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linking BDNF to human cognitive processes (Egan et al., 2003; 
Gabrieli and Preston, 2003; Hariri et al., 2003; Dempster et al., 2005; 
Ho et al., 2006) and, as a result, interest in BDNF has come from 
researchers spanning fi elds from developmental neurobiology to 
neurodegenerative and psychiatric disorders (Chao, 2003).

Compared with val-allele homozygotes, individuals with the 
altered methionine (met) allele of the BDNF gene have been found to 
exhibit reduced hippocampal volume (Pezawas et al., 2004; Szeszko 
et al., 2005; Bueller et al., 2006; Frodl et al., 2007; Chepenik et al., 
2009), memory impairment (Egan et al., 2003; Hariri et al., 2003; 
Dempster et al., 2005; Ho et al., 2006), increased susceptibility to 
schizophrenia and other psychotic disorders (Gratacos et al., 2007), 
and abnormal hippocampal activity during memory processing 
(Egan et al., 2003; Hariri et al., 2003). Given the established role of 
BDNF in mediating processes related to neural excitability, learning, 
and memory (Korte et al., 1995; Patterson et al., 1996; Desai et al., 
1999), this gene is likely implicated in the formation and mainte-
nance of major functional circuits in the human brain. To date, 
however, the effects of this BDNF polymorphism on the function-
ing of large-scale neural networks have not been examined.

Currently, one of the most informative methods for interrogating 
the integrity of neural networks is to measure activation across distinct 
brain regions by conducting functional connectivity (FC) analysis on 
data obtained through whole-brain functional magnetic resonance 
imaging (fMRI). FC can be operationally defi ned to refer to temporal 
correlations across cortical regions representing an index of func-
tion (Friston et al., 1993; Horwitz, 2003) and anatomical  connectivity 

INTRODUCTION
Brain-derived neurotrophic factor (BDNF) plays an essential role in 
the early growth of neural networks in the human brain (McAllister 
et al., 1999; Huang and Reichardt, 2001). BDNF is a polypep-
tide growth factor in a family of signaling molecules known as 
 neurotrophins. These proteins regulate axonal and dendritic growth 
(Huang and Reichardt, 2001), synaptic structure and plasticity 
(McAllister et al., 1999; Lu and Gottschalk, 2000), neurotransmitter 
release, and long-term potentiation (LTP)-associated-learning (Lu 
and Gottschalk, 2000; Chao, 2003). Considerable progress has been 
made in understanding the ways in which neurotrophins exert their 
effects on neuronal health and synaptic plasticity (e.g., cellular sig-
naling and ligand-receptor binding) (Lewin and Barde, 1996; Stoop 
and Poo, 1996); how neurotrophin-related differences in neuronal 
health and synaptic plasticity may lead to selective impairments in 
nervous system function, however, is not well understood.

BDNF is a unique neurotrophin because activation of its cog-
nate receptor, tropomyosin-related kinase B (TrkB), results in a 
wider set of functional consequences than is the case with other 
Trk receptors (Bath and Lee, 2006). BDNF is expressed predomi-
nantly in the central nervous system, including cortical regions, the 
hippocampus, limbic structures, the cerebellum, and the olfactory 
bulb (Huang and Reichardt, 2001). A common single-nucleotide 
polymorphism (SNP) in the BDNF gene produces an amino acid 
substitution (valine to methionine) at codon 66 (val66met) that 
alters secretion and intracellular traffi cking of the mature peptide 
(Egan et al., 2003; Chen et al., 2004). This SNP has been useful in 
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(Koch et al., 2002; Quigley et al., 2003; Hagmann et al., 2008; Greicius 
et al., 2009). In the present study we used fMRI to probe resting FC 
as a function of BDNF gene variants across the three most frequently 
examined high-order cognitive- and emotion-processing networks 
of the brain: the default-mode network (DMN), the executive net-
work (EN), and the salience network (SN). Because neurotrophins 
profoundly affect the development of the nervous system (Lewin and 
Barde, 1996), we examined BDNF and FC in a sample of children and 
adolescents, in whom neural development is actively progressing and 
for whom BDNF may therefore be expected to exert signifi cant effects 
(for detailed discussion, see Casey et al., 2009).

We hypothesize that because BDNF secretion is decreased in 
met-allele carriers compared to val-allele homozygotes (Chen et al., 
2004), participants who carry a BDNF met allele will be broadly 
characterized by reduced FC, although this may differ across the 
three resting-state networks. Moreover, because BDNF is widely 
expressed in the hippocampus (Conner et al., 1997) and because, 
compared to val-allele homozygotes, met-allele carriers have been 
found to have poorer memory (Egan et al., 2003; Dempster et al., 
2005), diminished hippocampal function (Egan et al., 2003) and 
smaller hippocampal volume (Pezawas et al., 2004; Szeszko et al., 
2005; Bueller et al., 2006; Frodl et al., 2007; Chepenik et al., 2009), 
we hypothesize that differences between genetic groups in resting 
FC will be particularly pronounced between the hippocampal for-
mation and regions that support memory processing (e.g., parietal 
association cortices, prefrontal regions, cingulate).

MATERIALS AND METHODS
PARTICIPANTS
Participants were 38 children and adolescents (25 females) between 
the ages of 9 and 16 years (M = 12.2, SD = 2.1). They were recruited 
through their mothers via Craigslist and other online advertise-
ments and parent networks, and each mother-child pair was com-
pensated $25/hour. All participants had no reported history of brain 
injury, no behavioral indications of possible mental impairment, 
no past or present Axis I disorder, were right-handed, fl uent in 
English, and had no learning disorder. Parents and children gave 
informed consent and assent, respectively, as approved by the 
Stanford Institutional Review Board.

PROCEDURE
Participants were assessed in two sessions. In the fi rst session, par-
ticipants were administered the Schedule for Affective Disorders 
and Schizophrenia for School-Aged Children-Present and Lifetime 
version (K-SADS) (Geller et al., 1996, 2001) to assess current and 
lifetime psychopathology in order to ensure the absence of any 
current or past diagnosable DSM-IV psychiatric disorder. During 
this session, children and parents also provided saliva samples for 
genetic testing and viewed a video to prepare them for the MRI scan 
session. In the second session, brain-imaging data were acquired 
using a whole-brain MRI scanner.

GENETIC DATA
DNA was extracted from saliva using the Oragene DNA saliva kit. 
The target 300 bp BDNF gene fragment was amplifi ed using the 
G196A primer 5′-ATC CGA GGA CAA GGT GGC-3′ (forward) 

and 5′-CCT CAT GGA CAT GTT TGC AG-3′ (reverse). The PCR 
amplifi cation was carried out in a fi nal volume of 20 µl consisting 
of 50 ng of genomic DNA, 200 nM each of sense and antisense 
primers, 200 µM of dNTP mix, 2 units of Expand High Fidelity 
PCR System (Roche, Cat# 11-795-078-001). Annealing was carried 
out at 60 C for 45 s, extension at 72 C for 1 min, and denaturation 
at 95 C for 30 s for a total of 35 cycles. 5 µl of the PCR products 
were digested by 10 units of Pml I (New England Biolabs) in a 15 µl 
reaction at 37 C for 3 h. The digestion mixture was electrophoresed 
through 7% Polyacrylamide gel (Acrylamide/bis-Acrylamide ratio 
19:1) at 150 V for 40 min. 100 bp and 10 bp marker was used to 
measure the digestion and PCR product size. Allele A (methionine) 
was not digested showing one 300 bp band, but the G allele (valine) 
was digested showing two bands, at 180 and 120 bp. As we describe 
below, this genotyping yielded two groups of children: val-allele 
homozygotes (n = 23) and met-allele carriers (n = 15).

fMRI DATA ACQUISITION
Magnetic resonance imaging was performed on a 3.0-T GE 
whole-body scanner. Participants were positioned in a purpose-
built single channel T/R head coil and stabilized by clamps and a 
bite bar formed with dental impression wax (made of Impression 
Compound Type I, Kerr Corporation, Romulus, MI) to reduce 
motion-related artifacts during scanning. During the resting-state 
experiment, participants completed a 6-min scan during which 
they were instructed to lay still with eyes closed. For this study, 29 
axial slices were taken with 4 mm slice thickness. High-resolution 
T2-weighted fast spin echo structural images (TR = 3000 ms, 
TE = 68 ms, ETL = 12) were acquired for anatomical reference. 
A T2*-sensitive gradient echo spiral in/out pulse sequence 
(Glover and Law, 2001) was used for all functional imaging 
(TR = 2000 ms, TE = 30 ms, fl ip angle = 77°, FOV = 22 cm, 
64 × 64). An automated high-order shimming procedure, based 
on spiral acquisitions, was used to reduce B0 heterogeneity (Kim 
et al., 2002). Spiral in/out methods have been shown to increase 
signal-to-noise ratio and BOLD contrast-to-noise ratio in uni-
form brain regions, as well as to reduce signal loss in regions 
compromised by susceptibility-induced fi eld gradients generated 
near air-tissue interfaces such as PFC (Glover and Law, 2001). 
Compared to traditional spiral imaging techniques, spiral in/out 
methods result in less signal dropout and greater task-related 
activation in PFC regions (Preston et al., 2004). A high-reso-
lution volume scan (140 slices, 1 mm slice thickness) was col-
lected for every participant using a spoiled grass gradient recalled 
(SPGR) sequence for T1 contrast (TR = 3000 ms, TE = 68 ms, 
TI = 500 ms, fl ip angle = 11°, FOV = 25 cm, 256 × 256). During 
the resting-state scan, children’s heart-rate and respiration wave-
form were recorded.

fMRI PREPROCESSING
fMRI data were then preprocessed using AFNI1 (Cox, 1996). 
Preprocessing included slice-timing correction, volume registra-
tion, smoothing (4 mm), bandpass fi ltering (0.008 < f < 0.15), and 
co-registration of functional and anatomical images.

1http://afni.nimh.nih.gov/afni

http://afni.nimh.nih.gov/afni
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We analyzed motion and found groups differed at p < 0.05. 
Therefore, before signal was extracted from the seed regions, we 
detrended the signal for motion. Then, the six motion parameters 
(three translational, three rotational) were modeled as regressors 
of non-interest at the individual subject level to adjust the error 
term appropriately.

REGION OF INTEREST (ROI) ANALYSIS
ROI analysis was conducted for hippocampal ROIs created using 
the AFNI software package and subroutines for creating smoothed 
(3 mm), resampled (3.75 mm3), binary masks for the left and right 
hippocampi2. Results within the masks were held to a liberal thresh-
old (p < 0.05) for completeness in reporting.

HIPPOCAMPAL VOLUME ANALYSIS
To determine whether the connectivity analysis required cor-
rection for hippocampal volume, we conducted manual trac-
ing of hippocampal volumes within SPGR images using Insight 
Toolkit’s SNAP program (Yushkevich et al., 2006). Tracings were 
performed in reoriented native space, and hippocampal volumes 
were divided by total brain volume to control for the potentially 
confounding factor of head size. The anatomical features used to 
guide manual tracing of the hippocampus have been described 
elsewhere (Pruessner et al., 2000). Briefl y, the hippocampal head-
body boundary was delineated by the clear appearance of the 
uncal recess, while the body-tail boundary was delineated by the 
opening of the crus of the fornix. Final volumes were output 
using SNAP. Data were analyzed in SPSS16 using a multivariate 
general linear model framework and including participant age 
as a covariate. Because there was not a signifi cant gene-group 
effect in hippocampal volume, F(2, 32) = 0.36, p = 0.69, correc-
tion of functional connectivity data for volume differences was 
not required.

RESULTS
PARTICIPANTS
Participants were 26 Caucasians (68%), 3 Asian Americans (8%), 
2 Hispanic Americans (5%), and 7 participants of multi- or bi-
racial descent (18%). BDNF genotyping yielded two groups 
of children: val-homozygotes (n = 23) and met-allele carriers 
(n = 15). These allelic frequencies were in Hardy-Weinberg 
equilibrium, χ2 = 0.65, p = 0.42. Demographic data for the 
two genotype groups are presented in Table 1. The two groups 
did not differ signifi cantly with respect to age, F(1,36) = 0.96, 

ICA VERSUS ROI-BASED CONNECTIVITY ANALYSIS
Previous resting state connectivity analyses have used FSL’s 
Independent Component Analysis (ICA) software (MELODIC) 
and an automated MATLAB analysis routine (Greicius et al., 2004, 
2007). This processing pathway was not suitable for the present 
study because in a small number of cases (<20%) the MELODIC 
ICA process separated the executive control network for the par-
ticipant into two lateralized maps, one right and one left. For this 
reason, and because in our previous work we demonstrated that 
seed-based FC and ICA-based network analyses yield comparable 
DMNs in children (Thomason et al., 2008), we used ROI-based 
connectivity analysis to evaluate multiple resting networks in the 
present study.

FUNCTIONAL CONNECTIVITY (FC) ANALYSIS
We conducted ROI-based connectivity analysis on the functional 
data. Selected seed regions were based on those reported in pub-
lished studies (Default: 10, −50, 30; Executive: 44, 36, 20; Salience: 
38, 26, −10) (Krasnow et al., 2003; Seeley et al., 2007; Thomason 
et al., 2008), as they have been shown to yield robust connectiv-
ity across the major resting-state networks. We began our analysis 
with image reconstruction using a correction that removes respira-
tory variations and HR signal extraction. In brief, this correction 
removes the effect of low-frequency respiratory variations (i.e., the 
“envelope” of the respiratory belt waveform) and heart rate (average 
rate in a 6-s sliding window) by fi rst convolving those signals with 
appropriate fi lters and then regressing them out of the time series 
for each voxel (described in Birn et al., 2008; Chang et al., 2009).

Following signal extraction, the trace from each partici-
pant’s seed region (3D sphere with a radius of 3, centered on 
the previously presented coordinates) was detrended for three 
translational and three rotational motion regressors (AFNI 
3dDetrend) and was used to calculate the correlation between 
the seed region and time-course data in all of the other voxels 
in the brain. Correlation estimates were controlled for estimated 
translational and rotational motion and a white matter nui-
sance time-course (3d sphere with radius of 3 mm, centered at 
(27, −8, 27). In contrast to some of the previous resting-state 
protocols conducted with adults (e.g., Fox et al., 2005), in the 
present analysis rather than removing variance from motion, 
white matter, cerebral spinal fluid and from global signal, we 
removed only motion and a timecourse sampled from a white 
matter region of interest. We made this choice based on recent 
work indicating that the use of global signal correction may 
force the presence of anticorrelated networks (Chang et al., 2009; 
Murphy et al., 2009; Weissenbacher et al., 2009); indeed, this 
methodological and interpretive topic is currently being actively 
debated for resting-state studies (Fox et al., 2009). After cor-
relation coefficients were calculated for each voxel in the brain, 
we normalized the distribution of these values using Fishers 
r-to-z transformation. We submitted the resulting correlation 
maps to main-effects analysis, conducting two-tailed t-tests to 
identify regions in which whole-brain z-converted regression 
maps differed between the two genotype groups. We conducted 
group-level analyses separately for each resting network and 
report results at p < 0.01.

Table 1 | Participant demographics and summary statistics.

 val/val val/met Statistic

N 23 15 χ2
(1) = 0.65, p = 0.42

Gender (F:M) 14:9 11:4 χ2
(1) = 0.63, p = 0.43

Mean age (s.d.) 11.9 (2.0) 12.6 (2.2) F1,36 = 0.96, p = 0.33

2We should note that AFNI ROIs are based on an adult-derived brain template. 
Validity of using the same stereotactic space for adults and children in this age range 
(>9 years old) has been demonstrated empirically (Burgund et al., 2002).
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p = 0.33, or gender, χ2 = 0.63, p = 0.43. BDNF alleles were 
 distributed  similarly in Caucasian and non-Caucasian partici-
pants, χ2 = 0.035, p = 0.85.

NETWORK MAPS
Complete network maps generated using three separate one-sample 
t-tests (Figure 1), each collapsing across the full sample, yielded 
maps similar to those produced in previous studies of adults (Fox 
et al., 2005; Fransson, 2005; Seeley et al., 2007; Taylor et al., 2008; 
Habas et al., 2009) and children (Thomason et al., 2008; Kelly et al., 
2009), and regarding reproducibility, see (Meindl et al., 2009). 
These maps demonstrate reliable generation of the high-order 
cognitive and/or affective resting network maps in a sample of 
children and adolescents that have previously been reported in 
samples of adults.

DEFAULT-MODE NETWORK (DMN) COMPARISON
Figure 2 shows val-allele homozygotes have greater and wider extent 
of suprathreshold functional connectivity within and beyond the 
DMN than do met-allele carriers. The between-groups whole-brain 
comparison of DMN statistical maps (Figure 3) showed signifi -
cantly (p < 0.01) increased hippocampal, fusiform, insula, caudate, 
cingulate, frontal and cerebellar contribution to the DMN in chil-
dren homozygous for the BDNF val allele. The reverse  contrast for 

areas with signifi cantly greater contribution in met-allele carriers 
produced fewer signifi cant clusters, and included regions of the 
parietal and temporal lobes; see Table 2.

A total of 10 voxels in the between-groups, within-hippocam-
pal, ROI comparison of DMN statistical maps were signifi cant at 
p < 0.05. The largest signifi cant cluster was k = 5 voxels in the left 
hippocampus (−34, −19, −7) where resting functional connectivity 
to the DMN seed region was greater in children homozygous for 
the BDNF val allele (z = 4.10); there was no signifi cant correlation 
in children who carried a met allele (z = 0.34). There were no areas 
in the hippocampal ROI analysis in which the contribution of met-
allele carriers to the DMN network were signifi cantly greater than 
val-allele homozygotes; see Figure 4.

EXECUTIVE NETWORK (EN) COMPARISON
As seen in Figure 2, val-allele homozygotes have a greater and wider 
extent of suprathreshold functional connectivity within and beyond 
the EN than do met-allele carriers. Whole-brain between-groups 
analysis of the EN (Figure 3) showed that children homozygous for 
the BDNF val allele showed signifi cantly increased (p < 0.01) contri-
butions from a number of clusters in temporal and parietal cortices, 
including parahippocampal and neighboring temporal lobe regions 
and a large area in the precuneus. In addition, there were frontal 
areas, insula, anterior cingulate, and striatal regions that showed 

FIGURE 1 | Map of neural connectivity for the three major resting-state networks across all subjects (n = 38). p < 0.0001. Red circles denote approximate 
locations of seed-point ROIs.
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FIGURE 2 | One-sample t-tests within each genetic group depicting group effects for three major resting-state networks at p < 0.0001.

greater FC in the val-allele homozygotes than in the met-allele car-
riers within this network. In the reverse contrast, met-allele carriers 
again had fewer signifi cant clusters, and these were located in inferior 
frontal and temporal regions, insula, and cingulate cortex.

The between-groups, within-hippocampal ROI comparison 
of EN resulted in 17 voxels that showed signifi cantly increased 
contribution to the EN by children homozygous for the BDNF 
val allele compared to met-allele carriers. Of these, 11 fell within 
the left hippocampal ROI and 6 fell within the right hippocampus 
ROI. The largest, most signifi cant cluster was k = 4 voxels in the 
left hippocampus (−26, −26, −7) where the average correlation to 
the executive seed was z = 3.87 in val-allele homozygotes compared 
to z = 1.15 in met-allele carriers. There were no areas in the hip-
pocamal ROI analysis in which met-allele carrier contributions 
to the EN network were signifi cantly greater than was the case for 
val-allele homozygotes; see Figure 4.

PARALIMBIC NETWORK (PN) COMPARISON
The whole-brain between-groups analysis produced a different pat-
tern of results in the PN. Whereas the DMN and EN comparisons 
were dominated by regions in which val-allele homozygotes had sig-
nifi cantly higher FC than did met-allele carriers, the reverse was true 

for the PN (see Table 2); many more regions showed signifi cantly 
increased connectivity in the PN in met-allele carriers. In a number 
of cortical areas, amygdala, insula, and caudate, met-allele carriers 
showed signifi cantly greater FC than did val-allele homozygotes. 
In contrast, val-allele homozygotes showed signifi cantly greater 
reliance than did met-allele carriers only in regions of the posterior 
cingulate and a region of the parahippocampal gyrus.

The hippocampal ROI analysis also yielded different results in 
the PN. Only three voxels showed signifi cant differences between 
the gene groups, all of which were located in the left hippocampus. 
Here, in contrast to what was observed for the other networks, signifi -
cantly (p < 0.05) greater FC was observed in met-allele carriers than 
in val-allele homozygotes. In the peak of this difference (−30, −11, 
−22), which occurred in a region of the hippocampus that was more 
anterior than were peaks of group differences observed for the other 
networks, the average correlation to the executive seed was z = 1.95 
in val-allele homozygotes and z = 3.84 in met-allele carriers.

DISCUSSION
Studies of the BDNF gene polymorphism have reliably documented 
episodic memory defi cits associated with the met allele (Egan et al., 
2003; Hariri et al., 2003). Contemporary models of  declarative 
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FIGURE 3 | Two-sample t-tests for three major resting-state networks. BDNF gene group differences (val/val > val/met: blue; val/met > val/val: orange) across 
three resting networks. FG = fusiform gyrus, Ins = insula, Hip = hippocampus, IPL = inferior parietal lobule, PHG = parahippocampal gyrus, SPL = superiorparietal 
lobe, Pu = putamen, Am = amygdala; p < 0.01.

memory function suggest that strong neural  connectivity between 
neocortical association areas and medial temporal lobe (MTL) 
regions underlies successful memory encoding, long-term main-
tenance, and retrieval (Ranganath et al., 2005). In this study we 
did not restrict differences in FC to only within-network regions; 
consequently, we observed reliable effects across networks. More 
specifi cally, we observed a reduction in hippocampal and para-
hippocampal to cortical connectivity at rest in carriers of the met 
allele within each of the three resting networks we examined: the 
default-mode, executive, and paralimbic networks (see Table 2). 
This work suggests that differences are present between genetic 
groups both within networks and in the connectivity of these net-
works to other parts of the brain. Analyses of all three networks 
provided evidence of higher basal connectivity between MTL 
structures and neocortical association areas in val-allele homozy-
gotes than in met-allele carriers. These differences in resting FC 
may result from differences in anatomical connectivity, in which 

met-allele carriers have less robust cortical-to-MTL projections, 
particularly in the network important for executive control and 
in the default-mode network.

Association studies have linked the BDNF gene to substance-
related disorders, eating disorders, and schizophrenia; the associa-
tion of the BDNF gene with major depression disorders and bipolar 
disorders, however, has been inconclusive (see, for example, meta-
analysis by Gratacos et al., 2007). Contemporary theory suggests 
that the allele (met vs. val) that confers risk may change across 
 development, differing in trajectory for various disorders (Casey 
et al., 2009). Comprised primarily of insular and cingulate cortices 
that are connected with subcortical limbic structures, the paralimbic 
network may be the neural network most broadly relevant to psy-
chiatric disorders for the role it is expected to exert in the detection, 
integration, and fi ltering of interoceptive, autonomic, and emotional 
information (Seeley et al., 2007; Habas et al., 2009). The insula plays 
a critical role in the experience of emotion, interoceptive awareness, 
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Table 2 | Regions of signifi cant (p < 0.01, uncorrected) BDNF gene-group differences functional connectivity in across three resting-state networks.

 BA x y z Volume  Z score

     (mm3)

DEFAULT MODE NETWORK

val/val > val/met

Frontal

 Inferior R10 49 45 −3 105 2.714

 Inferior R46 45 38 4 158 2.762

Temporal

 Parahippocampal gyrus L34 8 −8 −14 158 2.95

 Parahippocampal gyrus L34 −15 −4 −14 264 3.004

 Hippocampus L −34 −26 −3 316 3.161

 Fusiform L20 −41 −23 −22 475 3.521

 Uncus L28 −11 −4 −26 211 3.331

Parietal

 Inferior R40 34 −38 31 158 2.72

Limbic

 Cingulate L24 −15 11 23 158 2.632

 Cingulate L24 −19 4 34 105 2.794

 Insula L13 −34 19 12 158 3.068

Subcortex

 Caudate R 15 19 16 105 2.764

 Caudate L −23 8 19 422 3.049

Cerebellum

 Tuber L −34 −86 −29 633 3.428

val/met > val/val

Temporal

 Superior L38 −45 15 −14 158 3.071

 Middle R21 68 0 −7 105 3.454

 Middle R21 49 −11 −11 527 3.071

Parietal

 Inferior/Precuneus R39 45 −68 42 264 3.014

 Angular R39/40 49 −68 31 422 3.219

EXECUTIVE NETWORK

val/val > val/met

Frontal

 Medial R10 11 53 8 158 2.786

 Medial R9 11 49 34 158 3.22

 Precentral L4 −26 −15 46 158 2.783

Temporal

 Superior R38 41 11 −18 264 3.315

 Inferior L20/37 −60 −56 −11 105 3.441

 Parahippocampal gyrus R28 19 −15 −18 105 2.816

 Parahippocampal gyrus L28 −23 −26 −7 264 2.693

 Fusiform/Inferior R20 53 −11 −22 158 3.051

 Uncus L28 −11 −4 −26 105 3.458

Parietal

 Superior R7 19 −60 61 105 2.714

 Superior R7 8 −60 68 105 2.987

 Inferior L39 −41 −64 42 264 2.776

 Angular gyrus L39 −34 −60 34 264 2.892

 Angular gyrus L39 −41 −56 34 211 2.944

 BA x y z Volume  Z score

     (mm3)

 Supramarginal gyrus R 41 −41 23 105 2.923

 Supramarginal gyrus R 34 −49 27 475 2.837

 Precuneus  L31 −11 −56 31 1266 3.37

Limbic

 Anterior Cingulate R25 4 15 −7 105 3.238

 Insula L13 −30 −19 27 369 3.143

Subcortex

 Putamen/Lentiform

 Nucleus R 26 −4 19 105 2.77

val/met > val/val

Frontal

 Inferior R44 60 15 4 105 2.924

Temporal

 Inferior R20 45 −8 −33 105 2.988

Limbic

 Insula L13 −38 15 1 105 2.694 

 Cingulate L24/32 0 15 38 369 2.915

PARALIMBIC NETWORK

val/val > val/met

Temporal

 Parahippocampal gyrus L19 −38 −41 1 158 2.928

Limbic

 Posterior cingulate L31 −19 −41 27 158 3.025

val/met > val/val

Frontal

 Middle R6 53 4 38 264 2.911

 Inferior L47 −30 19 −18 211 2.916

 Medial L10 −11 56 −7 316 3.152

 Medial R10/11 11 64 −11 105 2.968

 Precentral L4 −49 −4 46 475 2.993

Temporal

 Superior L22 −60 −23 4 316 3.077

 Superior L38 −45 11 −18 105 3.148

 Superior L38 −34 11 −33 211 2.967

 Middle L21 −45 4 −29 211 2.931

 Middle R39 49 −68 23 105 3.071

 Middle L19 −41 −79 23 105 2.776

 Inferior R20 45 −8 −33 158 3.144

 Inferior L20 −45 −4 −29 158 2.824

Parietal

 Postcentral L5 −41 −41 61 211 2.81

Occipital

 Inferior R19 41 −79 −3 105 2.936

Limbic

 Amygdala/Lentiform

 Nucleus L −19 −8 −7 949 5.067

 Insula L13 −26 15 −7 475 3.106

Subcortex

 Caudate L −8 8 19 105 3.244

Coordinates are given in Talairach and Tournoux convention. BA = Brodmann’s area.
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and bodily homeostasis (Critchley et al., 2004; Pollatos et al., 2007). 
In a complementary fashion, the cingulate cortex is implicated in 
resolution of emotional confl ict, in part through mediation of MTL 
structures, in particular, the amygdala (Etkin et al., 2006). Overall, 
the system is posited to play an important role in response selection 
and orientation toward action by integrating its numerous inputs. 
Given the unique role of the paralimbic neural network in integrat-
ing sensory stimuli and in generating responses to those stimuli, it 
is noteworthy that the two genotype groups differ in resting con-
nectivity in this circuit. In the present study we demonstrate that 
connectivity between this network and neocortical association areas 
and the amygdala is enhanced in met-allele carriers. It is possi-
ble, therefore, that greater connectivity between the cortico-limbic 
structures underlies both the risks associated with this allele (e.g., 
disorders, schizophrenia) and the protective effects of this allele (e.g., 
reduced substance abuse, lower levels of neuroticism).

We found lower resting connectivity in widespread brain regions 
in met-allele carriers than in val-allele homozygotes in both the 
default-mode and executive networks. We emphasized the dif-
ferences observed in parahippocampal and hippocampal regions 
because of the major role these structures play in memory forma-
tion and the known association between the met allele and poorer 
episodic memory (Egan et al., 2003).

In this paper, we interpret the obtained genotype differences 
as refl ecting greater coherence between the MTL and our seed 
regions in individuals who are homozygous for the polymorphism 
of BDNF that confers higher levels of that growth factor in the 
MTL. Based on our analysis, the relations between our seeds and 
the MTL peaks range by group from z = 0.3 to 4.1. The fi nding that 
val-allele homozygotes have greater FC between hippocampal and 
both executive and salience networks is surprising given previous 
reports suggesting that these networks are negatively correlated 
with the MTL (Fox et al., 2005). It is possible that by not  performing 
global normalization, our results are more reliable in assessing the 
nature of the relation between these seeds and MTL, and this may 
account for the observed difference (Chang et al., 2009; Murphy 
et al., 2009; Weissenbacher et al., 2009).

As we point out above, effective memory processing relies on 
distributed cortical and subcortical brain regions. In fact, the resting-
state approach has been particularly fruitful in demarcating major 
memory networks by examining healthy participants and showing 
that regions of the precuneus, posterior cingulate, and parietal lobule 

that show greater activity to successfully remembered items are the 
same regions that are connected at rest to the hippocampal forma-
tion (Vincent et al., 2006), and by drawing conceptual links between 
memory impairments in Alzheimer patients and reduced resting-
state connectivity in the DMN in the hippocampus (Greicius et al., 
2004). Collectively, studies examining resting-state networks have 
found that levels of connectivity and integrity in these networks are 
related to the anomalies in the psychological and cognitive operations 
served by those networks (for reviews of DMN and neuropsychiatric 
disorders, see Greicius, 2008; Broyd et al., 2009). In the present study 
we found reduced connectivity in default-mode and executive net-
works in a number of regions known to be implicated in memory 
processing ( hippocampus, precuneus, BA 31, inferior parietal lobule). 
We suggest, therefore, that reductions in FC in met-allele carriers 
observed for the DMN and EN may represent anomalous develop-
ment of these cognitive networks in children and adolescents, a proc-
ess that may give rise to the kinds of memory impairments previously 
reported in adult BDNF met-allele carriers (Egan et al., 2003; Hariri 
et al., 2003; Dempster et al., 2005; Ho et al., 2006).

There are a number of caveats concerning this work that warrant 
mention. First, genotype interacts with several factors, including age, 
pubertal status, and gender, to infl uence the intermediate phenotype 
of brain biology. As is typical of most neuroimaging studies, our 
sample size limited the number of analyses that we could reliably 
conduct. Moreover, our sample of children is relatively heteroge-
neous, and other factors will certainly contribute variance to the 
observed fi ndings. Second, the data are not reported using multiple 
comparisons correction. Without this correction we have accepted 
more chance for Type 1 error. Our future work will attempt to rep-
licate these fi ndings in an independent sample. The fi nal caveat 
concerns the ROI-based approach and the selection of seed regions. 
We have attempted to differentiate connectivity between each net-
work and the medial temporal lobe, but have done so using seed 
regions that are not completely independent of one another. Indeed, 
investigators have documented some degree of overlap among these 
networks, and between these networks and sensorimotor networks 
(Seeley et al., 2007; Habas et al., 2009). Consequently, resting state 
networks should not be interpreted as independent networks of the 
brain, but instead, as having some degree of interplay.

In summary, the reduced mnemonic function, altered MTL func-
tion, reduced hippocampal and cortical volume, and disposition to 
affective illness attributed to the BDNF met allele, combined with the 

FIGURE 4 | BDNF gene group differences (val/val > val/met: blue; val/met > val/val: yellow) for each of the three resting networks within hippocampal ROIs.
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functional connectivity analysis in our study, suggest that reduced 
BDNF has implications for the formation of large-scale neural net-
works. Our results extend previous fMRI fi ndings by identifying 
altered neural system-level functional cooperativity in carriers of the 
met-allele. It remains for future research to elucidate the nature of 
the associations among these measures in affecting specifi c behavio-
ral phenotypes. The role of exogenously applied neurotrophins, for 
example, is an active area of investigation, and advances in this area 
will inform our understanding of how these large-scale networks are 
formed and maintained. In addition, this work will help to generate 
novel hypotheses about the neural underpinnings of phenotypes 
associated with specifi c BDNF alleles. For instance, increased FC in 
paralimbic networks may also characterize individuals with an eating 
disorder, given the association of the met allele with that phenotype. 
The present results highlight the importance of integrating neural 
and genetic data in elucidating phenotypic behaviors.
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