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proposed that dopamine neurons generate a “prediction error” 
 serving as a global learning signal (Montague et al., 1996; Schultz 
et al., 1997). Neuroimaging studies in humans have confi rmed 
corresponding responses in SN/VTA (Duzel et al., 2009) and the 
striatum (McClure et al., 2003). The VST among other frontal cor-
tical areas has been shown to be involved in processing the deliv-
ery (Delgado et al., 2000; Elliott et al., 2000; Breiter et al., 2001), 
anticipation (Knutson et al., 2001), and predictability of rewards 
(Pagnoni et al., 2002). Most of these fi ndings are in line with the 
hypothesis that VST responses signal errors in the prediction of 
rewards (McClure et al., 2004; Schultz, 2007).

Little is known, however, about how these processes are 
altered in the aging brain. Behavioral evidence suggests that 
reward-based decision making is impaired in old age. In proba-
bilistic reversal learning tasks, older participants are defi cient 
in the  acquisition and reversal learning of reward associations 
(Marschner et al., 2005; Mell et al., 2005; Weiler et al., 2008). 
Moreover, older participants show insuffi cient category learning 
and set shifting as assessed with the Wisconsin Card Sorting Test 
(WCST, Ridderinkhof et al., 2002; Rhodes, 2004) and impaired 
decision making as assessed with the Iowa Gambling Task 
(Denburg et al., 2005).

Few human neuroimaging studies have focused on age-related 
neurofunctional changes of the reward system and reported striatal 
dysfunction in old age (Nagahama et al., 1997; Esposito et al., 1999; 
Fera et al., 2005; Mohr et al., 2009). Tasks used in those studies 
lack the separation of specifi c processes, such as decision  making 

INTRODUCTION
Aging is associated with a decline in different cognitive domains, 
such as working memory, episodic memory, fl uid aspects of intel-
ligence, and executive functioning (Lindenberger et al., 1993; Craik 
and Salthouse, 2000). Many aspects of cognitive abilities as well as 
motor functions rely on the functional integrity of the dopamin-
ergic system (Burns et al., 1983; Sawaguchi and Goldman-Rakic, 
1991; Wittmann et al., 2005; Schultz, 2007 for review). During 
aging, dopamine concentration and receptor density gradually 
decrease, especially in the prefrontal cortex (PFC) and the stria-
tum (Bäckman and Farde, 2005). Furthermore, the PFC and basal 
ganglia appear to be susceptible to age-related decreases in volume 
(Raz, 2000; Raz and Rodrigue, 2006). Based on these fi ndings, the 
dopamine hypothesis of cognitive aging states that neurochemi-
cal alterations of the dopaminergic system give rise to declines 
in various cognitive functions in old age (Bäckman et al., 2006). 
The dopaminergic system also plays a major role in reward-based 
learning and decision making (Pagnoni et al., 2002; O’Doherty 
et al., 2003; Montague et al., 2006). Neurophysiological studies 
in animals and, more recently, neuroimaging studies in healthy 
young humans have identifi ed a neural network, which represents 
different modalities and aspects of reward processing and reward 
association learning. This network includes the dopaminergic 
midbrain (substantia nigra/ventral tegmental area, SN/VTA) and 
its target structures such as the PFC [orbitofrontal cortex (OFC), 
ventromedial and dorsolateral PFC (dlPFC)], the amygdala, and 
the ventral striatum (VST, Schultz, 2000 for review). It has been 
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and reward processing. Furthermore, it is unclear whether the 
 neurofunctional differences observed in those studies are due to 
performance differences or changes of the reward system.

More recent functional magnetic resonance imaging (fMRI) 
studies have compared younger and older participants perform-
ing a monetary incentive delay (MID) task (Samanez-Larkin et al., 
2007; Schott et al., 2007). Schott et al. found greater increases in 
BOLD signal in the VST in younger adults during gain anticipa-
tion and in older adults during reward feedback (Schott et al., 
2007). Another study reported age-related differences in VST 
 during loss anticipation indicating an altered reward system in 
old age (Samanez-Larkin et al., 2007). In the MID task, associations 
between cues and outcomes are learned before the actual experi-
ment; the task does not focus on the learning process and does not 
have a choice component.

To study reward-based decision making in old age, we used a 
probabilistic object reversal task (pORT, Heekeren et al., 2007). We 
hypothesized that the PFC and VST would show an altered response 
during reward association learning in old age. Importantly, our 

design allows the separation of reward processing and decision 
making. Furthermore, a learning criterion enabled us to: (1) assess 
learning-related changes, and (2) control for the potentially con-
founding effect of performance differences by comparing responses 
in trials where older adults performed as well as younger adults.

MATERIALS AND METHODS
PARTICIPANTS
Twenty-eight healthy right-handed participants, 14 younger 
(8 females, mean age 26.48, SD ± 3.96 years) and 14 older adults 
(7 females, mean age 67.82, SD ± 5.01 years), participated in this 
study. Participants were recruited through newspaper advertise-
ments and received 40€ for participation. Groups were matched 
for formal education (see Table 1 for sample characterization).

None of the participants reported cardiovascular pathol-
ogy, medication, history of neurological or psychiatric episodes 
or substance abuse. We applied a neuropsychological test bat-
tery to further characterize the sample and to assess for signs of 
 dementia in each participant (see Table 2 for descriptive statistics). 

Table 1 | Sample description. Age and years of formal education of younger and older adults are displayed.

 Younger Older Group comparison

 M SD M SD t df p

Age (years) 26.48 3.96 67.82 5.01 −585.71 26 <0.001

High school (years) 11.14 1.75 10.79 1.67 0.31 26 0.59

Education total (years) 14.57 2.90 15.39 2.81 –0.35 26 0.56

Scores were subjected to t-tests for independent groups. M: mean; SD: standard deviation; t: t-value; df: degrees of freedom; p: p-value.

Table 2 | Descriptive statistics for tests assessing general intellectual abilities for younger and older adults.

 Young Old Group comparison

 M SD M SD t df p

Digit letter test 131.57 16.41 122.93 16.48 1.93 26 0.18

LPS-3 28.43 4.25 25.21 6.58 2.38 26 0.14

MWT-B 31.29 2.76 34.0 2.25 −8.13 26 0.01

Ten-Word-List 8.43 0.94 6.93 1.07 15.54 26 0.001

FCSRT (free recall 1) 12.69 1.25 10.38 2.43 9.27 26 0.01

FCRST (free recall 2) 14.08 1.12 12.31 1.44 12.31 26 0.01

FCRST (free recall 3) 14.85 1.21 13.46 1.39 7.38 26 0.05

RTMT-A 24.93 6.65 39.14 10.41 18.55 26 0.001

RTMT-B 56.21 14.72 80.07 21.01 12.11 26 0.01

SOPT (9 items) 0.83 0.57 1.5 0.69 7.86 26 0.01

SOPT (16 items) 1.62 0.87 2.57 1.05 6.82 26 0.05

TOL 53.21 2.36 52.57 1.74 0.673 26 0.42

FAS 42.14 8.93 37.07 10.94 1.81 26 0.19

STROOP 11.21 6.57 18.21 4.02 11.72 26 0.05

WCST (errors) 22.42 14.88 38.5 18.41 5.14 26 0.05

Mean values (M), standard deviations (SD) and t-tests for independent groups are displayed. LPS-3, Leistungsprüfsystem Test 3; MWT-B, Mehrfach–Wortwahl–
Wortschatz test Version B; Ten-Word-List, Ten-Word-List with Encoding Enhancement; FCSRT, Free and Cued Selective Reminding Test; RTMT-A (B), Reitan Trail 
Making Task Part A (B); SOPT, Self Ordered Pointing Task; TOL, Tower of London Task; FAS, Controlled Oral Word Association Task; STROOP, Stroop Color–Word 
Interference Test; WCST, Wisconsin Card Sorting Test; number of false answers (errors) throughout the entire test.



Frontiers in Human Neuroscience www.frontiersin.org October 2009 | Volume 3 | Article 34 | 3

Mell et al. Ventral striatum in old age

This included assessing episodic memory [Ten-Word-List with 
Encoding Enhancement (Reischies et al., 2000), Free and Cued 
Selective Reminding Test (Grober et al., 1988)], processing speed 
[Reitan Trail Making Task Part A and B (Reitan, 1958), Digit Letter 
Test (Lindenberger et al., 1993)], crystallized intelligence [Multiple 
Choice Vocabulary Test, Mehrfach–Wortwahl–Wortschatz test 
Version B (Lehrl et al., 1995)], reasoning [Leistungsprüfsystem 
Test 3 (LPS-3, Horn, 1983)], and executive functions [Self Ordered 
Pointing Task (Petrides and Milner, 1982), Tower of London Task 
(Shallice, 1982), Controlled Oral Word Association Task (Benton 
and Hamsher, 1976), Stroop Color–Word Interference Test (Stroop, 
1935), WCST (Grant and Berg, 1948)]. As expected, younger par-
ticipants performed signifi cantly better than older participants on 
most tasks assessing processing speed, reasoning, executive func-
tions, and episodic memory. Older participants scored higher on 
the multiple choice vocabulary test and were above normal age 
performance on the LPS-3 and the Digit Letter Test (see Table 2). 
In conclusion, psychometric data indicate that we included healthy 
older participants with a high level of cognitive abilities. The 
study was approved by the local ethics committee of the Charité-
University Medicine Berlin, and written consent was obtained from 
each  participant prior to participation.

PROBABILISTIC OBJECT REVERSAL TASK
In object reversal tasks, the participant typically has to learn 
object-reward associations between repetitively presented items. 
After a given time or criterion, the reward schedule changes so 
that another item is maximally rewarding. In this version, partici-
pants viewed four of six letters (C, F, H, N, R, S) simultaneously 
on a screen (Figure 1A). Each letter corresponded to an abstract 
non-monetary feedback cue ranging between −40 and +40 points 
(40, 20, 0, −20, −40; Reischies, 1999). Participants had to choose one 
of the letters and indicate their choice with a button press on a four-
button response box. The participant’s task was to collect as many 

points as possible; that is, to fi nd the maximally  rewarding letter. 
To increase task diffi culty and to reduce predictability, we  introduced 
a  probabilistic variation in the outcome schedule: for each letter, a 
fi xed payoff was used in 80% of the trials. In the remaining 20%, 
only a reduced amount of points was delivered (e.g., 20 instead of 
40 points). After six to eight continuous successful trials, reward 
contingencies covertly changed; that is, the participant had to learn 
new reward associations. If they did not learn this association within 
15 trials, the feedback schedule also covertly changed. Thirty control 
trials were also randomly inserted. The experiment consisted of a 
total of 12 blocks with different feedback schedules.

Stimuli were presented for 3500 ms. The duration of this period 
was adjusted according to reaction times in previous studies using 
this task in older adults to account for age differences in processing 
speed (Mell et al., 2005). The stimulus presentation was separated 
from the presentation of feedback (1000 ms) by inserting a fi xa-
tion period of variable duration (2000 ± 1500 ms). The feedback 
presentation was followed by a variable intertrial interval (ITI, 
2500 ± 2000 ms) during which a fi xation cross was presented. In 
control trials, the participant had to choose the letter “X” from a 
display of three “Y” and one “X” and received 0 points. Prior to 
the fMRI experiment, participants performed one block without 
reversal and were told not to use any strategy or rule.

For post hoc analysis, we defi ned an additional learning criterion 
that defi nes a “learned” trial as any correct trial after two success-
ful trials and a continuous correctness of 80%. According to this 
criterion, we grouped trials into two stages of learning. In “search” 
trials, participants looked for the maximally rewarding letter by 
trial and error until they reached the learning criterion, whereas 
in “learned” trials they showed successful learning according to the 
criterion (cf. Figure 1B).

We assessed several behavioral parameters: the total amount 
of collected points throughout the task (“global score”), and the 
number of trials in which participants did not choose the most 

FIGURE 1 | Probabilistic object reversal task. (A) Experimental design: 
Participants chose one of four letters presented for 3.5 s (letter chosen marked 
red). After a randomized delay, abstract non-monetary feedback cues (“points”) 

were presented. (B) Performance of one participant. Choices and resulting 
outcomes are plotted throughout one block. The red marked trials were assigned 
to “search” trials whereas the blue marked trials were treated as “learned” trials.
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profi table letter of the current block (“errors”). The amount of 
total errors was subdivided into “perseverative errors” in which 
participants kept consistently choosing a letter no longer associated 
with the maximum feedback, and “random errors”. In addition, the 
number of blocks in which the learning criterion was reached was 
determined for each participant (number of successful blocks; for 
a more detailed description, see Mell et al., 2005).

fMRI DATA ACQUISITION
FMRI was performed on a 1.5-T Magnetom Vision scanner 
(Siemens Medical Systems, Erlangen, Germany) with a standard 
head coil. Head movement was minimized using a vacuum pad. 
First, two structural 3D data sets were acquired for all participants 
using a T1-weighted sequence (FLASH, TR 20 ms, TE 5 ms, FA 30°, 
FOV 256 mm, Matrix 256 × 256, one hundred and eighty 1-mm 
slices, in-plane resolution: 1 mm2). Thereafter, three runs, each 
consisting of 210 functional images using a T2*-weighted gradi-
ent echo sequence, were acquired (TR 2500 ms, TE 40 ms, FA 90°, 
FOV 256 mm, matrix 64 × 64, twenty-six 4-mm slices, inter-slice 
gap 0.6 mm, in-plane resolution: 4 mm2, ascending acquisition 
of images). The task was programmed in C++ and was projected 
on a back-projection screen using an LCD projector. We used a 
rapid event related design. The event schedule was optimized using 
Optseq2 (http://surfer.nmr.mgh.harvard.edu/optseq, Dale, 1999). 
Durations of the delay period and ITI were determined by a genetic 
algorithm (Wager and Nichols, 2003). Variation of the delay period 
and ITI allowed us to acquire scans in temporal asynchrony to the 
task in order to avoid a systematic bias in sampling over peristimu-
lus time. During functional scanning, each participant completed 
164.6 ± 3.6 trials.

DATA ANALYSIS
Behavioral data
Raw data were tested for homogeneity of variance using Levene’s 
test. The global score as well as the number of successful blocks 
violated this assumption. Therefore, group comparisons for 
the global score as well as the number of successful blocks were 
subjected to non-parametric statistics (Mann–Whitney U test). 
All other scores were calculated using t-tests for independent 
groups. Analyses were performed using the SPSS software  package 
(SPSS Inc., Cary, NC, USA).

fMRI data
Imaging data were analyzed using a mixed effects approach within 
the framework of the general linear model as implemented in the 
statistical parametric mapping software package SPM21. Six func-
tional volumes were excluded to avoid magnetic saturation effects. 
Slice-time correction, realignment and spatial smoothing (Gaussian 
Kernel, FWHM = 10 mm × 10 mm × 11.5 mm) were applied. Our 
design allowed us to defi ne separate regressors for decision mak-
ing and reward processing within each trial. Decision making was 
defi ned as the period between presentation of the letters and the 
button press response. Reward processing was defi ned as the time 
during which participants watched the feedback cue indicating 
the number of points earned for the preceding choice. Additional 

regressors for “learned” and “search” trials were defi ned for decision 
making and reward processing, respectively. These contrast images 
were used to analyze the main effects of learning stage (“search”/
“learned”) within each group using one sample t-tests for younger 
and older adults separately in a mixed effects model and treating 
participants as random (p < 0.005 uncorrected). These regressors 
resulted in the following contrasts: Decision making “learned” vs. 
“search” and Reward processing “learned” vs. “search”. Note that 
for the analysis of reward processing we only compared trials in 
which participants received 40 points either by chance (“search”) 
vs. as expected outcome (“learned”). Afterwards, a between-groups 
 analysis was performed using a two-sample t-test in order to study 
age differences (interaction of learning stage × age, p < 0.005, uncor-
rected). We assigned neuroanatomical labels to coordinates of each 
contrast map by converting the MNI coordinates to Talairach coor-
dinate space (Talairach and Tournoux, 1988) using the Talairach 
Daemon (Lancaster et al., 2000). For a region of interest analysis in 
right VST and right dlPFC, we functionally defi ned a sphere with a 
diameter of 10 mm around each peak voxel in those contrast maps 
where a signifi cant signal increase was found. GLM beta weights 
were obtained for each participant. To test whether age-related 
differences in BOLD response in dlPFC could be explained by 
age-related differences in other cognitive abilities we conducted 
an analysis of covariance (ANCOVA). We entered parameter esti-
mates in the dlPFC region modulated by the learning stage × age 
interaction as dependent variable, scores of other tests assessing 
executive functions, processing speed, or episodic memory as cov-
ariates, and age group as a two-level independent group variable 
(younger vs. older).

RESULTS
BEHAVIORAL DATA
Consistent with an earlier behavioral study (Mell et al., 2005), older 
adults as compared to younger adults collected fewer points through-
out the entire task (U = 38.5, p < 0.01, Table 3), needed more trials 
to learn the cue-reward association within a block [t(26) = 12.99, 
p < 0.001], and completed fewer blocks successfully (U = 22.0, 
p < 0.001). Error analysis during the search phase indicated that there 
was no statistically signifi cant difference in the number of persevera-
tive errors between the two groups [t(26) = 0.35, p = 0.56]. Older 
adults committed more random errors as compared to the young 
participants [t(26) = 13.76, p < 0.001]. After associations had been 
learned – that is, during “learned” trials – younger and older adults 
performed equally well [mean points received: young participants 
38.45, SD ± 0.23; older participants 38.39, SD ± 0.23; t(26) = 0.66, 
p = 0.51]. There were no differences in reaction times between the 
two groups [mean reaction time: young participants 1420.29 ms, 
SD ± 350.22 ms, older participants 1442.57 ms, SD ± 90.89 ms; 
t(26) = −0.17, p = 0.89]. No participant showed reaction times above 
2100 ms, indicating that all participants were well within the time 
limit for responding (3500 ms after cue onset).

fMRI DATA
Effect of learning on BOLD signal changes during reward processing 
(“learned” trials vs. “search” trials)
In younger adults, during reward processing in “learned” relative 
to “search” trials, we found a bilateral BOLD signal increase in the 1www.fi l.ion.ucl.ac.uk/spm/software/spm2

1www.fi l.ion.ucl.ac.uk/spm/software/spm2
http://surfer.nmr.mgh.harvard.edu/optseq
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VST (Table 4). Direct group comparison (interaction of  learning 
stage × age) confi rmed greater recruitment of the right VST in 
younger as compared to older participants (Figure 2; Table 4).

Effect of learning on BOLD signal changes during decision making 
(“learned” trials vs. “search” trials)
Both younger and older adults showed greater BOLD signal increases 
in the dlPFC when associations had been learned (“learned” tri-
als) as compared to trials when associations had not yet been 
learned (“search” trials, Table 5). There was no signifi cant signal 

increase in striatal regions in either of the two groups. A direct 
group  comparison (interaction of learning stage × age), however, 
showed a greater signal increase in older adults in the bilateral 
frontal cortex, including the dlPFC, the cingulate gyrus, and the 
left parietal cortex (Figure 3; Table 5).

In addition, we tested whether age-related differences in the 
dlPFC BOLD signal in “learned” vs. “search” trials during deci-
sion making could be explained by age-related differences in 
other tests of executive functions (i.e., SOPT, TOL, FAS, RTMT-B, 
Stroop), processing speed (Digit Letter Test), or episodic memory 

Table 3 | Effect of age on the probabilistic Object Reversal Task (pORT). Behavioral data for younger and older participants.

pORT scores Young Old Group comparison

 M SD M SD t U  df p

Total errors 61.36 9.9 83.07 20.25 12.99  26 0.001

Random errors 57.29 9.269 78.21 18.97 13.76  26 0.001

Perseverative errors 4.07 3.52 4.86 3.48  0.35  26 0.56

Global score 3065.7 228.9 2387.1 676.85  38.5  0.01

Successful blocks 11.00 1.04 8.14 2.35  22.0  0.001

Mean values (M), standard deviations (SD) and t-test statistics for independent groups for total, random, and perseverative errors are shown. Trials in which participants did 
not choose the most profi table letter of the current block were termed “errors”. The amount of total errors was subdivided into “perseverative errors” in which participants 
kept consistently choosing a stimulus no longer associated with the maximum feedback, and “random errors”. The global score as well as the number of learned blocks 
were not normally distributed and were subjected to non-parametric statistics (Mann–Whitney U test).

Table 4 | Reward processing during “learned” vs. “search” trials.

Brain regions BA Left/right MNI coordinates (mm) Z-score Cluster size

   X Y Z  

YOUNG

Superior frontal gyrus  6 R 12 12 55 2.94   8

Ventral striatum  L −4 8 0 4.25  57

Ventral striatum  R 8 16 −5 3.69 

Cingulate gyrus 32 L −16 12 41 2.81   6

Postcentral gyrus  3 L −52 −16 55 3.34  20

Postcentral gyrus 40 R 24 −40 60 3.88 318

Superior parietal lobe  5 L −16 −44 60 3.57 

Superior temporal gyrus 22 L −64 −16 5 2.88   7

Postcentral gyrus 40 R 64 −24 23 4.44 204

Superior temporal gyrus 42 R 68 −36 18 4.28 

OLD

Middle occipital gyrus 18 L −32 −100 0 2.86   7

YOUNG > OLD

Ventral striatum  R 8 12 −5 2.82   7

Postcentral gyrus 43 R 68 −16 18 3.45  19

Superior temporal gyrus 22 R 68 −40 18 2.85 

OLD > YOUNG

Middle occipital gyrus 18 L −32 −100 0 3.61  72

Parahippocampal gyrus 37 L −36 −52 −9 2.93 

Brain regions showing a greater response to “learned” as compared to “search” trials in young adults, older adults and in-group comparisons. Activated anatomical 
region, coordinates of the local maxima of signifi cance within the Montreal Neurological Institute (MNI) coordinate system, its corresponding Brodmann area (BA), 
and the peak Z values are given. The reported regions were active with p < 0.005 (uncorrected).
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FIGURE 2 | Interaction of learning stage and age in VST in reward 

processing. (A) Increased activity in bilateral VST in reward processing 
comparing “learned” trials relative to “search” trials in younger adults 

(x = 8, y = 12, z = −5). In older adults no signifi cant signal changes were 
observed. (B) Contrast estimates (mean, standard error) of younger and older 
participants for “search” and “learned” trials in VST.

Table 5 | Decision making during “learned” vs. “search” trials.

Brain regions BA Left/right MNI coordinates (mm) Z-score Cluster size

   X Y Z  

YOUNG

Middle frontal gyrus 9 L −28 32 18 3.4 54

Inferior frontal gyrus 47 L −28 16 −28 2.85 

Inferior frontal gyrus 45 R 64 16 18 3.04 6

Postcentral gyrus 2 R 64 −24 46 2.85 11

Postcentral gyrus 3 L −64 −12 28 2.98 7

Cuneus 18 R 8 −96 28 3.33 20

Superior temporal gyrus 38 L −40 4 −23 3.15 36

Parahippocampal gyrus 34 L −24 0 −18 3.06 

OLD

Inferior frontal gyrus 46 R 52 48 0 3.36 12

Precentral gyrus 6 R 64 4 32 3.08 7

Middle frontal gyrus 9 R 60 16 32 2.8 

Superior frontal gyrus 9 L −8 52 28 3.27 25

Medial frontal gyrus 6 R 4 56 28 3.22 

Inferior parietal lobule 40 L −64 −36 41 3.23 49

Postcentral gyrus 3 L −64 −12 32 2.87 

Superior temporal gyrus 42 R 68 −28 14 4.02 14

YOUNG > OLD

Cuneus 18 R 8 −96 28 3.32 11

OLD > YOUNG

Superior frontal gyrus 8 R 36 32 51 3.74 36

Superior frontal gyrus 8 L −1 56 41 2.97 11

Middle frontal gyrus 9 R 60 20 32 3.13 21

Middle frontal gyrus 9 R 52 16 28 3.11 

Cingulate gyrus 32 R 4 16 41 2.88 11

Precuneus 7 R 4 −64 46 2.8 16

Supramarginal gyrus 40 L −60 −36 37 2.77 9

Pons  R 4 −20 −37 3.30 31

Parahippocampal gyrus 35 L −28 −16 −32 2.89 

Superior temporal gyrus 22 L −64 −32 9 3.34 18

Brain regions showing a greater response to decision making in “learned” vs. “search” trials in young and older adults and in-group comparisons. Activated 
anatomical region, coordinates of the local maxima of signifi cance within the Montreal Neurological Institute (MNI) coordinate system, its corresponding Brodmann 
area (BA), and the peak Z values are given. The reported regions were active with p < 0.005 (uncorrected).
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(Ten-Word-List). An ANCOVA showed that differences in SOPT, 
Stroop, TOL, FAS and RTMT-B could not explain differences 
in dlPFC BOLD signal. After correcting for all scores of execu-
tive functions separately as well as simultaneously, the effect of 
age on changes in BOLD signal in dlPFC remained statistically 
 signifi cant (F = 4.98, p < 0.05; Table 6). Furthermore, the age effect 
found in dlPFC remained statistically signifi cant after correcting 
for  measures of processing speed (Digit Letter Test, corrected age 
effect: F = 11.33, p < 0.005), and episodic memory (Ten-Word-List, 
corrected age effect: F = 7.45 p < 0.01).

DISCUSSION
In this study we investigated age-related changes in reward-based 
decision making and its neural correlates. At the behavioral level, 
older adults collected fewer points than younger adults, com-
pleted fewer blocks successfully, and needed more trials to learn 
the  stimulus–response association. Remarkably, there was no 
statistically signifi cant difference in the number of perseverative 
errors between the two groups, i.e., learning was slower in older 
adults even in the absence of persistent responding to the previ-
ously rewarded stimulus. The results suggest that there is no age-
related defi cit in reversing learned stimulus–response mappings 
but instead in learning the stimulus–reward associations, which 
replicates  previous fi ndings (Mell et al., 2005).

To study the neuronal correlates of reward-based decision 
 making in old age, we applied an event-related design that allowed 
separation of age-related differences in brain activity during deci-
sion making and reward processing. Furthermore, to test the course 
of learning and to account for performance differences typically 
found between young and older adults in a pORT, we grouped 
trials into “search” and “learned” trials depending on a learning 
criterion in a post hoc analysis.

During reward processing, we found a greater signal increase 
in the VST in younger participants when reward associations had 
been learned relative to when they had not yet been learned. As is 
known from studies in animals and humans, the VST serves as a key 
structure in reward processing. It responds to predictors (Knutson 
et al., 2001) and the outcome of expected rewards (Breiter et al., 
2001). Our data confi rm the involvement of the VST in reward 
association learning by signaling an expected outcome under prob-
abilistic conditions in younger adults (e.g., Heekeren et al., 2007). 
In contrast, we did not observe an analogous signal increase in the 
VST in older adults. The group × learning stage interaction revealed 
that while younger adults recruited the VST signifi cantly more in 
those trials when reward associations had been learned, older adults 
showed the opposite pattern. They recruited the VST in response to 
a rewarding stimulus when associations were not yet learned, that 
is, when the participant was rewarded by chance relative to when 
associations were learned, as seen in the young participants. Note 
that during “search” trials, the participant is rewarded by chance 
and shall use the respective feedback information to guide fur-
ther decision making. Older adults, while showing a greater signal 
increase in VST after reward delivery compared to the young adults, 
still needed longer to learn the reward association as illustrated 
by the behavioral difference, suggesting that an increase in VST 
activity might not facilitate reward association learning in old age. 
Our results are compatible with results of other age-comparative 
fMRI studies suggesting age-related differential recruitment of the 
VST (Samanez-Larkin et al., 2007; Schott et al., 2007; Dreher et al., 
2008). In our study we found no group difference in VST signals 
during decision making. This is in contrast to a recent study show-
ing specifi c recruitment of the VST in young as compared to older 
adults (Dreher et al., 2008). Our results agree with one study report-
ing stronger ventral striatal activity in older participants during gain 

FIGURE 3 | Decision making – interaction of learning stage and age. 

(A) Interaction of learning stage × age in the right dlPFC (x = 52, y = 16, 
z = 28). (B) Contrast estimates (mean, standard error) of “learned” and 
“search” trials in younger and older participants in the right dlPFC.

Table 6 | Results of an analysis of covariance with parameter estimates in 

dlPFC (“learned” vs. “search”) as dependent variable, scores of other 

tests assessing executive functions (SOPT, Stroop, RTMT-B, FAS and TOL) 

as covariates, and a two-level independent group variable (young vs. old).

Variable F df p

SOPT (16 items) 1.56 1 0.22

Stroop 0.09 1 0.76

RTMT-B 0.46 1 0.51

FAS 0.07 1 0.79

TOL 1.05 1 0.32

Group (young vs. old) 4.98 1 0.037

SOPT, Self Ordered Pointing Task; Stroop, Stroop Word–Color Interference Test; 
RTMT-B, Reitan Trail Making Task Part B; FAS, Controlled Oral Word Association 
Task; TOL, Tower of London Task.
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outcome in a MID task (Schott et al., 2007). Note that in contrast to 
the pORT used in the present study, in the MID task, associations 
are known prior to the start of the experiment. Therefore, only the 
state of anticipation and the occurrence of anticipated outcomes 
were investigated in those studies, but not the process of reward-
based learning and decision making. Our data confi rm the view of 
differential VST function in old age and show that the difference 
in VST activity is dependent on the stage of learning.

During decision making, older adults compared to younger 
participants recruited dorsolateral prefrontal areas differentially 
depending on the stage of learning. While younger adults activated 
the dlPFC during the initial stage of learning reward associations, 
older adults activated the dlPFC when reward associations had been 
learned successfully. The dlPFC is thought to be involved in various 
aspects of executive functions, such as maintenance, updating, and 
monitoring of working memory contents (Petrides et al., 2002) 
and decision making (Heekeren et al., 2004, 2008). Note that the 
learning by age interaction found in dlPFC could not be explained 
by age-related differences found in other cognitive measures such 
as executive functions, processing speed or episodic memory, 
 suggesting an age-related differential recruitment of dlPFC during 
decision making. With regard to reward-based decision making, 
the dlPFC is assumed to determine relevant reward information 
to plan and execute behavior directed toward rewards (Schultz, 
2000; Hornak et al., 2004; Ichihara-Takeda and Funahashi, 2008). 
To succeed in our task, participants have to consider the previously 
experienced rewards and punishments elicited by the presented 
letters; that is, they have to monitor their own performance and 
use the respective information for decision making. The interac-
tion of learning stage × age found during decision making could 
refl ect the fact that in the initial learning stages, younger adults 
successfully use the dlPFC to monitor past and current selections 
as well as their outcomes, which contributes to fi nding the maxi-
mally rewarding stimulus. In contrast, older adults allocate more 
resources to actively maintain and monitor performance and choice 
selection at the later stage of task performance when associations 
have already been learned.

Studies in non-human primates have shown that the rhinal cor-
tex and the OFC play an important role in reward reversal learn-
ing (e.g., Lee et al., 2007; Watanabe and Sakagami, 2007; Phillips 
et al., 2008 for reviews). It should be noted that we did not observe 
statistically signifi cant changes in BOLD signal in these regions 
during decision-making or reward processing in the pORT. Due to 

susceptibility artifacts BOLD signal changes in the OFC as well as 
the hippocampal formation of the brain are more diffi cult to detect 
(Asano et al., 2004; Du et al., 2007).

The present results may support the view of alteration in the 
functional integrity of the dopaminergic system as suggested by 
neurocomputational models that hypothesize that age-related loss 
of dopamine increases neural noise, which results in less distinctive 
representations in the brain (Li et al., 2001). Accordingly, a less 
distinctive representation of behaviorally relevant feedback infor-
mation in the VST may cause impoverished inputs to extrastriatal 
areas (for example, the dlPFC), resulting in diminished fronto-
striatal interaction for further decision making in old age. This 
view is supported by a recent study using 6-[(18)F]FluoroDOPA 
(FDOPA) positron emission tomography (PET) and fMRI showing 
a signifi cant interaction between midbrain dopamine synthesis and 
reward-related lateral PFC function in young compared to older 
adults. Midbrain measures of FDOPA correlated positively with 
BOLD signals in the lateral PFC during reward  processing in young, 
but negatively in older participants (Dreher et al., 2008).

Age-related changes in the serotonergic system, which have 
been shown using PET (Yamamoto et al., 2002; Moller et al., 
2007), could also contribute to the observed defi cit in reward 
association learning in older adults. Alterations in the seroton-
ergic system have been reported to result in defi cits in learning 
changing reward- associations, reversal learning and in the evalu-
ation of immediate and delayed rewards (Doya, 2008 for a review; 
Rogers et al., 1999; Clarke et al., 2004; Tanaka et al., 2007). Thus, 
age-related decline of serotonin receptors and serotonin trans-
porters could also contribute to an altered neuromodulation of 
cortical and subcortical regions that mediate important aspects 
of fl exible reward association learning in old age (see Mohr et al., 
2009 for a review).

In conclusion, the data support the view of altered fronto-striatal 
interaction during reward-based decision making in old age, which 
contributes to altered reward-based learning and decision making.
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