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cortex (Makeig et al., 2002). To accurately model the relation of 
EEG dynamics to behavior and experience, therefore, activities of 
distinct brain and non-brain EEG sources must fi rst be isolated. 
Independent component analysis (ICA) decomposes scalp-recorded 
EEG data into a weighted set of maximally temporally independent 
component (IC) processes by learning spatial fi lters that maxi-
mize the temporal independence of the resulting IC-fi ltered output 
time series (Makeig et al., 1996). Under favorable circumstances, 
the highly overlapping scalp projections of many ICs each strongly 
resemble the projection of a single equivalent dipole source, a result 
compatible with generation by partially synchronous local fi eld 
activity across a cortical patch, though the scalp maps of a few ICs 
are clearly better fi t by two bilateral equivalent dipoles, possibly 
refl ecting joint activity of two cortical patches whose local fi eld 
activity patterns may be tightly coupled by parallel sensory inputs 
or directly by callosal fi bers (Makeig et al., 2002).

Despite the potential for EMG contamination, several studies 
have reported changes in low gamma-band EEG activity  associated 
with imagined or perceived emotion-laden pictures. For  example, 
integrated gamma-band power in the 30–60 Hz range has been 
reported to be higher at rest in Buddhist meditators than in controls, 
and to increase further during their meditations on loving- kindness 
and compassion (Lutz et al., 2004). Processing of emotional stimuli 
was also linked to gamma band power increases in normal sub-
jects (Gemignani et al., 2000; Keil et al., 2001; Aftanas et al., 2004), 
though this linkage was absent in alexithymic subjects who are 
unable to identify and describe their feelings (Matsumoto et al., 
2006). In another report, repetitive trans-magnetic stimulation 
of the medial cerebellum produced spontaneous reports of ele-
vated mood accompanied by increased (right > left) asymmetry 
in gamma (30–50 Hz) power at frontal scalp electrodes (Schutter 
et al., 2003). Of the studies mentioned above, only one (Lutz et al., 
2004) attempted to address the possible confounding infl uence of 

INTRODUCTION
Most analysis of ongoing electroencephalographic (EEG) and local 
cortical fi eld activity assumes that the observed fl uctuations of elec-
trical potential are the sum of more or less narrow-band oscillatory 
activities in distinct frequency bands. However, invasive electro-
corticographic (ECoG) recordings from the cortical surface of 
patients in preparation for brain surgery to relieve intractable 
epilepsy include clear and well-replicated 30–200 Hz broadband 
power fl uctuations (Crone et al., 2006) that appear directly linked 
to information processing in each cortical area (Crone et al., 1998, 
2001; Pfurtscheller et al., 2003; Ray et al., 2008). These fl uctuations 
are not found to occur within narrow frequency bands [as, for 
example, within the (8–12 Hz) alpha band (Pfurtscheller, 1989)], 
but instead appear to be monotonic modulations of spectral power 
across the entire upper portion of the local fi eld spectrum. Although 
a tonic increase in higher-frequency EEG activity recorded from the 
human scalp has long been associated with wakefulness and arousal 
(Moruzzi and Magoun, 1949), and changes in high- frequency 
broadband activity have recently been shown to  correlate with 
neural spike rate (Logothetis et al., 2001; Manning et al., 2009), it 
is most often assumed that activity above the (30–90 Hz) gamma 
frequency band does not survive passage through the skull with 
enough power to be detected at scalp electrodes. In contrast, elec-
tromyographic (EMG) activities from scalp and neck muscles make 
prominent contributions to scalp EEG data across a very wide (at 
least 20–300 Hz) EMG frequency range, further confounding 
interpretation of high-frequency brain activity in scalp recordings 
(Whitham et al., 2007). Thus, it has been considered very diffi cult 
to clearly separate and monitor very high-frequency brain source 
activities in non-invasively recorded scalp EEG data.

Analysis of scalp EEG data is complicated by the fact that 
 activity recorded at each scalp channel sums activities from several 
cortical source areas separated as widely as occipital and frontal 
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scalp muscle by comparing intentional muscle fl exing and using 
ICA to remove temporalis muscle contributions and to localize the 
apparent brain sources of the scalp gamma activity, although the 
latter analyses were only submitted as supplemental material.

Many studies of EEG spectral dynamics consider separate, 
 narrow and/or pre-defi ned frequency bins. However, to bet-
ter understand the functional roles of local fi eld dynamics in 
the brain, more fl exible data-driven models of spectral dynam-
ics are desirable. Here, we attempted to characterize the distinct, 
frequency modulations occurring in continuously recorded EEG 
data, irrespective of their physiological bases, and to determine 
the inter- relationship of observed modulations in brain and mus-
cle source EEG activities. Previously, we have shown that spectral 
activity of ICs projecting to the frontal midline scalp exhibit mul-
tiple modes of event-related power modulation during a working 
memory task (Onton et al., 2005). The method we applied here is 
a related but novel method for decomposing log-spectral fl uctua-
tions of multiple ICs into a product of distinct spectral modulator 
processes (Figure 1 and Materials and Methods). Such processes 
might derive from  coordinated actions of modulatory factors, for 
example the  brainstem-based neuromodulatory systems releasing 
dopamine, acetylcholine, norepinephrine, etc., that are linked to 
arousal and event evaluation (Robbins, 1997; Bardo, 1998) or other 
 cognitive/emotional processes. There may appear to be a contra-
diction between the concepts of ‘independent’ component proc-
esses (ICs) and ‘amplitude co-modulated’ processes (co- modulated 
by one or more IMs), since by strict defi nition co-modulated 

 processes are not truly  independent. Mathematical investigation 
shows, however, that infomax ICA should correctly separate and 
identify co-modulated but otherwise independent processes when 
their probability density functions resemble those of typical brain 
source ICs (Palmer and Makeig, 2010).

Here we show that results of the log-spectral decomposition 
method, applied to data collected during an experiment involv-
ing eyes-closed guided imagery to achieve immersion in various 
emotion experiences, included three categories of broadband high-
frequency modulations associated with brain, scalp muscle, and 
most likely ocular motor tremor activity, respectively.

MATERIALS AND METHODS
SUBJECTS AND TASK
Thirty-two young adult volunteers participated under informed 
consent in accordance with UCSD institutional review board 
requirements (13 male, 19 female; age range: 18–38 years; age mean 
and standard deviation: 25.5 ± 5 years). None of the subjects were 
highly trained in meditation, but all stated they felt capable of 
inducing a realistic emotional state through a verbally guided nar-
rative and their own imagination. Subjects were seated comfort-
ably with eyes closed in a dimly lit room with air-tube fed ear-bud 
earphones. Imagination of emotional states was encouraged and 
guided by a set of pre-recorded verbal suggestions. Each session 
began and ended with 2 min of eyes closed silent rest. The task 
then began with a recorded verbal explanation of the task, fol-
lowed by approximately 5 min of verbal guided imagery  relaxation 

FIGURE 1 | Independent spectral modulators of scalp EEG signals. ICA, 
applied to EEG data recorded at a large number of scalp electrodes, identifi es 
(A) temporally distinct (independent) signals generated by partial 
synchronization of local fi eld potentials within cortical patches (B), the resulting 
far-fi eld potentials summed (Σ), in differing linear combinations, at each 
electrode depending on the distance and orientation of each cortical patch 
generator relative to the (A) recording and (C) reference electrodes. On 
average, power in the cortical IC signals decrease monotonically with 
frequency, but also exhibit continual, marked, and complex variations across 

time. Rather than viewing these variations as occurring independently at each 
frequency, spectral modulations may be modeled as exponentially weighted 
infl uences of several distinct but possibly overlapping modulator (IM) processes 
(D) that independently modulate via multiplicatively scaling (Π) the activity 
spectra of one or more independent component (IC) signals. On converting the 
IC spectra to log power, combined IM infl uences on IC spectra are converted to 
log-linear weighted sums of IM infl uences, allowing a linear ICA decomposition 
of the IC log-power spectra to separate the effects of the individual IM 
processes (D) on power at selected frequencies of IC sources (B).
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 instructions to promote a relaxed, inwardly-focused state. A series 
of 15 guided imagery narratives, each describing a different 
 emotion and potential scenario, were then presented, separated 
by voice-guided relaxation interludes. Subjects were instructed 
to use whatever imagery they deemed suitable for stimulating a 
vivid and embodied experience of the suggested emotion, and were 
encouraged to pay attention to somatic sensations associated with 
the target emotion. Subjects were told to take as much time as they 
needed to recall or imagine a scenario that would induce a realistic 
experience of the suggested emotion.

Each (15–30 s) pre-recorded emotional imagery induction 
began with a short description of the emotion followed by sug-
gestions of one or more circumstances in which the target emo-
tion might be vividly experienced. For example, for the emotion 
‘excitement’ the suggested circumstance was this: ‘Perhaps some-
thing you dreamed of experiencing is fi nally about to arrive, 
something that opens up new exciting possibilities for you.’ To 
minimize subject stress, the emotion sequence was chosen to alter-
nate pseudo- randomly between positive-valence emotions (love, 
joy, happiness, relief, compassion, contentedness, excitement, awe) 
and negative-valence emotions (anger, jealousy, disgust, frustration, 
fear, sadness, grief).

Sixteen of the subjects indicated the onset of the suggested emo-
tion by pressing a right-hand button. Eleven other subjects were 
asked to make pulsating button presses on a pressure sensitive key, 
attempting to communicate the quality of the feeling they were 
experiencing. Five other subjects were asked to press the button 
at moments when they experienced a surge in the target emotion. 
Results of the valence analysis reported here for the three button-
press subgroups proved similar, so for the purposes of this report 
the data of all 32 subjects were considered together.

Subjects were asked to experience each suggested emotion for 
3–5  min, though no external time indicators were provided to 
the subjects, and to press a second, left-hand button when the 
experience of the emotion subsided. This initiated a verbal 15-s 
relaxation suggestion, followed by the next emotion induction. The 
durations of the 480 recorded emotion periods (15 emotions × 32 
subjects) were between 43 s and 12 min (on average, 218 ± 94 s) 
during experimental sessions lasting about 80 min.

DATA ACQUISITION
EEG data were collected synchronously from 250 scalp, four infra-
ocular, and two electrocardiographic (ECG) electrodes with an 
active reference (Biosemi, Amsterdam) at a sampling rate of 256 Hz 
with 24-bit A/D resolution. Onsets and offsets of each guided 
imagery narrative, as well subject button presses, were recorded 
in simultaneously acquired event channels. Caps with a custom 
whole-head montage were used to position the electrodes, which 
were pressed into plastic wells in an electrode cap fi lled with water-
based conductive gel. The recording montage covered most of the 
skull, forehead, and lateral face surface, omitting chin and fl eshy 
cheek areas. The whole-head coverage and multiple chinstraps, as 
well as the active recording technique that eliminated the need to 
scrape the skin surface, made the process of fi tting and wearing 
the electrodes generally comfortable for the subjects. Locations 
of the electrodes relative to skull landmarks for each subject were 
recorded (Polhemus, Inc.).

DATA PREPROCESSING
Separating independent modulator (IM) processes involved  several 
steps detailed below. Data were analyzed by custom Matlab (The 
Mathworks, Inc.) scripts built on the open source EEGLAB envi-
ronment (Delorme and Makeig, 2004). Electrodes with poor skin 
contact, judged by their grossly abnormal activity patterns, were 
removed from the data, leaving 134–235 channels per subject 
(214 ± 18, mean ± SD). After re-referencing to digitally linked mas-
toids, the data were digitally fi ltered to emphasize frequencies above 
1 Hz. Data periods containing broadly distributed, high-amplitude 
muscle noise and other irregular artifacts were identifi ed by tests for 
high kurtosis or low probability activity and removed from analysis 
using EEGLAB functions (Delorme et al., 2007). Occurrence of eye 
blinks, other eye movements, or tonic muscle tension artifacts were 
not criteria for data rejection.

ICA DECOMPOSITION
Remaining data time points were then concatenated and submit-
ted to full-rank decomposition by extended infomax ICA using 
the binica function (Makeig et al., 1997) available in the EEGLAB 
toolbox (http://sccn.ucsd.edu/eeglab). Infomax ICA fi nds a matrix, 
W, that linearly unmixes the original EEG channel data, x, into 
a sum of maximally temporally independent, and spatially fi xed 
components, u, such that u = Wx. The rows of the resulting ‘activa-
tion’ matrix, u, are the IC activities or activations, and its columns, 
the time points of the input data. Columns of the inverse matrix, 
W−1, give the relative projection weights from each IC to each scalp 
electrode. For the derivation of the infomax algorithm, see Jung 
et al. (2001); for practical details of its application to EEG data see 
Makeig et al. (2004) and Onton and Makeig (2006).

Decompositions used default extended-mode binica training 
parameters with a stopping weight change of 1e-7. Extended info-
max ICA (Lee et al., 1999) was used to allow recovery of components 
with either supra- or sub-gaussian activity distributions, including 
60-Hz line noise contamination. No PCA dimension reduction 
was performed on scalp EEG data before ICA decomposition. The 
amount of data decomposed for each subject amounted to between 
25 and 57 min (mean data points ± SD: 667 k ± 115 k). The scalp 
data decomposed by ICA comprised, on average, about 30 time 
points for each weight in the square ICA unmixing matrix learned 
from the EEG data (range, 15–70). Note that the lower end of this 
points-per-weight range is somewhat lower than we have previously 
recommended (Onton and Makeig, 2006), yet no adverse effects 
on decomposition quality were noted, suggesting that the quality 
of EEG data affects the minimum number of points-per-weight 
required for useful ICA decomposition, though no systematic 
exploration of this question has yet been reported.

INDEPENDENT COMPONENT SELECTION
IC activations from each subject were fi rst assessed and catego-
rized as brain activity or non-brain artifact (e.g., muscle or line 
noise, or eye movement activity) by visual inspection of their scalp 
topographies, time courses and activity spectra. Next, an equiva-
lent current dipole model for each brain-IC map was computed 
using a four-shell spherical head model co-registered to each 
subject’s electrode locations by warping the electrode locations 
to the model head sphere using tools from the EEGLAB dipfi t 

http://sccn.ucsd.edu/eeglab
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plug-in using Fieldtrip toolbox functions by Robert Oostenveld. 
Components with bilaterally symmetric scalp maps were fi t with 
two symmetrically placed, but freely oriented equivalent dipoles. 
If the spherical forward-model scalp projection of the best-fi tting 
single or dual-symmetric equivalent-dipole model had more than 
15% residual variance over all scalp electrodes from the IC scalp 
map, the component was omitted from further analysis. ICs with 
an equivalent dipole located well outside the model brain volume 
were also excluded. The mean number of remaining brain ICs with 
near-dipolar scalp maps entered into the subsequent analysis was 16 
per subject (SD ± 6; range, 9–31). For some analyses, components 
accounting for scalp and neck muscle activities were separately 
identifi ed by their characteristic mean spectral plateau above 25 Hz 
and the placement of their equivalent dipole outside the brain in 
the neck or lower head region.

A third class of identifi ed ICs included in the decomposition 
comprised putative ocular motor ICs with bilaterally symmetrical 
scalp maps that resembled those of ICs accounting for blink artifacts. 
However, the activations of these ocular motor ICs did not contain 
typical blink activity features (though some did exhibit defl ections 
temporally linked to blink events that were primarily accounted for 
by other eye blink components). These ICs were generally localized 
using an inverse spherical head model to either the edge of ventral 
frontal brain regions, or below the brain volume just behind the eye 
sockets. Based on the characteristic IM power modulations recov-
ered for nearly all these ICs with a broad spectral peak in the region 
of 50–70 Hz, we judge the source of their independent activities to 
most likely be the ocular motor muscles producing the well-known 
bi-ocularly synchronous ocular motor micro-tremor of the eyeballs 
(Eizenman et al., 1985; Spauschus et al., 1999) which to our knowl-
edge has not previously been isolated from scalp EEG signals.

SPECTRAL ANALYSIS
For each subject, the ∼16 (range, 9–31) identifi ed brain-IC 
 activations from emotion imagery periods were separated into 
75%- overlapping 2-s Hanning windowed time windows and then 
transformed into individual frequency power spectra by fast Fourier 
transform. The 512-point time windows were zero-padded to 2560 
points to give frequency bins with 0.1-Hz spacing. These were then 
re-sampled to 370 approximately quadratically-spaced frequency 
bins between 3 and 125 Hz. The power values were converted to log 
power and mean log power at each frequency (across the roughly 
865 to 9,500 data windows for all 15 emotions) was subtracted 
from each single-window spectral power estimate. The resulting 
time series of log-spectral deviations were concatenated, giving a 
matrix of size (t, c *f), where t is the number of time windows (865–
9500), c the number of subject ICs used in the analysis (between 
9 and 31), * means ‘multiplied by’, and f the number of frequency 
bins (370). The size of this matrix varied across subjects accord-
ing to the lengths of their imagery periods and the number of ICs 
included in the analysis. For each subject, this matrix was reduced 
to its fi rst 41–76 principal dimensions (53.5 ± 10, mean ± SD) by 
PCA such that each decomposition contained twice as many fre-
quency bins (times number of ICs) as the square of the number of 
principal dimensions. The resulting principal subspace accounted 
for between 26% and 55% (34.7 ± 5, mean ± SD) of the original 
log-spectral data variance.

LOG-SPECTRAL DECOMPOSITION
The dimension-reduced log-spectral data were then decomposed by 
extended infomax ICA to fi nd independent modes of log-spectral 
power modulations or co-modulations across one or more ICs. 
Below, we refer to the resulting modulatory factors, modes, or proc-
esses as IM processes, which each act multiplicatively on the activity 
spectra of one or more of the brain-IC processes separated from 
the recorded EEG scalp signals by ICA. The EEG model underly-
ing this analysis is illustrated schematically in Figure 1, in which 
two IM processes are shown schematically as discs placed in the 
brainstem region of the cartoon head. In fact, several arousal or 
event valuation neuromodulator systems centered in the brainstem 
are known to modulate cortical fi eld spectra. While the log-spectral 
decomposition introduced here might separate the infl uences of 
such systems on the scalp EEG, there is no guarantee that the IM 
processes derived statistically from the data need refl ect the actions 
of these or other individual physiological systems; establishing any 
such suggested linkages would require further and more specifi c 
experimental testing.

The log-spectral ICA decomposition of the dimension-reduced 
IC spectral variability over time returns a spectral unmixing matrix. 
The inverse of this matrix (the spectral mixing matrix) gives the 
relative projection weights for each IM to each PCA dimension. 
These can be expanded into window time series by multiplying 
the ICA mixing matrix by the pseudo-inverse of the dimension-
reduced PCA eigenvector matrix.

The decomposition also returns a matrix of ‘templates’ 
 containing the relative modulatory effects of each IM on all IC 
 spectra. Multiplying the inverse ICA and pseudo-inverse PCA weight 
matrices with a single IM template produces a back- projected data 
matrix whose columns estimate the strength of IC log-power fl uc-
tuations across time windows (rows) of one IM process. Thus, IM 
decomposition models principal IC log-power spectral fl uctuations 
as weighted sums of IM process infl uences, or equivalently, models 
IC power spectral fl uctuations as exponentially weighted produced 
of IM infl uences.

Note that an alternate approach beginning with conversion of 
the single scalp channel data to power or amplitude, then applying 
ICA and spectral ICA decomposition, would fail to separate distinct 
sources mixed linearly in the scalp channel data, since taking ampli-
tude or power is a nonlinear operation that cannot be undone by 
any linear inverse method including ICA and linear inverse source 
localization methods.

IM MODEL DERIVATION
The decomposition of spectral modulations using ICA assumes 
that the matrix of spectral activities, S, of each IC (c) in each 
time window is multiplicatively affected (scaled or gated) by the 
 exponentially-weighted product of some number, N, of IM proc-
esses whose (template) patterns of log-linear effects on each IC 
spectrum are given by templates comprising the rows of matrix 
T. Each of the IM templates scales power in some portions of the 
IC baseline spectra, B, the strength of these modulations given by 
a matrix of the scalar exponents, W, associated with each IM, IC, 
and time window. The magnitudes and polarities of these weights 
determine the extent to which the N IM templates, T, produce 
fl uctuations in the IC power spectra, S.



Frontiers in Human Neuroscience www.frontiersin.org December 2009 | Volume 3 | Article 61 | 5

Onton and Makeig High frequency EEG modulations

S T Bc t m
W

m

N

c
m t

,
.= ( ) ×

=
∏

1  
(1)

where S
c,t

 is the power spectrum of IC c in time window t, T
m
 is 

the template of IM m in window t, W
m,t

 is the frequency vector 
of weights for IM m in time window t, and B

c
 is the mean power 

spectrum of IC c across time windows. Taking the log of both sides 
gives the IC log-power spectrum, S, of IC c in time window t.

log log log, ,S W T Bc t m t m c
m

N

= ( ) +
=

∑
1  

(2)

The log-spectral deviation (D) from the mean power spectrum 
of c in time window t is

D S B W Tc t c t c m t m
m

N

, , ,log log log= − = ( )
=

∑
1  

(3)

This equation can be written to include all factors, ICs, and time 
windows as matrix equation

D = WT (4)

Here, D is the matrix of log-spectral deviations from log- spectral 
baseline with dimensions (windows by ICs*frequencies). The 
 columns of matrix W, of dimensions (windows by IMs), give the 
time-window weights. The rows of matrix T, of dimensions (IMs 
by ICs*frequencies), give the templates of spectral modulation of 
spectral power across ICs and frequencies. For computational trac-
tability, the height of matrix D may be reduced by PCA before ICA 
decomposition. The index t in Eqs. 1–3 above then ranges over the 
retained principal dimensions.

Physiologically, baseline power, B, resembles a power-law func-
tion (Robinson et al., 2001), B ∝ f a. If a template, T, rises log linearly 
with frequency with a slope b, T

f
 ∝ f b, then T will transform B → Tw 

B ∝ (f b)w f a ∝ f (bw + a), a power-law function of frequency, f, in which 
the IM weight, w, adjusts the power-law exponent (bw + a).

We have reported previously (Onton et al., 2005) an alternate 
form of log-spectral ICA decomposition that we call ‘TW’ (‘tem-
plates by weights’), which should be distinguished from the cur-
rent ‘WT’ (‘weights by templates’) decomposition. In the former 
(‘TW’) decomposition of spectral variability in a single IC cluster, 
temporal independence of the modulator time courses was maxi-
mized across time windows (as in the initial ICA decomposition 
of the time-domain scalp data). In the present ‘WT’ decomposi-
tion, however, the independence maximized by ICA is of the IM 
templates across ICs and frequencies. That is, ICA here separates 
the spectral variability into maximally distinct patterns or modes 
of frequency modulation across spatial source (IC) locations and 
spectral frequencies. In ‘WT’ spectral decomposition, therefore, the 
estimated IM time courses themselves may be correlated and/or 
otherwise mutually informed.

Note that performing log-spectral decomposition on individual 
scalp channel data would not have the same utility, since taking 
log power is a nonlinear transform and therefore the log-power 
spectrum of an electrode signal (summing a number of brain and 
non-brain source projections) is not equal to the sum of the log 
spectra of the source projections themselves.

Generalization of this method to EEG data collected under 
 different experimental conditions is quite possible when the 
 numbers of ICA components and time windows are compatible with 
those presented here. In an event-related paradigm, the width and 
update interval of the moving spectral window might be adjusted 
to a higher temporal resolution. In fact, from preliminary testing, it 
appears that increasing the temporal resolution (thus creating more 
rows in the decomposition matrix) slightly improves the signal to 
noise, even when the number of columns in the matrix remains 
constant. Typically, in temporal ICA decomposition, adding more 
channels (i.e., rows) requires more data points (EEG samples). 
However, in the current analyses, as few as 9 ICs × 370 frequencies 
(=3,330 columns) were used in a 41-dimensional decomposition 
(reduced by PCA from 3,081 original rows) subject decomposi-
tion with no marked differences in the resulting IMs from other 
subject decompositions.

The choice of a multiplicative model for the IM processes is 
both mathematically convenient and also appears biologically plau-
sible, at least within some limited range of exponential weights. 
Typically, neuromodulator processes are not assumed to add to or 
subtract de novo activity from the ongoing local fi eld spectra, but 
instead are here modeled as multiplicatively scaling up or down 
the amplitudes of particular ongoing spectral activity modes whose 
frequency profi les and time-window weights may be recovered by 
the log-spectral ICA decomposition.

Note that there appears to be some contradiction between the 
concepts of ‘independent’ component processes (ICs) and ‘ampli-
tude co-modulated’ processes (co-modulated by one or more 
IMs), since co-modulated processes cannot be truly independent. 
Mathematical investigation shows, however, that infomax ICA 
should correctly separate and identify co-modulated but otherwise 
independent processes when their probability density functions 
resemble typical brain source ICs (Palmer and Makeig, 2010).

IM TEMPLATE CLUSTERING
For most applications, it should be most advantageous to incorpo-
rate only ICs with putative brain generators to increase the number 
of brain-process IMs recovered. However, to test separation of high-
frequency muscle activity from similar broadband activity patterns 
found in brain ICs, we also tried including selected scalp muscle and 
ocular motor ICs in the subject log-spectral decompositions.

To fi nd common patterns of spectral modulations across sub-
jects and IMs, all spectral IC template patterns (from the ‘T’ matrix 
above) whose root-mean square (RMS) amplitudes were at least 
50% of the largest RMS IC template for each IM were collected for 
clustering. The histogram of RMS values was skewed towards the 
lower values with a median of about 0.19 and therefore a 50% cutoff 
resulted in inclusion of 13.5% of all IM templates. By this criterion, 
each IM affected between 1 and 31 ICs (3.3 ± 3.2, mean ± SD). 
Each subject contributed, on average, 121 IC frequency templates 
(∼53 IMs × ∼3.3 ICs), yielding a total of 3872 IC templates (∼121 
templates × 32 subjects) for clustering.

To cluster IMs with broadband templates, we fi rst isolated all 
IC templates that had a maximal multiplicative (dB) effect above 
35 Hz. Next, we eliminated templates without a clear spectral 
 pattern and with strength of less than 2.5 activation units at all 
frequencies. Using correlation between all IM template vectors 
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to calculate the linkage between input templates (Matlab pdist() 
followed by linkage()), we then constructed a dendrogram (using 
Matlab dendrogram()) with branching set to yield 100 small clusters 
of IM templates. Clusters with noisy and inconsistent templates 
were eliminated and IM templates were again collected into a single 
group. This group of broadband IMs from all subjects was then 
separated into brain, scalp muscle and ocular motor ICs according 
to the criteria outlined above. Brain ICs with broadband gamma 
modulation were found to be localized to the areas indicated in 
dipole density Figure 9. Individual subjects varied as to the number 
and locations of their broadband IMs. Inter-subject variability was 
not infl uenced by button-press group assignment, so all subjects 
were grouped together in Figure 9 and further analyses.

   Other clusters with maximal effects in the theta, alpha and 
beta frequency ranges were also recovered by similar methods 
and were similarly consistent across subjects; further details will 
be reported elsewhere.

MULTI-DIMENSIONAL SCALING OF IM WEIGHTS
To assess the behavioral relevance of high-frequency broadband 
IMs, for each subject a separate decomposition was performed, 
identical to that described above but without including scalp muscle 
and ocular motor ICs. The resulting IM templates included similar 
broadband IMs that were clustered as above. Inspection of the time 
weight histograms for each broadband IM during each emotion 
period suggested that the median weights for each emotion period 
could capture the strong and clear differences between emotion 
periods in some IM activities. Broadband IM time weights from this 
second decomposition were therefore separated by target emotion, 
for which median time weights for each IM and emotion were com-
puted. To minimize the effects of any non-stationarities in the brain 
dynamics and imaginative experience of the subjects within each 
few-minute emotion period, all further analysis was performed on 
the emotion-period median weights.

By this method, between 1 and 8 high-frequency broadband IMs 
(4.8 ± 1.7, mean ± std) were identifi ed for each subject. Together, 
these median weights across subjects formed a matrix of 15 (emo-
tions) by 154 broadband IMs. This matrix was submitted to the 
pdist() function in Matlab to create a correlation distance between 
each pair of emotions. The emotion pair distances were then mod-
eled using non-metric multi-dimensional scaling (MDS) using 
Matlab’s mdscale(). Non-metric MDS represents the location of each 
emotion in a low-dimensional space (here, two dimensions) so as to 
best preserve the monotonic ordering of inter-pair distances.

RESULTS
SUBJECT REPORTS
At the end of the EEG experiment, each subject fi lled out a written 
questionnaire, indicating their overall degree of perceived authen-
ticity and intensity of their emotional experience (1–9, ‘not very’ to 
‘very’), the quality of their overall experience (from 1 = ‘negative’ to 
9 = ‘positive’), and the extent to which they felt they had ‘genuinely 
embodied’ each emotion. Their mean response to these questions 
was 6.9, with mean ratings for the experience of individual  emotions 
in the range 5.6–7.3. Subjects’ overall rating of the authenticity of 
their experiences (‘How genuine?’, mean 7.2)was slightly higher than 
their rating of intensity (‘How intense?’, mean 6.4, p = 0.01).

They also wrote brief descriptions of their experiences of each 
emotion. For example, for ‘love’ several subjects’ descriptions resem-
bled this one, ‘I felt the experience of being in the arms of the one 
who loves me, the absolute bliss of being consumed by my affection 
as well as surrounded by it.’ For ‘awe’, several subjects described 
imagining viewing the Grand Canyon, one writing, ‘I recalled watch-
ing a sunset at the cliffs overlooking the ocean. I also recalled the 
vastness of the Grand Canyon and how small I felt in comparison.’ 
For ‘frustration’, one subject said, ‘I imagined sitting in traffi c and I 
had to get somewhere right away. I couldn’t do anything to change 
or help my situation. I also imagined a test and not knowing how 
to do the problems.’ Only 40 of 32*15 = 480 ratings were less than 5 
(on a 1–9 scale). The emotion the subjects reported being least able 
to ‘embody’ was ‘jealousy’ (z = −0.8, signifi cantly different from 7 
other emotions by ANOVA, p < 0.01). ‘Jealousy’ was also the emotion 
most often mentioned as the hardest to experience, with one subject 
saying, “(I) thought this would be easier, but had no severe real-life 
instance to use, and imagining being cheated on didn’t work because 
that is so deep, seems not possible.” The emotions most often men-
tioned as the easiest were sadness, anger, happiness and love. Thus, 
subjects generally reported having been able to immerse themselves 
in a genuine experience of all or nearly all of the 15 emotions.

REPRESENTATIVE RESULTS
Figure 2 shows effects of 14 IMs on 10 (of 16) ICs entered into the 
log-spectral decomposition for one subject. Each row represents 
one IM and each column one IC. Note that IM3 clearly modulates 
only IC33, while other IMs (i.e., IMs 2, 20 and 6) co-modulate the 
spectra of two or more ICs. Note, in the examples shown here, 
that the non-zero IC spectral templates forming a single IM affect 
quite similar frequencies. The ICA decomposition itself is in no 
way constrained to produce templates with such correlated tem-
plates, but simply detects frequencies from any IC(s) that co-vary 
in a  manner maximally distinct from other IC/frequency power 
 variations. Only in rare cases did a single broadband IM both 
up-regulate and down-regulate activity across the same frequen-
cies in different ICs (not shown).

Broadband modulations of muscle IC activities (leftmost columns: 
ICs 33, 58, 70, 94) do not affect broadband or high-frequency power 
in brain ICs (e.g., IMs 1–3, 8, 9, 13). Likewise IM6, the gamma-band 
peaked modulation process that may index ocular motor tremor 
(IC6), does not modulate power in brain-ICs. Narrow-band modula-
tions of brain ICs in the theta, alpha and beta frequency bands also do 
not affect ICs associated with ocular motor or scalp muscle activity 
(e.g., IMs 11, 12, 20, 22, etc). Lastly, broadband modulations of brain 
ICs (e.g., IMs 8, 9, and 13) do not co-modulate high frequencies in 
either scalp muscle or ocular motor ICs.

The left column of Figure 2 shows the distributions of time-
window weights for each IM. Note that most brain IM weight dis-
tributions are unimodal, whereas the three (topmost) scalp muscle 
IMs have bimodal or multi-modal weight distributions, suggesting 
the action of qualitatively different regulatory systems.

REPRESENTATIVE IM EFFECTS
Figure 3 shows frequency spectra associated with maximum (red) 
and minimum (blue) power values of IMs 1, 8 and 13 (cf. Figure 2), 
as they alter the mean log-power spectra (black) of ICs 58, 5, and 2. 
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Here, the maximal infl uences of the various IMs (red, blue) can 
be seen as dB deviations from the mean IC log-power spectrum 
(black). Notice that broadband (EMG) modulations of scalp muscle 
activity (e.g., effects of IM1 on IC58) are larger than the effect of 
broadband IMs modulating brain ICs (e.g., effects of IM8 on ICs 5 
and 2). Note also that IM20 (orange) modulates alpha band activity 
(and its harmonics) of occipital/parietal ICs 5 and 2, but not of 
scalp muscle activity ICs (e.g., ICs 33, 58, 70, and 94).

The limits of the light grey shaded regions in Figure 3 show, 
for three ICs, the 1st and 99th percentiles of power at each fre-
quency. Black traces show the mean IC log spectra. The limits of 
the PCA-reduced data are shown in darker grey. At some frequen-
cies, the illustrated IMs account for the extremes of the darker grey 
area. For other frequencies, some portion of the variability of the 
PCA-reduced data is accounted for by other IMs (not shown). This 
decomposition illustrates the relative independence of scalp EMG 
and broadband brain IMs.

BROADBAND IM CLUSTERS
Figure 4 shows that both brain and scalp muscle ICs exhibited monot-
onic broadband modulations with similar spectral patterns. However, 
in our data no broadband IM affected both scalp muscle and brain 

ICs. In the right three columns of Figure 4, spheres represent the 
estimated positions of equivalent-dipole models of the affected ICs, 
co- registered to the MNI brain template (Montreal Neurological 
Institute), their color varying according to the RMS strength of their 
IM template relative to that IM’s highest-RMS IC. Purple spheres rep-
resent equivalent dipoles of ICs solely affected by an IM. Green lines 
connect spheres whose ICs were co-modulated by the same IM.

UPPER FREQUENCY LIMIT OF BROADBAND IM EFFECTS
To determine the upper frequency limit of the broadband IM phe-
nomena, we recorded and analyzed three additional experimental 
sessions recorded with an EEG sampling rate of 512 Hz. In each 
session, we again found broadband IMs whose upper frequency 
limits varied between 150 Hz and ≥256 Hz. Sample broadband IMs 
from one of these sessions is shown in Figure 5.

CORRELATIONS AMONG IM TIME COURSES
Since the independence maximized by the IMs in our analysis was 
between their frequency templates, not their time-window weights, 
the IM time courses were free to be correlated with one another in 
nearly any manner (though separate IMs could not be perfectly cor-
related or anti-correlated). Therefore, we computed within-subject 

FIGURE 2 | Typical single-subject decomposition of log-spectral power 

modulations across an hour-long experimental session. The 14 IMs visualized 
here (14 rows) represent major classes of spectral modulation of 10 of the 16 ICs 
(rightmost 10 columns) entered into the log-spectral decomposition for this 
subject. The leftmost column shows histograms of the time-window weights for 

each IM. The top four IMs (IMs 1–3, 6) are examples of broadband modulators 
indexing EMG activity. ICs (IMs 1–3) and a putative ocular motor IC (IM6); note the 
EMG IMs’ multi-modal weight histograms (left). The other IMs (below) affect only 
brain ICs, either with a broadband pattern (IMs 8, 9, 13) else either predominantly 
in the theta (IM24), alpha (IMs 5, 20, 39, 43), or beta (IMs 6, 12) frequency range.
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temporal correlations between IM weights assigned to 11 brain IM 
clusters. Table 1 gives the within- and between-cluster correlation 
means and half inter-quartile ranges. In general, the number of 
signifi cant correlations in any IM cluster pairing was low, where 
signifi cance limits were determined by performing correlations 
using IM time course weights from different rather than the same 
subjects (p < 0.01). On average, 20% ± 13% (mean ± SD) of IM pair 
correlations within any cluster pair were signifi cant by this measure. 
The time courses of broadband IMs were relatively more positively 
correlated with those of other broadband IMs (r = 0.15 ± 0.17, 
mean ± half inter-quartile range) than were the time courses of 
lower-frequency IMs with each other (p < 0.0001 by t-test). Also, the 
time courses of broadband IMs were weakly negatively correlated 
with those of lower-frequency IMs (r = −0.09 ± 0.07, p < 0.0001 
by t-test; Figure 6).

BEHAVIORAL RATINGS
Figure 7 shows results of the web survey by 100 subjects of differ-
ences between the 15 emotion terms used in this experiment on two 
dimensions long found to characterize differences between affective 
connotations of emotion names and many other words, valence 
and arousal (Russell, 1980). As expected, these results conform to 

common understanding and experience of these emotion terms, 
with love, joy, happiness, etc. rated as ‘positive’ valence (i.e., good) 
emotions, frustration, anger, fear, grief, etc. as ‘negative’ valence 
(bad), frustration, anger, joy and excitement as associated with 
relatively ‘active’ arousal, and contentment, grief, and sadness with 
relative ‘calm.’

BEHAVIORAL RELEVANCE OF BROADBAND IM EFFECTS
For all 154 broadband gamma (∼15–128 Hz) IMs were computed 
from a separate set of log-spectral decompositions (one for each 
subject) including only brain (non-muscle) ICs, median time-
 window weights during each of the 15 emotion periods. To look for 
structured relationships between emotions and changes in broad-
band IM weights, the resulting (15-by-154) matrix was reduced 
to three dimensions using non-metric MDS (Cox and Cox, 2000). 
The resulting emotion distribution shown in Figure 8 arranged 
the 15 emotions in a near circular pattern in which emotions with 
negative valence were arrayed on the left, and emotions rated as 
positive on the right. In the MDS array of Figure 8, similar emotions 
(‘joy’ and ‘happiness’, ‘sadness’ and ‘grief ’, etc.) were located near 
to one another, and emotional opposites (e.g., ‘fear’/‘frustrations’ 
versus ‘relief ’, ‘happiness’ versus ‘grief ’/‘sadness’, etc.) opposed one 

FIGURE 3 | Effects of brain and muscle modulators on independent 

component spectra. Maximal effects of three IMs (columns) on the power 
spectra of three ICs (rows) are shown via their maximal (red traces), minimal 
(blue traces), and mean (black traces) log-power spectra. Outer light grey limits 
represent the 1st and 99th percentiles of spectral variation across all the 2-s 
windows during the session. Dark grey areas represent the 1st and 99th 

percentiles of the PCA-reduced spectral data. Note the much larger broadband 
IM modulation of an electromyographic IC (IM1 on IC58, upper left) compared to 
the separate but smaller broadband IM effects on brain ICs (IM8 on ICs 5 and 2, 
middle column). The effects of the upper alpha rhythm modulator (IM20) include 
shifting the peak alpha frequencies of IC5 and IC2 (blue versus red traces, 
right column).
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another across the emotion circle. This arrangement of emotions 
based on high-frequency EEG measurements is in line with years of 
psychology research on the circumplex model of emotional space 
(Russell, 1980).

Note that in Figure 8, the position of ‘compassion’ in the MDS 
array is much closer to ‘grief ’ and ‘sadness’ than to other positive-
valence emotions. While the term ‘compassion’ was consistently 
rated a ‘positive’ emotion by a separate cohort of non-EEG subjects, 
the EEG subjects experiencing the emotion reported imagining 
scenarios consistent with feeling pity or sadness for others. Thus 
their self-induced emotional experiences could well have been 
closer to ‘sadness’ or ‘grief ’ than to any positive-valence emotion, 
as in Figure 8. We therefore had cause to doubt that the  behavioral 
ratings for ‘compassion’ fairly refl ected the predominant expe-
rience of the EEG subjects; after eliminating ‘compassion,’ the 
correlation between positions in the MDS array and the mean 
behavioral ratings of emotional valence (i.e. along the solid line 
in Figure 8) was r = 0.96, signifi cantly higher than expected by 
chance (see Materials and Methods). The positions of the emotion 
terms in the MDS space were not signifi cantly correlated (in any 
direction) with behavioral ratings of the remaining 14 emotion 
labels on the second major axis of emotional experience – arousal 
(Lang et al., 1993).

BRAIN SOURCES OF BROADBAND IMs
Equivalent dipoles of ICs affected by broadband IMs were  distributed 
through inferior occipital and temporal cortices, as well as middle 
temporal and mid-frontal areas (Figure 9).

REGIONAL CORRELATIONS WITH VALENCE
Next, we asked where in the brain median power changes occur-
ring during emotion imagination periods were positively or nega-
tively correlated with the behaviorally rated valence of the emotion 
labels. To construct Figure 10, median weights for each broadband 
gamma IM were correlated with the rated emotional valence of 
each emotion term. Then, the locations of all IC equivalent dipoles 
signifi cantly modulated by these broadband IMs (see Materials 
and Methods) were weighted by the absolute value of this cor-
relation to create two correlation-weighted dipole density plots 
(in  correlation-weighted dipoles/cm3) for positive and negative 
correlations, respectively. Figure 10 shows the difference between 
those two  density images, masked for signifi cance (p < 0.003, 
uncorrected) by randomly permuting positive and negative correla-
tion values. IMs positively correlated with valence (i.e., ICs whose 
median IM broadband power was stronger during imagination of 
positive-valence emotions) were relatively dense in bilateral mid-
temporal cortex (BA20/21), while IMs negatively correlated with 

FIGURE 4 | Broadband independent modulators of brain and scalp muscle 

components. Brain and scalp muscle ICs are separately modulated by IMs with 
similar broadband high-frequency templates (upper rows). The left column shows 
broadband templates for each IC category (black trace is the mean). The right 
three columns show equivalent-dipole locations of the affected ICs. A distinct 
cluster of putative ocular motor IMs, shown in the bottom row, have a peak effect 
near 50 Hz on ICs many of whose bilaterally symmetric equivalent-dipole models 

(bottom right panels) are located near the eyes. (ICs whose best-fi t equivalent-
dipole model comprised two bilaterally symmetrical dipoles are represented with 
a dotted yellow line connecting the dipole pair). Dipole locations for scalp muscle 
ICs are outside the brain volume (middle row). Green lines in dipole plots connect 
ICs co-modulated by the same IM and the colors of the dipole spheres (yellow to 
red) indicate the relative strength of modulation (yellow = 50%, to red = 100% of 
maximal). Purple spheres indicate individually modulated ICs.
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FIGURE 5 | Broadband modulators of a representative data set with higher 

sampling rate. This decomposition of a data set acquired with a sampling rate 
of 512 Hz (from a different subject than Figure 2) allowed an upper frequency 
analysis limit of 256 Hz, allowing examination of broadband patterns between 

128 Hz and 256 Hz. Negative spikes at 60 Hz and 180 Hz in some templates are 
residual effects of 60-Hz line noise. Note that IM9 (bottom row) has no effect 
above 150 Hz, while the modulatory effect of IM3 (middle row) is still 
increasing at 256 Hz.

Table 1 | Mean (± ± half inter-quartile range) within-subject correlations between time window weights both within and across IM clusters.

 Delta Theta1 Theta2  Alpha1 Alpha2 Alpha3 Beta1  Beta2  Beta3  Beta4  BB

Delta 0.04 ± 0.02          

Theta1 0.03 ± 0.03 0.07 ± 0.06         

Theta2 0.05 ± 0.03 0.07 ± 0.05 0.07 ± 0.04        

Alpha1 0.04 ± 0.04 0.06 ± 0.05 0.06 ± 0.05 0.08 ± 0.06       

Alpha2 0.02 ± 0.05 0.03 ± 0.06 0.02 ± 0.05 0.05 ± 0.07 0.09 ± 0.10      

Alpha3 0.02 ± 0.03 0.05 ± 0.05 0.02 ± 0.05 0.03 ± 0.06 0.08 ± 0.08 0.07 ± 0.06     

Beta1 0.01 ± 0.04 0.02 ± 0.05 0.03 ± 0.06 0.06 ± 0.07 0.07 ± 0.09 0.07 ± 0.07 0.09 ± 0.10    

Beta2 −0.01 ± 0.05 0.07 ± 0.09 0.00 ± 0.05 0.06 ± 0.09 0.12 ± 0.10 0.1 ± 0.08 0.13 ± 0.12 0.21 ± 0.07   

Beta3 0.01 ± 0.03 −0.01 ± 0.05 0.03 ± 0.04 0.03 ± 0.06 0.1 ± 0.11 0.04 ± 0.10 0.09 ± 0.12 0.18 ± 0.07 0.09 ± 0.07  

Beta4 0.00 ± 0.07 0.06 ± 0.08 0.02 ± 0.04 0.04 ± 0.06 0.06 ± 0.09 0.08 ± 0.06 0.05 ± 0.07 0.12 ± 0.11 0.13 ± 0.13 0.1 ± 0.15 

BB −0.07 ± 0.06 −0.08 ± 0.07 −0.08 ± 0.05 −0.07 ± 0.07 −0.09 ± 0.07 −0.09 ± 0.06 −0.08 ± 0.08 −0.15 ± 0.08 −0.11 ± 0.07 −0.14 ± 0.09 0.15 ± 0.17

Frequency-band limits: Delta (3–4 Hz); Theta1 (4–6 Hz); Theta2 (6–8 Hz); Alpha1 (8–9 Hz); Alpha2 (9–11 Hz); Alpha3 (11–12 Hz); Beta1 (12–17 Hz); Beta2 (17–20 Hz); 
Beta3 (20–24 Hz); Beta4 (24–30 Hz); BB (30–128 Hz); Note the weakly negative correlations of the broadband (BB) and lower-frequency weights (bottom row), versus 
the generally weakly positive correlations between other IM cluster weights (above).
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FIGURE 6 | Value-sorted time course correlations of all within-subject IM 

pairs for each pair of IM clusters. Traces represent sorted correlation 
coeffi cients between time weights from pair-wise comparisons of 11 IM 
clusters, each point representing a within-subject correlation of two IM time 
courses over 14 emotion imagination periods (excepting ‘compassion,’ see 
main text). IM clusters affected spectral changes in Delta, low Theta1, high 
Theta2, below-peak Alpha1, at-peak Alpha2, above-peak Alpha3, low to high 

Beta1-4 bands, and Broadband high-frequency activity, respectively. See 
Table 1 legend for frequency-band limits. Most time course correlations were 
quite weak, but were typically positive between all lower-frequency IM clusters. 
Correlations for broadband versus broadband IM pairs (arrow) were more often 
positive than for any other IM cluster pairs. Correlations of broadband IM time 
courses with lower-frequency IMs (ellipse) tended to be negatively correlated, 
though nearly all IM time course correlations were weak (|r | < 0.4).

FIGURE 7 | Mean behavioral ratings of the 15 emotion labels used in the 

experiment. Subjects rated each word on two scales: ‘Valence (negative-
positive)’ and ‘Arousal (calm-active)’ labeled ‘Very negative’ (0) to ‘Very 
positive’ (10), and ‘Low activity’ (0) to ‘Stimulating’ (10), respectively, with the 
midpoint (5) indicated as ‘Neutral’ on both scales. Rating data were collected 

from 100 subjects via an anonymous on-line survey. Each emotion point 
represents the mean z-score and the error bars the standard deviation. Colors 
are applied from a continuous color spectrum and used simply to differentiate 
emotions from one another and do not refl ect any objective metric or 
emotion grouping.
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FIGURE 8 | Multi-dimensional scaling of median time weights of 

broadband IMs for each emotion. Similarities between median IM weights in 
the 15 emotion periods, drawn from log-spectral decompositions for each 
subject of brain source ICs only, as represented in the best-fi tting two-
dimensional space by non-metric multi-dimensional scaling (MDS). Colors of the 
balls represent the mean behavioral ratings of (positive or negative) valence of 

the 15 emotion terms by a separate subject cohort. The solid line shows the 
best-fi t regression direction (r = 0.96) predicting mean rated valence for each 
emotion term from its location in the 2-D MDS space solely based on IM 
weights after neglecting compassion (see text). The dashed line orthogonal to 
this cleanly separates positive-valence emotions terms (warm color balls) from 
negative-valence terms (cool color balls).

FIGURE 9 | Equivalent-dipole density of ICs affected by broadband IMs. 

Spatial density of equivalent dipoles (in IC equivalent dipoles/cm3, for 
154 broadband IMs from 32 subjects), obtained by convolving each 
dipole location with a 3-D Gaussian blur (1-cm SD) and then summing 

after normalizing for boundary effects. White integers above and to the 
left of each slice image give their standard MNI brain z-axis coordinates, 
yellow text the nearest Talairach z-axis coordinates. Here, fi gure left is 
brain left.
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FIGURE 10 | Difference between positive and negative correlation-

weighted IC equivalent-dipole densities of IMs whose median weights, 

across 14 emotion imagination periods, were positively or negatively 

correlated with behaviorally rated emotion valence. Regions of 
non-signifi cant density differences were masked using permutation statistics 
(p > 0.003, uncorrected). Areas of signifi cant density difference between 

positive and negative correlation densities are colored yellow/red, indicating 
broadband power increases during positive-valence emotions, or cyan/blue, 
indicating broadband power increases during negative-valence emotions. White 
integers near each slice image give the MNI z-axis coordinates; yellow text, the 
nearest Talairach z-axis values. In these images, left is left. Weights for 
‘compassion’ were not included (see text).

rated  emotional valence (i.e., ICs whose IMs exhibited larger power 
 during  imaginative experience of negative-valence emotions) were 
relatively dense in bilateral occipital cortex near to but not including 
the occipital midline (BA17/18).

DISCUSSION
We have demonstrated that broadband co-modulation of 
beta-band, gamma-band, and high gamma-band power (Figure 4), 
often  localized to a single IC process, can be identifi ed and sepa-
rated from high-density scalp EEG data. To show this, we modeled 
log-spectral fl uctuations of IC processes in EEG data as a set of 
distinct multiplicative spectral modulator processes. The results 
of these decompositions include a class of independent modula-
tors concurrently up- or down-regulating power at all frequencies 
between ∼15 Hz and at least 128 Hz, though preliminary analyses 
(Figure 5) suggest their effects may in some cases continue up 
to at least 256 Hz. Note that these broadband modulations may 
be termed a non-oscillatory aspect of EEG signals, one typically 
ignored in frequency-by-frequency analyses EEG data – the effects 
of broadband modulation being more akin to shifting a continu-
ous whisper from ‘shhh’ to ‘ssss’ and back again, for example, 
than to varying the volume of a simple or complex oscillating 
tonal frequency.

The observation of broadband high-frequency modulation 
in EEG data is not novel. As Erik Edwards recently pointed out 
to us, perhaps the fi rst EEG power spectra ever shown (by Grass 
and Gibbs, 1938) contain low-amplitude broadband differences 

in high-frequency power between mean EEG power spectra aver-
aged over consecutive 10-min intervals (Grass and Gibbs, 1938). 
Furthermore, elevation of broadband high-frequency power in 
local fi eld potentials was regarded early on as a key index of arousal 
linked to neuromodulator processes in the ‘reticular activating 
system’ (Moruzzi and Magoun, 1949). Our method identifi es this 
broadband modulation as a frequency-distinct mode of spectral 
modulation common to most independent brain source processes 
identifi ed by ICA in our scalp EEG data.

RELATION TO POWER-LAW SCALING AND EVENT-RELATED 
GAMMA-BAND PHENOMENA
Power-law (1/f α) spectra appear in many nonlinear systems and 
typically have a critical point (i.e., an α slope value) at which they are 
most sensitive to external infl uence. Around this point the response 
of the system external input is most sensitive to small changes in the 
spectral exponent (Linkenkaer-Hansen et al., 2001). Thus, relatively 
small changes in broadband IM power (see Figure 3) might have 
strong effects on the functioning of a cortical area within broader 
brain networks, if the baseline slope of the power spectrum is near 
a critical point. Critical power-law scaling of local fi eld activity has 
been observed in isolated visual cortex (Beggs and Plenz, 2003), 
and its existence predicted by recent biophysical models of corti-
cal dynamics (Robinson et al., 2001; Robinson, 2003; Buice and 
Cowan, 2007) (although Bedard et al. (2006) have questioned 
whether it might appear simply from capacitive fi ltering effects of 
cell  membranes in neuropile).
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Recently Miller et al. (2009) have demonstrated approximate 
power-law scaling in human intracranial electrocorticographic 
(ECoG) data (Miller et al., 2007; Miller et al., 2009). They used a 
PCA rather than an ICA data decomposition approach to extract 
a near-fl at log-power modulation function from their log-spectral 
data and demonstrated the relative spatial specifi city of broadband 
high-frequency modulations in stimulus event-related paradigms. 
By its nature and objective, PCA fi nds orthogonal (eigenvector) 
directions in the data that account, successively, for the most vari-
ance. ICA, by contrast, attempts to split the data into maximally 
distinctive components – here, into maximally distinctive frequency 
template patterns. The relative similarity of our results to those of 
Miller et al. support the joint conclusion that broadband spectral 
modulations are a common and distinctive feature of both scalp and 
intracranial EEG. Our ICA approach should separate the log-spec-
tral data (whether scalp or intracranial) into modulatory processes 
with more frequency (and possibly functional) specifi city.

In this regard, our failure to fi nd modulations peaking in the 
(30–70 Hz) gamma band (other than putative oculomotor IMs, 
see below) is of interest, and contrasts to the results of investiga-
tions of stimulus attention-related gamma-band phenomena that 
exhibit sharper band peaks in the gamma band (Fries et al., 2001; 
Lachaux et al., 2007). We note, however, that most previous reports 
of gamma-band activity in human EEG and MEG have focused 
on activity evoked or induced by sensory stimuli, therefore using 
relatively short spectral time windows. Here, by contrast, we used 
relatively long (2-s) time windows in a non event-related paradigm 
without external stimulation. In exploratory work, we found that 
ICA decompositions of log spectrograms based on short time win-
dows (<<1 s) included multiple IMs with peak activity in the gamma 
band, but also had an noisier character overall. Therefore, for this 
fi rst report we chose not to further explore their possible functional 
relationships to the emotions.

OCULAR MOTOR TREMOR
In the eyes-closed EEG data of 23 of our 32 subjects, IM analysis 
revealed a striking pattern of spectral modulation that affected 
frontal power principally between 40 Hz and 100 Hz for a cluster 
of ICs with bilaterally symmetric scalp projections, many of whose 
equivalent-dipole models suggested sources in or near the ocular 
cavities. Because of our relatively sparse electrode coverage over the 
face and inaccuracies (most severe near the face) in the spherical 
head model used here to perform source equivalent-dipole mod-
eling, we could not better localize the physiological sources of these 
IMs. The spectral modulation pattern of these IMs and their bilat-
eral synchrony correspond well to observed dynamics of the tiny 
(0.1–2 µm) ocular motor tremor (OMT) that helps maintain retinal 
activity and visual perception (Eizenman et al., 1985; Spauschus 
et al., 1999). First described in 1934 (Adler and Fliegelmann, 1934), 
the OMT is produced by extra ocular muscle activity driven from 
the ocular motor area of the brainstem (Coakley, 1983) linked to 
the reticular arousal system and not dependent on the eyes being 
open (Prochazka et al., 1985). Putative OMT IMs with peak effect 
in the gamma-band (as here, IM6), possibly indexing OMT, did not 
co-modulate activity of brain source ICs. Narrow-band modula-
tions of brain ICs in the theta, alpha and beta frequency bands also 
did not modulate the spectra of ICs associated with either scalp 

muscle or putative OMT activity (left). Possibly, changes in OMT 
power in our data might be linked to changes in arousal and/or 
imaginative visualization, which engage similar brain systems as 
actual vision (Kreiman et al., 2000).

RELATIONSHIP TO AROUSAL
The correspondence of arousal to complementary changes in 
broadband high-frequency ECoG power in animals was noted by 
Moruzzi and Magoun in their early infl uential paper on the brain-
stem ‘reticular activating system’ (Moruzzi and Magoun, 1949). 
Complementary changes between power in low (near 3 Hz) and 
high (35–40 Hz) frequency EEG power in central scalp EEG, corre-
lated with swings in behaviorally indexed alertness, were reported 
by Makeig and Jung (1996), an example of many studies that have 
sought correlations between high-frequency EEG power and alert 
behavior using frequency-by-frequency statistics, in contrast to the 
IM approach we report here. Thus, we here expected, and found, 
negative correlations between changes in broadband gamma IM 
power and concurrent power changes in other IMs affecting lower 
(≤35 Hz) EEG frequencies. However, these correlations (Table 1 
and Figure 6), while negative on average (p < 0.0001, t-test), were 
quite modest, as were the positive correlations among broadband 
IMs, meaning nearly none of the variability in broadband gamma 
IM power could be accounted for by a single central arousal factor. 
Further, no direction in the two- or three-(not shown) dimen-
sional MDS representation of median broadband IM weights dur-
ing emotion imagination (Figure 7) was signifi cantly correlated 
with behavioral ratings of the level of arousal (‘active’ versus ‘calm’) 
associated with the same emotion terms. Here, however, we had 
no independent measure, behavioral or otherwise, of moment-
to-moment changes in subject arousal level, so cannot determine 
more exactly what proportion of broadband IM variance may be 
linked to fl uctuations in subject behavioral arousal during the 
experiments. However, our results strongly suggest that the identi-
fi ed broadband gamma power modulations did not simply index 
overall arousal.

USE OF GUIDED IMAGERY FOR EMOTION INDUCTION
A more common method of attempting to induce emotional states 
in psychological experiments has been to expose subjects to strongly 
emotion-arousing pictures (Wiswede et al., 2009). This may often 
be effective for some negative-valence emotions (horror, disgust, 
lust, etc.), although a medical professional, for example, shown a 
startling picture of an accident victim’s injuries, might assume a 
detached professional point of view and not experience nearly the 
degree of palpable fear or disgust as viewers who had never expe-
rienced such emergencies. Emotional picture viewing is less suc-
cessful for inducing positive-valence emotions and in general, for 
inducing the range of emotions experienced in everyday life (Kim 
and Hamann, 2007), most likely because these emotions generally 
arise in connection with and refer to a variable context of personal 
connections and/or intentions that cannot be represented in a single 
picture. Moreover, viewers of pictures relating to everyday emotions 
(contentment, happiness, awe, jealousy, etc.) generally exercise a 
large degree of control over the emotional attitude and context they 
bring to the experience, thereby determining or strongly affecting 
the emotion they experience during its viewing.
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The method of guided imagery (Bonny and Summer, 2002), 
by contrast, explicitly enlists the active cooperation of the subject 
in imagining a scene and event context they personally associ-
ate with the target emotion. For example, if suggested to self-
induce a feeling of awe, I might recall from experience my fi rst 
extended look from the rim of the Grand Canyon in Arizona; 
asked to self-induce a feeling of compassion, I might imagine a 
dramatic scene in which I came upon someone suffering with 
whom I felt some emotional connection, etc. Verbal suggestions 
from another person (including, as here, recorded verbal sugges-
tions) have long been found by storytellers, psychotherapists, and 
hypnotists to be effective in enlisting the active engagement of 
cooperative subjects (Bonny and Summer, 2002). In post-session 
questionnaires, most subjects reported they were able to experi-
ence most of the suggested emotions, often expressing surprise 
as to the vividness of their emotional experiences. Here, we col-
lected no other psychophysiological measures to verify the degree 
of experienced immersion and emotionality, for example galvanic 
skin response, though this measure might not be expected to differ-
entiate between many of the emotion terms we used, particularly 
low-arousing positive emotions.

SUBJECT AND EMOTION VARIABILITY
Although our short induction paragraph suggesting each emo-
tion gave an example situation to illustrate our intended sense of 
the emotion term, we also encouraged subjects to select whatever 
imagined scene they felt would allow them to experience the sug-
gested emotion most effectively. Therefore, we cannot rule out the 
possibility that the subjects might have both aimed and arrived at 
rather different experiences for the same emotion term and cannot 
dismiss the possibility that subjects may have in some cases expe-
rienced a mixture of more than one of the suggested emotions. In 
fact, we suggested this kind of explanation for the apparent EEG 
spectral resemblance of the experiences of ‘compassion’ to the same 
subjects’ experience of ‘grief,’ arguing that the scenes they chose to 
experience for ‘compassion’ might well also have involved feelings of 
‘grief ’ for the plight of another person. Finally, we did not attempt 
to use only those emotion terms that we felt were in some sense 
‘orthogonal’ to one another. Rather, by using 15 common emotion 
terms, we hoped to over-sample from the space of common emo-
tions, for example assuming that the physiological characteristics 
of the ‘joy’ and ‘happiness’ inductions would be closely related, as 
indeed proved to be the case (Figure 7).

No doubt there were also considerable differences between our 
subjects in their degree of real-life experience of the suggested emo-
tions. Only one subject asked to be excused from the experiment 
early, remarking that he did not believe he could perform the task 
but there was considerable variation in the emotions the subjects 
indicated in post-test questionnaires that they were less successful 
in experiencing (mean emotion ratings for all emotions were ∼ 
6.5–7.25 (std ∼2), with the exception of ‘jealousy’ which had a mean 
rating of 4.9 as well as the largest standard deviation of 3.3).

BROADBAND GAMMA POWER AND EMOTIONAL VALENCE
The emotional valence of a stimulus has been shown to dif-
ferentially modulate many physiological variables such as 
heart rate (Lang et al., 1990; Sammler et al., 2007), facial EMG 

 activity (Cacioppo et al., 1986), brain blood oxygenation  levels 
(Herrington et al., 2005), and various aspects of the EEG (Cole and 
Ray, 1985; De Pascalis et al., 1987; Tomarken et al., 1992; Muller 
et al., 1999; Gemignani et al., 2000; Brucke et al., 2007; Guntekin 
and Basar, 2007; Onoda et al., 2007; Yuan et al., 2007; Li et al., 
2008). Here, MDS of median broadband IM power in each emo-
tion period showed that broadband power was linked to emo-
tional valence, though IMs with positive and negative correlations 
with valence appeared in most brain regions, with the excep-
tion of left and right anterior temporal lobe, in which IM power 
was positively correlated with emotion valence, and near-medial 
occipital lobe, in which IM power was negatively correlated with 
valence (Figure 7).

   The previous EEG literature linking beta/gamma-band power 
to emotional valence (as measured in individual scalp channel 
records) is minimal and inconsistent. More than one study has 
reported increased gamma-band power over left-frontal electrodes 
during negative emotional stimuli (Muller et al., 1999; Gemignani 
et al., 2000; Guntekin and Basar, 2007), whereas we found a consist-
ently positive correlation between broadband power and emotional 
valence in anterior temporal sources. This discordance may only be 
an apparent difference, since signals in a wide brain territory may 
reach left-frontal electrodes. Cole and Ray (1985) found increased 
(16–24 Hz) beta-band power (higher frequencies were not analyzed) 
at right temporal electrodes both during self-induced imagination 
of positive emotions and following presentation of positive-valence 
pictures and positron emission tomography revealed right temporal 
activation during imagined happiness relative to imagined nega-
tive emotions (fear and anger) (Damasio et al., 2000). The nega-
tive correlation that we describe between the valence of imagined 
emotion and gamma power in the occipital region has not been 
previously reported in the EEG literature, though fMRI studies 
have reported bilateral occipital activation during self-referential 
processing of negative as compared to positive words (Fossati et al., 
2003). Clearly, further research using better EEG source localization 
and performing functional imaging experiments on the same sub-
jects are needed to clarify the consistency of these initial results.

POSSIBLE PHYSIOLOGICAL MECHANISMS
An interesting possibility to consider is that the broadband high-
frequency modes of EEG spectral modulation, revealed here by log-
spectral ICA decomposition, might refl ect separate or coordinated 
actions of known cortical neuromodulatory systems identifi ed 
with different neurotransmitters – acetylcholine, norepinephrine, 
dopamine, serotonin, etc. These are known to have extensive cor-
tical and thalamic projections (Robbins, 1997; Bardo, 1998) and 
to strongly affect the power spectra of cortical fi eld potentials 
(Pinault and Deschenes, 1992; Swick et al., 1994; Herculano-
Houzel et al., 1999). For example, application of the muscarinic 
agonist carbachol to CA3 hippocampal slices has been shown to 
induce delta, theta, and/or gamma-band oscillations, depending 
on its concentration (Fellous and Sejnowski, 2000), and corti-
cal high-frequency power in particular is known to be affected 
by projections from the cholinergic basal forebrain (Stewart 
et al., 1984; Herculano-Houzel et al., 1999). Similarly, extensive 
NE projections from the locus coeruleus (Jones et al., 1977), in 
both awake monkeys (Swick et al., 1994) and  anesthetized rats 



Frontiers in Human Neuroscience www.frontiersin.org December 2009 | Volume 3 | Article 61 | 16

Onton and Makeig High frequency EEG modulations

(Berridge and Foote, 1991; Brown et al., 2005), also increase 
high-frequency local fi eld activity in frontal cortex and thala-
mus (Pinault and Deschenes, 1992). However, the broadband IM 
modes in this experiment might also refl ect linked combinations 
of neuromodulatory or other infl uences rather than actions of 
distinct neuromodulatory systems. Further understanding of the 
physiological origins of the IM effects reported here will require 
separate experimental evaluation.

High-frequency local fi eld power similar to that reported here 
has been reported to correlate with fMRI BOLD activation and 
deactivation in both theory (Kilner et al., 2005) and experiment 
(Logothetis et al., 2001; Niessing et al., 2005; Shmuel et al., 2006). At 
the neuronal level, a recent report showed that blockage of GABA

A
 

receptors in ferret pyramidal cells decreases spectral power of intra-
cellularly recorded synaptic currents between 10 Hz and 200 Hz 
(Hasenstaub et al., 2005), implicating the collective action of fast-
spiking inhibitory cell networks in the production and regulation of 
high-frequency cortical fi eld activity. Infl uences on cortical GABA 
concentration might thus provide a mechanism for the local and 
distributed broadband modulations of EEG source power spectra 
we report here.

The reported correlation between high-frequency local fi eld 
power and BOLD signal level in human auditory cortex during 
auditory stimulation suggests a possible functional signifi cance 
for high-frequency local fi eld activity during active cortical 
processing (Mukamel et al., 2005), as do the frequently reported 
linkage between increased high-frequency EEG power and atten-
tion (Fries et al., 2001) or ‘focused arousal’ (Sheer, 1989) and 
the results reported here. However, the frequently studied more 
narrow-band gamma-band sensory-induced responses (Singer 
and Gray, 1995; Tallon-Baudry et al., 1996; Freeman and Barrie, 
2000; Fries et al., 2001) might be a quite different phenome-
non or refl ect in part a mixture of specifi c gamma-band and 
broad-band modulations.

CONCLUSIONS
Here we report that during eyes-closed imagination of emotional 
states and circumstances, many of the locally synchronous cortical 
fi eld potential phenomena that produce scalp EEG activity exhibit 
a pattern of broadband, spectral modulation of beta, gamma, and 
high gamma-band activity from near 15 Hz to 200 Hz or higher. 
Our results demonstrate that high-density EEG data contains reli-
able high gamma-band activity that can be separated by ICA from 
spatially overlapping, large-amplitude broadband signals from 
scalp muscle and ocular motor activities, as well as from overlapping 
signals in lower-frequency bands. This fi nding further underlines 
the importance for EEG analysis of applying source separation by 
ICA or other methods.

Further, our results show that the actions of these broadband 
modulations of brain source activity spectra were related to the 
valence of the imagined emotions, albeit with individual differences 
in expression, a result that suggests further exploration and testing. 
Conceivably, better understanding of the modes and mechanisms of 
spectral modulation of cortical brain activity, requiring  application 
of the methods presented here to many types of datasets, might allow 
design of multi-dimensional cognitive state monitoring using emerg-
ing dry, portable, wireless EEG systems (Lin et al., 2008), and/or might 
clarify the brain mechanisms supporting learned volitional control of 
EEG spectral features as applied in current brain-computer interface 
(BCI) and EEG feedback research (Delorme and Makeig, 2003).
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