absence of engaged con-
trol processes.

Our task allowed the dissociation of contingency and executive 
control processing within the same task to examine the functional 
roles of these brain areas. The contrast of Reversal Change > Effect 
Change allowed us to determine which brain areas are signifi cantly 
more activated during the engagement of control and concurrent 
valuation processes, while controlling for contingency changes. 
We found increased activations in the posterior dorsomedial pre-
frontal cortex (DMPFC, including dorsal anterior cingulate), sup-
plementary cortex (SMC), and precentral cortex during reversal 
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FIGURE 4 | Contrasts between Reversal Changes and Effect Changes. 

(A) Shown are regions that exhibited signifi cant differences in activation 
between the Reversal Change and Effect Change conditions. Functional ROI 
analyses extracted the relative signal change evoked for each trial type – 

Reversal Changes, Value Changes, and Effect Changes – within the (B) right 
middle temporal gyrus (MTG), (C) right precentral gyrus (PCG), and (D) 
dorsomedial prefrontal cortex (DMPFC). Horizontal lines indicate pairs of 
conditions with signifi cant differences in activation amplitude (p < 0.05).

Table 4 | Regions exhibiting signifi cant differences between Reversal 

Changes and Effect Changes.

z-stat X (mm) Y (mm) Z (mm) Hemisphere Region

EFFECT CHANGE > REVERSAL CHANGE

3.33 −38 −68 −26 Left Occipital 

     fusiform gyrus

3.37 56 −70 −20 Right Lateral 

     occipital cortex

3.65 −30 −88 −26 Left Lateral 

     occipital cortex

3.64 −24 −92 −34 Left Cerebellum

3.83 ±20 −96 −30 Bilateral Occipital pole

REVERSAL CHANGE > EFFECT CHANGE

3.56 4 −2 56 Right Supplementary 

     motor cortex

3.6 −14 −2 66 Left Superior frontal 

     gyrus

4.25 −28 −8 60 Left Precentral 

     gyrus

3.81 −4 −12 48 Left Supplementary 

     motor cortex

4.4 −40 −30 46 Left Postcentral 

     gyrus

3.69 −42 −38 42 Left Supramarginal 

     gyrus

3.56 −34 −44 54 Left Superior 

     parietal lobule

Coordinates indicate the peak voxel (i.e., maximal z score) within each anatomical 
region.
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changes contrasted with effect changes. As contingency change 
detection occurs in both Effect and Reversal Changes, this suggests 
that the aINS and LPFC process the contingency change (and 
possibly, exert the required cognitive control), with activation of 
the DMPFC only when control processes are required to pro-
duce a change in behavioral response. This is consistent with the 
directionality found by recent studies (Markela-Lerenc et al., 2004; 
Sridharan et al., 2008), and suggests dissociable functional roles for 
these brain areas which are an inversion of previous models.

CONCLUSIONS
We examined the potentially distinct neural mechanisms under-
lying behaviorally relevant valuative and behaviorally irrelevant 
non- valuative contingency learning. We found that the brain 
areas previously suggested to be involved in valuative contingency 

 learning also contribute to the processing of behaviorally and moti-
vationally irrelevant contingency changes. This suggests two key 
conclusions. First, the processing of value information may co-opt 
a more general executive system for contingency learning. Second, 
because non-valuative contingency changes are behaviorally irrel-
evant, the executive system may play an informational rather than 
control role in many tasks.
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