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and action observation (Willems and Hagoort, 2009), and on the 
neural basis of action semantics in language (Willems et al., in 
press). In one study we showed that differences in motor cortex 
activation between left- and right-handers in terms of action exe-
cution were similarly observed when participants viewed movie 
clips of these hand actions (Willems and Hagoort, 2009). Thus, 
differences in the way we act upon the world are refl ected not 
only in the brain areas that subserve action production, but also 
in the neural substrates of action perception. In another study, 
we found that the motor component of action verb semantics 
is differently lateralized in right- and left-handers. When right-
handers understand a verb that names a hand action (e.g. ‘grasp’, 
‘throw’) they preferentially activate left premotor areas, whereas 
left-handers preferentially activate right premotor areas. At least 
by default, right- and left-handers represent action verb mean-
ings from an egocentric perspective, which refl ects the way they 
perform these actions with their dominant hands (Willems et al., 
in press).

Here we investigate effects of handedness on motor imagery, 
which lies in between the concrete domains of action execution 
and perception and the more abstract domain of language. If 
the way one performs an action in the real world is refl ected in 
neural activation during motor imagery (i.e., if motor imagery is 
body-specifi c), then left- and right-handed participants should 
show differently lateralized activity in brain areas involved in the 
planning and execution of hand actions. Alternatively, if motor 
imagery only involves generating a motor plan that is abstracted 
away from the participant’s own motor experience, we expect 
to see no lateralization differences between the two groups. 
Such a result would be expected for instance if motor imagery is 
mainly based on visual experience, provided that both left- and 
right-handers mainly observe right-handers perform actions in 
the world.

INTRODUCTION
Studies employing behavioral, electrophysiological, as well as 
 neuroimaging techniques indicate that motor imagery involves the 
generation of an action plan (Decety et al., 1989, 1994; Jeannerod, 
1994, 2001; Parsons, 1994; Beisteiner et al., 1995; Lang et al., 1996; 
Porro et al., 1996; Bonnet et al., 1997; Schnitzler et al., 1997; Parsons 
et al., 1998; Neuper et al., 1999, 2005; Pfurtscheller et al., 1999; 
Gerardin et al., 2000; de Lange et al., 2005; Helmich et al., 2007; 
Szameitat et al., 2007a,b; Munzert et al., 2009). As such, motor 
imagery can be thought of as covert motor execution (Jeannerod, 
1994, 2001). A remaining question is whether motor imagery is 
body-specifi c (Casasanto, 2008, 2009). That is, does the way one 
performs an action in the real world infl uence neural activation 
during motor imagery? Alternatively, it may be that the motor plan 
generated during motor imagery is abstracted away from individual 
motor experience or specifi c effectors and occurs at the level of 
goal of the imagined action (Rijntjes et al., 1999). Here we aimed 
to distinguish between these possibilities by measuring cerebral 
activity in left- and right-handed participants while they imagined 
performing everyday motor activities.

Previous research on this issue is inconclusive. Consistent with a 
body-specifi c view of mental imagery, there is some work showing 
different lateralization when imagining actions with the right hand as 
compared to actions with the left hand (Szameitat et al., 2007a), and 
decreased motor imagery performance specifi cally for the affected 
hand in Parkinson’s disease patients (Helmich et al., 2007). Yet, other 
work suggests motor planning may occur at the level of an action’s 
goal instead of at a more specifi c level such as preferred hand (Rijntjes 
et al., 1999), in which case the neural correlates of motor imagery 
should not necessarily vary with handedness.

In our own previous research, we have conducted fMRI experi-
ments in left- and right-handers to investigate the infl uence of 
hand preference on the neural representation of action execution 
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MATERIALS AND METHODS
PARTICIPANTS
We tested 32 healthy participants with no known history of 
 neurological problems, dyslexia or other language-related prob-
lems, and with normal or corrected-to-normal vision, all of whom 
gave informed consent. Half of the participants were left-handed 
(N = 16, 12 female, mean age 23.4 years, range 19–32 years, adapted 
Dutch version of Edinburgh Handedness Inventory (EHI) score 
(Oldfi eld, 1971; Van Strien, 1992): mean = −94.3, SD = 8.7, 
range −82 to −100, mode = −100), and half were right handed 
(N = 16, 10 female, mean age 23.2, range 20–29 years, EHI score: 
mean = 96.6, SD = 7.3, range 82–100, mode = 100). The groups did 
not differ in age [|t(30)| < 1], or in absolute EHI value [t(30) < 1]. 
The local ethics committee approved the study.

MATERIALS
Stimuli were 96 Dutch verbs expressing concrete actions. Half 
of these were related to manual actions (MAN, e.g. to throw), 
half of them were not related to manual actions (NONMAN, 
e.g. to kneel, see the Appendix for the complete list of stimuli). 
The distinction between MAN and NONMAN was pretested in a 
group of raters who did not participate in the fMRI experiment 
(N = 16), who scored for each verb how much they associated 
that action with their hand(s) on a 1- to 7-point scale. MAN 
words were signifi cantly more associated with hand actions than 
NONMAN words [t(94) = 23.60, p < 0.001; mean MAN = 5.55, 
SD = 0.53; mean NONMAN = 2.04, SD = 0.83]. Raters also 
indicated whether they preferentially acted out the hand actions 
with the left, right, or with both hands. Materials were selected 
to ensure that the number of raters indicating to use both hands 
in that particular action, was low (out of 16 raters: mean = 3.36, 
SD = 1.89, median = 3, mode = 2). MAN and NONMAN word 
lists did not differ in imageability (assessed by the same group 
of raters) [t(94) < 1], number of phonemes [t(94) < 1] or lexical 
frequency [t(94) < 1]; defi ned using the CELEX database; Baayen 
et al., 1993).

EXPERIMENTAL PROCEDURE
Stimuli were presented using Presentation software (version 
10.21). Each trial started with a fi xation cross (250 ms) followed 
by presentation of a written verb (1500 ms) in the middle of 
the screen. Participants were instructed to read the word, close 
their eyes, imagine performing this action and open their eyes to 
indicate that they had fi nished motor imagery after which the 
next trial would start (after a variable intertrial interval between 2 
and 6 s in steps of 250 ms (mean = 4 s) (Dale, 1999). Participants 
were instructed to ‘vividly imagine performing this action several 
times and open your eyes when done’. This means that there was 
no constraint on the amount or duration of motor imagery, this 
was left to each individual participant. In terms of experimental 
design, we were hence vulnerable to the possible confound that 
participants would take longer in imagining one of the action 
types (MAN or NONMAN). This however turned out not to be 
the case (see Results).

Closing and opening of the eyes was monitored by an infrared 
IviewX eyetracker2 and coded on-line by one of the experiment-
ers. We used opening and closing of the eyes to signal start and 
 fi nish of imagery instead of button presses since using the eyes as a 
response measure enables to measure imaging times and does not 
contaminate hand motor cortex activation due to button presses. 
Previous work shows that motor imagery with eyes closed entails 
similar processes as motor imagery with eyes open (Heremans 
et al., 2008) and has been successfully used before in neuroimag-
ing studies (Szameitat et al., 2007a,b; Bakker et al., 2008). It is 
possible that opening and closing of the eyes leads to differential 
motor cortex lateralization in left- and right-handers. However, 
this is not problematic for the present study since opening and 
closing of the eyes was required for MAN and NONMAN trials 
alike and should hence cancel out when comparing these condi-
tions with each other.

Stimuli were presented in pseudo-randomized order such 
that a condition was repeated maximally three times in a row. 
A mirrored presentation order was employed in half of the par-
ticipants. Participants were familiarized with the procedure by 
10 practice items containing different words than those used in 
the experiment.

DATA ACQUISITION AND ANALYSIS
Whole-brain cho-Planar Images were acquired with a 8-channel 
head coil on a Siemens MR system with 3T magnetic fi eld strength 
(TR = 2060 ms; TE = 30 ms; fl ip angle 85°, 31 transversal slices; 
voxel size 3.5 mm × 3.5 mm × 3 mm, 0.5 mm gap between slices). 
Data analysis was done using SPM53. Preprocessing involved 
realignment through rigid body registration, slice timing cor-
rection to the onset of the fi rst slice, normalization to Montreal 
Neurological Institute (MNI) space, interpolation of voxel sizes 
to 2 mm × 2 mm × 2 mm, and spatial smoothing (8 mm FWHM 
kernel). First-level analysis involved a multiple regression analysis 
with regressors describing the expected hemodynamic responses 
during imagery of MAN words and NONMAN words. Each trial 
was modeled as the actual duration of the trial, convolved with a 
canonical hemodynamic response function (Friston et al., 1998). 
MR disturbances due to small head movements were accounted for 
by a series of nuisance regressors, namely the linear and exponential 
changes in the scan-by-scan estimated head motion, scan-by-scan 
average signals from outside the brain, white matter, and cerebro-
spinal fl uid (Verhagen et al., 2006).

A second-level whole brain group analysis with subjects as a 
random factor (‘random effects analysis’) involved a model with 
factors VERB TYPE (MAN, NONMAN) and GROUP (left-hand-
ers, right-handers). Correction for multiple comparisons was 
applied by thresholding group maps at p < 0.005 uncorrected and 
subsequently taking the cluster extent into account by using the 
theory of Gaussian Random Fields to correct maps at p < 0.05 cor-
rected for multiple comparisons (Poline et al., 1997). Differential 
lateralization differences between the groups was tested by means 
of repeated measures analysis of variance to the mean contrast 

1www.nbs.com

2www.smi.de
3http://www.fi l.ion.ucl.ac.uk/spm/software/spm5/
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estimates from the regions sensitive to the MAN > NONMAN 
comparison with factors HEMISPHERE (left, right) and GROUP 
(left-handers, right-handers). We circumvented a bias in regions 
of interest selection, since the regions of interest were based on the 
overall contrast across the two groups (Kriegeskorte et al., 2009). 
Follow-up one-sided planned  comparisons of within group hem-
ispheric differences (Right-handers

left hem
 > Right-handers

right hem
 

and Left- handers
right hem

 > Left-handers
left hem

) and between-group 
comparisons (Right-handers

left hem
 > Left-handers

left hem
 and Left-

handers
right hem

 > Right-handers
right hem

) were performed.
We also looked at common activations across the two groups. 

We implemented this as a conjunction analysis (Nichols et al., 
2005) testing for areas activated to MAN > NONMAN in left-
handers as well as to MAN > NONMAN in right-handers 
(MAN > NONMAN

left-handers
 ∩ MAN > NONMAN

right-handers
). For 

general interest, we also conducted a conjunction analysis to inves-
tigate overlapping areas during imagery of MAN actions in both 
groups (MAN

left-handers
 ∩ MAN

right-handers
).

Given the heterogeneity of effectors to which the NONMAN 
verbs refer, we never compared NONMAN > MAN directly.

RESULTS
BEHAVIORAL
It took participants on average 5.63 s (SD = 2.17) to imagine the 
MAN verbs and 5.55 s (SD = 1.95) to imagine the NONMAN 
verbs (Table 1). Right- and left-handers did not differ in  imagining 
times, neither in overall times, nor in MAN or NONMAN times 
separately [MAN + NONMAN: t(30) = 1.15, p = 0.26; MAN: 
t(30) = 1.20, p = 0.24; NONMAN: t(30) = 1.08, p = 0.28]. There 
were no statistically signifi cant differences within groups between 
MAN and NONMAN times [Left-handers: t(15) = 1.64, p = 0.12; 
Right-handers: t < 1].

NEURAL
There were no areas sensitive to the main effect of GROUP. No areas 
were sensitive to the VERB TYPE × GROUP interaction at a whole-
brain corrected statistical threshold. However, informal inspection 
at p < 0.005 uncorrected revealed such effects in bilateral postcen-
tral sulcus. A wide-spread network of areas, including  bilateral 
 postcentral sulcus (mainly encompassing Brodmann Area 2; 

Eickhoff et al., 2005), bilateral precentral sulcus (BA6) and  bilateral 
inferior temporal cortex, was sensitive to the MAN > NONMAN 
comparison (Figure 1; Table 2).

Second, we determined which regions showed sensitivity to 
the MAN > NONMAN contrast in each group in isolation. In the 
left-handers there was stronger activation to MAN as compared to 
NONMAN imagery in right postcentral sulcus (BA2) extending 
into intraparietal sulcus, right precentral sulcus (BA6) and right 
inferior temporal sulcus (Figure 2; Table 3). Conversely, for the 
right-handers there was stronger activation for MAN as compared 
to NONMAN imagery in left postcentral sulcus (BA2), left pre-
central sulcus (BA6) extending into intraparietal sulcus, and left 
inferior temporal sulcus (Figure 2; Table 3). Informal inspection 
at a liberal statistical threshold (p < 0.01 uncorrected) showed that 
in both groups, there was no activation in primary motor cortex 
(cytoarchitectonically defi ned BA4a and BA4p; Eickhoff et al., 
2005) to the MAN > NONMAN comparison. In previous work 
we observed that employing subject-specifi c regions of interest 
substantially improves sensitivity in detecting between-group 
differences (Willems et al., in press; see also Aziz-Zadeh et al., 
2006). As an additional check on the  involvement of  primary 

FIGURE 1 | Result from whole brain analysis for both groups combined. 

Displayed are the results for comparing MAN > NONMAN across the two 
groups (MANleft-handers + MANright-handers > NONMANleft-handers + NONMANright-handers). 

Motor imagery of manual actions activated dorsal precentral sulcus, postcentral 
sulcus and inferior temporal sulcus bilaterally. Results are corrected for multiple 
comparisons at p < 0.05 corrected.

Table 1 | Behavioral results. Mean (and standard deviation) imagining times 

in seconds for left-handers (left column) and right-handers (middle column), 

and the results of a independent samples t-test to test for a difference in 

imagining times between the groups and within-group differences between 

MAN and NONMAN durations (right column). Data are displayed separately 

for MAN alone, NONMAN alone and MAN + NONMAN.

 Left-handers Right-handers Left-handers > 

 Mean (SD) Mean (SD) right-handers

MAN 6.09 (2.68) 5.18 (1.44) t (30) = 1.20,

   p = 0.24

NONMAN 5.93 (2.42) 5.18 (1.32) t (30) = 1.08,

   p = 0.28

MAN + NONMAN 5.63 (2.17) 5.55 (1.95) t (30) = 1.15,

   p = 0.26

MAN > NONMAN t (16) = 1.64, t (16) < 1 

 p = 0.12
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motor cortex in body-specifi c motor imagery, we therefore deter-
mined subject-specifi c regions of interest as 4-mm spheres around 
local maxima to imagery of MAN trials in BA4 (again, using 
cytoarchitectonically defi ned BA4a and BA4p), and extracted the 
MAN > NONMAN contrast values for each subject separately. 
These were analyzed with repeated measures analysis of variance 
with factors HEMISPHERE (left, right) and GROUP (left-handers, 
right-handers). We did observe a HEMISPHERE × GROUP inter-
action to the MAN > NONMAN contrast values [F(1, 30) = 4.41, 
MSE = 0.06, p = 0.044], with each group showing greater activa-
tion in the hemisphere contralateral to the preferred hand.

Third, to determine whether there were lateralization dif-
ferences between the groups, we extracted MAN > NONMAN 
contrast values from precentral, postcentral and inferior/mid-
dle temporal regions sensitive to the overall MAN > NONMAN 
contrast (Figure 1; Table 2), and analyzed these in an ANOVA 
with factors HEMISPHERE (left, right) and GROUP (left-hand-
ers, right-handers). In all these regions, there was a  signifi cant 

HEMISPHERE × GROUP interaction (Table 4; Figure 3). 
Moreover, in postcentral and precentral structures, each group 
showed stronger activation in the hemisphere contralateral to the 
dominant hand than in the ipsilateral region (Table 4; Figures 3A,B), 
albeit that this difference was only a trend in precentral sulcus in 
left-handers (p = 0.08).

There were no areas commonly activated to MAN > NONMAN 
in both left and right-handers (MAN > NONMAN

left-handers
 ∩ MAN

 > NONMAN
right-handers

). However, at a lower p < 0.005 uncorrected 
statistical threshold, such overlap was observed in left dorsal pre-
motor cortex. An extensive set of areas were commonly activated 
in left- as well as in right-handers during imagery of MAN actions 
(MAN

left-handers
 ∩ MAN

right-handers
). Activated areas include bilateral 

dorsal premotor cortex, bilateral inferior frontal gyrus, bilat-
eral postcentral sulcus, bilateral inferior/middle temporal gyrus 
and bilateral middle occipital gyrus (Figure S1 and Table S1 in 
Supplementary Material).

To summarize, there were three bilateral pairs of regions (in 
precentral, postcentral and inferior/middle temporal sulci) which 
showed sensitivity to the MAN > NONMAN comparison either 
across the two groups (left-handers + right-handers), in left- handers 
(right-hemisphere regions), or in right-handers (left- hemisphere 
regions). Left-handers activated postcentral and precentral motor 
cortex more strongly in the right as compared to the left hemi-
sphere, whereas the opposite pattern was observed in right-handers 
(left > right). A similar effect was observed in primary motor cortex 
(BA4) when employing subject-specifi c region of interest analysis, 
but not in the whole brain analysis.

DISCUSSION
In this study we investigated whether motor imagery involves the 
generation of a motor plan that is grounded in the way an indi-
vidual typically performs the imagined action in the real world. 
Our results indicate that explicit motor imagery of everyday hand 
actions is body-specifi c (Casasanto, 2008, 2009). Left- and right-
handers showed differential and opposite lateralization of activity 
in premotor and postcentral motor regions when they imagined 
performing one-handed manual actions, as compared to nonman-
ual actions. The hemisphere that primarily controls the dominant 
hand also subserves mental imagery for actions that people usually 
perform with this hand (see Szameitat et al., 2007a for a compatible 
fi nding in right-handers).

Table 2 | Results of overall MAN > NONMAN comparison (including 

both groups). Displayed are an anatomical description of activated areas, 

the coordinates of local maxima within a region in MNI space and the 

number of voxels per area (2 mm × 2 mm × 2 mm voxels). Results are 

corrected for multiple comparisons by thresholding at p < 0.005 and taking 

cluster extent into account to arrive at a p < 0.05 corrected p-value.

Region MNI coordinates nr Voxels

R dorsal precentral/middle frontal sulcus  22  −8  42 1097

  28  −8  58 

R postcentral sulcus (extending into   38 −38  48 5724

intraparietal sulcus)  34 −46  58 

R inferior/middle temporal sulcus  58 −62  −2 

  48 −52 −12 

R thalamus  16 −28  −8 

L dorsal precentral/middle frontal sulcus −24 −12  52 772

 −24  −2  68 

L postcentral sulcus (extending into  −38 −38  44 716

intraparietal sulcus) −16 −64  52 

L inferior/middle temporal sulcus −54 −64   4 1292

L thalamus −14 −30   4 

L fusiform gyrus −38 −26 −18 

FIGURE 2 | Results from whole brain analysis for each group separately. Displayed are the results for the MAN > NONMAN comparison for left-handers (yellow) 
and right-handers (blue). Note the strong lateralization of responses in precentral, postcentral and inferior temporal sulcus. Results are corrected for multiple 
comparisons at p < 0.05 corrected.
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Our results are in line with earlier work showing that present 
body posture infl uences motor imagery (de Lange et al., 2006). 
Here we extend this by showing that long term motor history 
(i.e. a preference to execute an action with one hand) also infl u-
ences motor imagery. In addition to fi nding body-specifi c later-
ality effects in dorsal premotor cortex (BA6), we also observed 
these effects in primary somatosensory cortex (S1, roughly cor-
responding with BA2), and, when using subject-specifi c regions 
of interest, in BA4. S1 activation during motor imagery has been 
argued to refl ect the predicted somatosensory consequences of 
the imagined actions (i.e., a forward model, see Wolpert and 
Ghahramani, 2000), but is observed only in some of the rel-
evant neuroimaging studies (see Munzert et al., 2009 for review). 
Szameitat et al. (2007b) also reported S1 activation during motor 
imagery when participants were required to perform imagery 
of everyday actions, just as in the present study (see also Sacco 
et al., 2006). Some studies that did not observe S1 activation 
for instance employed the Parsons’ hand  laterality judgment 
task, which arguably requires less elaborate motor imagery (e.g. 
Parsons et al., 1998; de Lange et al., 2005, 2006). It is possible that 
the verbal instruction to imagine a relatively complex action for 
a more extended period of time (as in the present study and in 

Table 3 | Results from whole brain analysis comparing 

MAN > NONMAN motor imagery in left-handers (top) and right-

handers (bottom). Displayed are an anatomical description of activated 

areas, the coordinates of local maxima within a region in MNI space and the 

number of voxels per area (2 mm × 2 mm × 2 mm voxels). Results are 

corrected for multiple comparisons by thresholding at p < 0.005 and taking 

the cluster extent into account to arrive at a p < 0.05 corrected p-value.

 Region MNI coordinates nr Voxels

Left-handers R precentral/middle  32 −10  58 619

MAN > NONMAN frontal sulcus 24  −8  40 

  22  −4  44 

  20 −10  48 

 R postcentral sulcus  36 −44  62 1052

 (extending into  40 −38  50 

 intraparietal sulcus) 36 −44  54 

  54 −20  36 

  24 −52  68 

 R inferior/middle  46 −50 −12 364

 temporal sulcus 56 −60   0 

  54 −54  −4 

Right-handers  L dorsal precentral/ −26  −8  54 1022

MAN > NONMAN middle frontal sulcus −28 −12  52 

  −24 −16  50 

  −18  −6  46 

  −24 −10  70 

  −20  14  66 

 L postcentral sulcus −38 −40  46 404

 (extending into  

 intraparietal sulcus)  

 L inferior/middle −56 −66   2 1213

 temporal sulcus −42 −52 −12 

  −48 −60 −14 
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FIGURE 3 | Results in bilateral pairs of regions activated in the whole 

brain analysis to the overall MAN > NONMAN comparison (Figure 1). 

Displayed are the contrast values for the MAN > NONMAN contrast for: 
Left-handersleft hem, Left-handersright hem, Right-handersleft hem, Right-handersright hem. 
In all regions there is a HEMISPHERE × GROUP interaction (Table 4). (A,B) In 
the precentral and postcentral sulcus, each group activated the hemisphere 
contralateral to their dominant hand more strongly than the other hemisphere. 
That is, right-handers activate these regions most strongly in the 
left-hemisphere, whereas left-handers activate them more strongly in the 
right-hemisphere. (C) For inferior/middle temporal cortex this within group 
difference was only present for right-handers (see text and Table 4). Asterisks 
indicate statistical signifi cance at the p < 0.05 level.
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Szameitat et al., 2007b) leads to a more elaborate forward model 
and hence to stronger S1 activation4. A similar reasoning could 
be applied to the effects we observed in primary motor cortex 
(BA4). Involvement of primary motor cortex is observed in some 
(e.g. Tomasino et al., 2007, 2008), but not in other investigations 
of motor imagery (see Munzert et al., 2009 for overview). The 
fi ndings in BA4 should be interpreted with caution since we did 
observe a Hemisphere × Group interaction in subject-specifi c 
regions of interest, but not in within-group comparisons in the 
whole brain analysis, even when assessed at liberal and uncor-
rected statistical thresholds.

It should be acknowledged that we did not measure EMG to 
ensure that there was no supra-threshold muscle activity during 
motor imagery. It is possible that the effects we observed in pri-
mary motor cortex/somatosensory cortex could be driven by supra-
 threshold muscle activation. It should be stressed however that 
participants were in no way encouraged to move and were explicitly 
instructed only to imagine performing the actions. Moreover, we 
checked visually that participants were not actually acting out the 
movements they were required to imagine. Hence primary motor 
cortex and somatosensory cortex activation cannot be due to actual 
acting out of these actions, which does not preclude subthreshold 
motor activation.

Interestingly, a similar lateralization difference was observed in 
inferior/middle temporal cortex. This suggests that the infl uence of 
hand preference extends beyond the cortical motor and language 
systems. Indeed in previous work we observed that  lateralization of 

extrastriate regions involved in observation of faces (fusiform face 
area) and bodies (extrastriate body area) is infl uenced by handed-
ness (Willems et al., in press). However in that study extrastri-
ate body area was right-lateralized in both groups, but to a lesser 
extent in left- as compared to right-handers. In the present study 
we observe a different lateralization pattern with a strong left-
 lateralization in inferior/middle temporal cortex for right-handers 
(Figure 3). It is unclear what cognitive process drives these differ-
ences in temporal cortex.

The present fi ndings suggest that when participants were asked 
to ‘vividly imagine performing an action’, they did so from their 
own (egocentric) perspective. While this may not be surprising, 
it was by no means a foregone conclusion. Although left-handers 
tend to perform actions like throwing with their left hands, they 
probably observe a far greater number of throws performed with 
the right hand, since the majority of throwers are right-handed. 
In principle, right- and left-handers could all generate motor 
images that refl ect the statistics of observed actions rather than 
performed actions, which would result in similar patterns of 
motor activity across groups. The fact that participants gener-
ated body-specifi c images from their own perspective is con-
sistent with our previous studies showing that people perceive 
actions and understand action language egocentrically, at least 
by default (Willems and Hagoort, 2009; Willems et al., in press). 
These fi ndings should not be interpreted as indicating that people 
are only capable of imagining actions from their own perspective. 
It remains a question for future research how actions imagined 
from another’s perspective are instantiated in right- and left-
handers’ motor systems (see Szameitat et al., 2007b; Tomasino 
et al., 2007).

On a methodological note, this study validates the use of dif-
ferential lateralization in the motor system between left- and right-
handers as an experimental tool (Longcamp et al., 2003, 2005; Lewis 
et al., 2006). Earlier studies of motor execution differences in left- 
and right-handers did not observe such lateralization differences 
(Kim et al., 1993; Kloppel et al., 2007). However, a crucial difference 
with the present study is that in these previous studies very simple 
hand actions were used. For instance in Kim et al., the hand actions 

Table 4 | Results in regions of interest taken from the whole brain analysis (Figure 1; Table 2). The whole brain analysis revealed three pairs of cortical 

regions that were sensitive to the overall MAN > NONMAN contrast (i.e. across groups, Figure 1): bilateral precentral sulcus, bilateral central sulcus, and 

bilateral inferior temporal sulcus. Results from these regions were analysed in an ANOVA with factors HEMISPHERE (left, right) and GROUP (left-handers, 

right-handers). In all regions there was a signifi cant GROUP × HEMISPHERE interaction. To subsequently test the direction of this effect, within group 

hemisphere differences were tested (i.e. Right handersleft hem > Right handersright hem and Left handersright hem > Left handersleft hem). t-tests were one-sided. 

Differences signifi cant at the p < 0.05 level are indicated in bold typeface.

 Precentral sulcus Postcentral sulcus Inferior temporal sulcus

GROUP × HEM F (1,30) = 15.21,  p = 0.001 F (1,30) = 23.67,  p < 0.001 F (1,30) = 9.09,  p = 0.005

 MSe = 0.003  MSe = 0.006  MSe = 0.003 
HEMISPHERE F (1,30) = 2.76,  p = 0.11 F < 1,  n.s. F(1,30) = 5.47,  p = 0.026

 MSe = 0.003  MSe = 0.006  MSe = 0.003 
GROUP F < 1,  n.s. F (1,30) = 1.28,  0.27 F < 1,  n.s.

 
MSe = 0.019  MSe = 0.027  MSe = 0.011 

Right handersleft hem >  Right handersright hem t (15) = 4.45 p < 0.001 t (15) = 3.28 p = 0.003 t (15) = 2.86 p = 0.006

Left handersright hem >  Left handersleft hem t (15) = 1.45 p = 0.084 t (15) = 3.61 p = 0.001 t (15) < 1 n.s.

4This distinction is reminiscent of that between visual versus kinesthetic motor 
imagery (e.g. Guillot et al., 2009). In kinesthetic motor imagery participants are 
explicitly trained to focus on the kinesthetic consequences of the actions that they 
imagine as compared to visual motor imagery in which participants are instructed 
to focus on the visual aspects of motor imagery. Guillot et al. (2009) observed in-
creased activations during kinesthetic motor imagery compared to a low-level con-
trol condition in somatosensory cortex. Such an effect was not observed when com-
paring visual motor imagery to the same control condition. A direct comparison 
between kinesthetic and visual motor imagery, however, did not reveal increased 
activation during kinesthetic motor imagery in S1. In our experiment we did not 
specifi cally instruct participants to focus/direct attention on one of these aspects of 
motor imagery and this interpretation is hence speculative.
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were simple fi nger-thumb oppositions. In Kloppel et al. (2007) the 
hand actions involved pressing a button. Indeed we previously also 
did not observe the clear-cut difference in lateralization between 
left- and right-handers when they performed simple contractions 
and extension of the fi ngers (Willems and Hagoort, 2009). Future 
research should more systematically investigate how the complexity 
of performed/imagined actions infl uences the amount of lateraliza-
tion in left- and right-handers. For present purposes it is important 
to note that our fi nding of differently lateralized motor cortex acti-
vation in left- and right-handed participants lends support to using 
handedness-related lateralization to study the body-specifi city of 
other cognitive processes as well (e.g. Casasanto, 2009; Willems 
et al., in press; Willems and Hagoort, 2007). Moreover, this fi nd-
ing could have implications for clinical practice, in which motor 
imagery is sometimes used as a therapeutic tool (see Munzert et al., 
2009 for comprehensive review).

Previous studies have suggested that the generation of an action 
plan occurs at the level of an action’s overall goal (Rijntjes et al., 
1999). Although some components of motor imagery may be 
abstracted away from motor experience, the present data show that 
motor imagery also involves generating an action plan consistent 
with the kinematics of actions as we tend to perform them with 
our particular bodies.

APPENDIX
Stimuli used. Shown are the original stimuli in Dutch, with a trans-
lation in English. These verbs were matched and pretested on several 
measures, please see main text for details. Due to the literal transla-
tion in English it may be less obvious that same of the words are 
MAN or NONMAN verbs. It should be noted that the original 
Dutch stimulus set was carefully pretested to ensure that all MAN 
words were associated with hand actions and that the NONMAN 
words were not. This may not be fully captured by the translation in 
English and hence some of the verbs may not be obviously related 
to the hand(s) in the English translation. Moreover, the English 
translation sometimes has the same word appear twice, this was 
not the case in the Dutch originals.

aaien to stroke

bonken to bonk

bonzen to pound

borstelen to brush

deppen to dab

dobbelen to dice

epileren to pluck

gooien to throw

grabbelen to scramble

graveren to engrave

grijpen to catch

grissen to snatch

hameren to hammer

kerven to notch

kloppen to knock

knijpen to squeeze

malen to grind

meppen to smack

noteren to jot

peuteren to pick

plamuren to fi ll

plukken to pick

porren to prod

prakken to mash

prikken to pierce

reiken to reach

roeren to stir

salueren to salute

Dutch English Dutch English

MAN words

scheren to shave

schieten to shoot

schminken to to put make

  up on

schrapen to scrape

slaan to beat

smeren to lubricate

smijten to fl ing

snijden to cut

steken to stab

stompen to stomp

stoten to push

strelen to stroke

strijken to iron

strooien to strew

tekenen to draw

tikken to tap

verven to paint

werpen to throw

wijzen to point

zwaaien to wave

Dutch English Dutch English

MAN words

Dutch English Dutch English

NONMAN words

ademen to breathe

beven to shake

bijten to bite

blazen to blow

brommen to hum

brullen to roar

dicteren to dictate

drinken to drink

fl uisteren to whisper

giechelen to giggle

gillen to scream

grijnzen to smirk

grinniken to chortle

hoesten to cough

inademen to breathe

knabbelen to nibble

knagen to gnaw

knielen to kneel

knikken to nod

knipperen to fl ash

knorren to snore

krijsen to screech

leunen to lean

likken to lick

mopperen to grumble

neuriën to hum

nippen to sip

observeren to observe

ontwijken to dodge

rillen to shiver

ruiken to smell

schouderophalen to shrug

schrikken to scare up

slikken to swallow

smakken to smack lips

snuiven to sniff

snurken to snore

speuren to trace

spugen to spit

staren to stare

stotteren to stutter

turen to gaze

uitademen to exhale

waarnemen to perceive

zingen to sing

zuigen to suck

zweten to sweat

zwijgen to keep silent
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