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Objective: We aimed to elucidate how our domain-general cuing algorithm improved
multitasking performance and changed behavioral strategies in human operators.

Background: Though many gaze-control systems have been designed, previous real-
time gaze-aware assistance systems were not both successful and domain-general. It
is largely unknown what constitutes optimal search efficiency using the eyes, or ideal
control using the mouse. It is unclear what the best coordinating strategies are between
these two modalities. Our previously developed closed-loop multitasking aid drastically
improved multitasking performance, though the behavioral mechanisms through which it
acted were unknown.

Methods:We performed in-depth analyses and generated novel eye tracking and mouse
movement measures, to explore the complex effects of our helpful system on gaze and
motor behavior.

Results: Our overlay cuing algorithm improved control efficiency and reduced well-
known biases in search patterns. This system also reduced micromanaging behavior,
with humans rationally relying more on imperfect automation in experimental assistance
cue conditions. We showed that mouse and gaze were more independently specialized
in the helpful cuing condition than in control conditions. Specifically, with our aid, the
gaze performed more global movement, and the mouse performed more local clustered
movement. Further, the gaze shifted toward search over processing with the helpful cuing
system. We also illustrated a relationship between the mouse and the gaze, such that in
these studies, “the hand was quicker than the eye.”

Conclusion:Overall, results suggested that our cuing system improved performance and
reduced short-term working memory load on humans by delegating it to the computer in
real time. Further, it reduced the number of required repeated decisions by an estimate of
about one per second. It also enabled the gaze to specialize for improved visual search
behavior, and the mouse to specialize for improved control.

Keywords: eye tracking, automation, gaze-aware, multitasking, task switching, monitoring, working memory,
human–computer interaction
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1. Introduction

The vast majority of people are poor multitaskers (Watson and
Strayer, 2010). To make matters worse, some of those who score
worst on measures of multitasking performance tend to perceive
that they are better at multitasking, with a negative correlation
between perception and ability in large studies (Sanbonmatsu
et al., 2013). These issues are particularly important, since in every
day work-life, multitasking may often be necessary or efficient for
a variety of human labor.

Tracking a participant’s eye movements while multitasking is
an especially goodway to glean optimal cognitive strategies.Much
work has shown that eye tracking to determine point of gaze can
reliably convey the location at which humans’ visual attention is
currently directed (Just and Carpenter, 1976; Nielsen and Pernice,
2010). Locus of attention is a factor that can illustrate which
of multiple tasks a participant is currently attending to, as well
as many other details. Further, measuring where humans look
tends to be highly informative of what is interesting to them
in a particular scene (Buswell, 1935; Yarbus, 1967), and can be
helpful for inferring cognitive strategies. Generally, gaze appears
deeply intertwined with cognitive processes. For example, eye
movements during an actual event have been shown to resemble
those during the recollection of a similar event (de’Sperati, 2003).
Even though “looked but did not see” events have been experi-
mentally recorded in special circumstances, typically even brief
gazes are informative about attention. For example, the location
of very small unintentional eye movements called microsaccades
may index intention to look at a non-fixated location or evenmere
interest in a non-fixated location in the form of covert attention
(Hafed and Clark, 2002).

Multitasking principles also apply when managing multiple
items in working memory (Heathcote et al., 2014). The canonical
number of items capable of maintenance in working memory
is 7± 2 (Miller, 1956), though this is likely a high estimate,
whereas the real-world version, running memory, is likely around
5 chunks of “familiar information” (Moray, 1980). For working
memory, another cognitive construct that is difficult to measure
and discussed at length below, eye movement paradigms have
revealed how visual search tasks can be interfered with when
working memory is being taxed (Downing, 2000; Oh and Kim,
2004; Woodman and Luck, 2004).

Though many paradigms have been developed to study mul-
titasking using eye tracking, most traditional applications of eye
tracking are not used in real time, but instead to augment training,
or simply to observe optimal strategies. For an example of training,
post-experiment analysis of gaze data can be used to determine an
attention strategy of the best-performing participants or groups.
Then, these higher-performing strategies can be taught during
training sessions at a later date (Rosch and Vogel-Walcutt, 2013).
Implemented examples include educating health care profession-
als on visual scanning patterns associated with reduced incidence
of medical documentation errors (Marquard et al., 2011; He et al.,
2014), and training novice drivers’ gaze behaviors to mimic more
experienced drivers with lower crash risk (Taylor et al., 2013).
As eye tracking methods become more popular, they have been
applied in the field of human–computer interaction and usability

(Jaimes and Sebe, 2007; Strandvall, 2009; Drewes, 2010), as well as
human–robot interaction (Atienza and Zelinsky, 2002; Bhuiyan
et al., 2004; Majaranta et al., 2011), though in this area, guiding
principles for optimal gaze strategies are still nascent.

Real-time reminders for tasks can improve user performance
(Moray, 1981). Generally, real-time cuing of goals can speed or
increase the accuracy of detection (Eriksen and Collins, 1969).
Highlighting display elements in a multi-display may assist in
directing attention (Fisher and Tan, 1989; Hammer, 1999), though
eye tracking may often be critical to reliably automate such
reminders for many tasks. As described above, there is little
previous work developing real-time eye tracking assistance, with
most research focused on training, evaluation, or basic hypothesis
testing. The real-time systems developed previously, elaborated
extensively in the Discussion below (Section 4.5), were lacking
in domain-generality, utility, and flexibility. For example, one
previous application-specific approach has been to cue the gaze
history itself, as a form of bookmark of where has been visited
(Ohno, 2004). There appears to be a need for an assistive device for
managing multiple visual tasks, which is domain-general, trans-
parent, intuitive, non-interfering, non-command, improves con-
trol (without replacing direct control), and adaptively extrapolates
to a variety of circumstances. Somewhat counter-intuitively, in
the current experiment we explicitly and simply cued the inverse
of gaze recency. Thus, we evaluated a system that successfully
addressed the need for domain-general multitasking assistance
(Figure 1). The goal of this paper is to illustrate the mechanis-
tic means by which this system influenced human strategies for
multitasking.

The structure of our paper is as follows: the Materials and
Methods section details the design of our cuing system, our
previous evaluation of its basic effectiveness toward improv-
ing multitasking performance, the participant details, technical
implementation, and statistical procedures. All of our measures
(except one) were novel and custom to this circumstance. Thus,
the algorithms for analysis were not included in the Methods
section, but instead were interleaved with the Results below for
better readability, and since these analysis methods are new con-
tributions themselves. Then, the Section Discussion includes both
the findings in the context of the engineering psychology liter-
ature and in-depth review of the related eye tracking work. We
end the paper with brief conclusions and suggestions of wider
application.

2. Materials and Methods

2.1. Experiment: The Game and Conditions
In a previous paper, we demonstrated that cuing participants with
the inverse of eye-gaze recency (the most neglected task at the
moment) drastically improved users’ performance (Taylor et al.,
2015). The eye tracker continuously notified the computer and
game software of the location of gaze. Frame cues for the most
neglected map panel were automatically quickly removed and
re-updated if a participant gazed at any map panel task.

To evaluate this system, participants played a multi-agent
game (Ember’s game): they managed multiple simulated
robotic firefighters simultaneously to save rescue victims. The
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A B

FIGURE 1 | Diagram of the general cuing system employed. (A) Panels
of tasks compose a visual array (10 tasks depicted here). A dark red frame
cues the most neglected map panel task (looked at longest ago), while pale
red highlights the next most neglected map panel task. (B) Participants
controlled firefighting robots to rescue targets on map panel tasks
(2 displayed). Robots were displayed as red firefighter helmets, each

traveling through one separate map panel task to rescue targets.
Participants received points for rescuing targets via contact. Each robot
remained within its own separate map panel task, and navigated
independently of other robots and other panels. Occasional human
intervention could improve upon error-prone semi-autonomous movement.
In our experiment, each task was an independent robot game task.

semi-random automatedmovement of the robot would eventually
rescue some targets, though occasional human intervention could
speed rescue times. Each participant session had 7 experimental
blocks, and the number of robots they managed increased from 4
to 10 across the 7 blocks, e.g., they managed 4 robots in Block-1, 5
robots in Block-2, and 10 robots in Block-7. Each robot moved in
a separate map panel task. An image of the game and eye tracking
algorithm design was included in Figure 1, and with full detail in
Taylor et al. (2015). To optimize performance, a participant must
divide their attention across many independent map panel tasks.

This study adopted a between subject design with one indepen-
dent variable, the type of frame cuing each of multiple simultane-
ous map panel tasks. Participants were randomly assigned to one
of the three conditions (one test and two control), determined by
three frame cue types: (1) “On” condition: helpful gaze history
frame cues surrounded themost neglected task (test experimental
condition), (2) “Random” condition: randomly moving frames,
which were the same physical stimulus, but without any relation-
ship to the gaze (an “active” control condition), and (3) “Off”
condition: no frames (an “absent” control condition). All other
game parameters were equal across conditions.

In our previous study, we analyzed data collected from partici-
pants’ eye movements, mouse movements, and task performance
(score). The system displayed large improvements in performance
in the On (Helpful frame cue) condition over both controls.
In addition, the Helpful frame cue group demonstrated faster
reaction times and showed reduced pupil dilation as a proxy for
reduced cognitive load (Taylor et al., 2015). Given the simple
nature of the frame cue aid, this performance improvement is
likely to be similarly seen in many multitasking scenarios. Specifi-
cally, it likely extrapolates to many tasks where a user must engage
with multiple separate visual processes or agents simultaneously,
and the probability that any single task entity needs user interac-
tion increases with duration of time since the user’s last interaction
with that same task. Overall, our solution as described in Taylor
et al. (2015), appears to be uniquely assistive, domain-general,
non-interfering, purely gaze-aware, improves pre-existing control,
and most importantly, yielded improvements in task performance
with very large effect sizes. However, we did not fully explore
how these improvements manifested mechanistically. Therefore,

in this current work, we investigated and compared the visual
scanning patterns and motor control behaviors between the
three experimental groups, to further explore the mechanisms of
benefit.

2.2. Participants
A total of 44 human subjects participated in Ember’s game. All
procedures complied with departmental and university guidelines
for research with human participants and were approved by the
university institutional review board, and participants provided
written informed consent. Participants were recruited from the
university population at large and were compensated for their
time with $5 USD. Data were not excluded based on behavioral
task performance in order to obtain a generalizable sample of
individual variation on performance of the task while avoiding
a restriction of range (Myers et al., 2010). Two participants with
vision correction causing poor calibration quality for entire blocks
were excluded, leaving 42 subjects. No data were excluded within
this remaining pool of subjects. Each participant reported extent
of past video game experience, current vision correction if any,
age, and sleep measures for the previous several days; this was
done after rather than before experimental task participation to
prevent bias. The statistics describing these demographic surveys
were detailed below at the end of the Analysis and Results section.
Further participant details were provided in Taylor et al. (2015).

2.3. Technical Implementation and Data Logging
We used a desk-mounted GazePoint GP3 eye tracker positioned
directly under the computer monitor to pinpoint the users’ point
of gaze, i.e., the point on the screen the user was fixating. All
experimental presentation procedures, data collection, and anal-
yses were fully automated. Python and PyGame were used to
program the experiment, and interfaced with the eye tracker’s
open standard API via TCP/IP, generously provided by GazePoint
(http://www.gazept.com). The eye tracker has an accuracy of
about [0.5–1] degrees of visual angle, and error was minimized
by re-calibrating after every 150 s block. Data logging included
the status of all experimental variables on every refresh (at 30Hz)
during experimental trials. Behavioral data were indexed by the
location and status of all game elements, such as robot location,
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path location, target location, and time of target detection. Eye
data were indexed by left and right point of gaze on the screen (x, y
coordinates) at the refresh rate frequency, the calibration quality
data (error quantity) before every new block, and pupil dilation
of left and right eye diameter in milliliters at every time-step.
Mouse location (x, y coordinates) was recorded at the same fre-
quency for comparisonwith gaze data. Full technical experimental
procedures were described in Taylor et al. (2015).

2.4. Statistical Procedures
Most statistics were displayed within figures themselves, either
(1) as SEM bars, which in our experiment conservatively indicate
statistically significant differences between groups by approximat-
ing t-tests if SEM bars are not overlapping between conditions,
as explained below, (2) as pairwise t-tests superimposed on map
bias task arrays, (3) as Pearson’s product moment correlation
coefficient r and p-values superimposed on scatter plots, (4) and
as effect sizes calculated via Cohen’s d (Table 1).

The t-statistic is defined as the difference between the means of
two compared groups, divided by the SEM, (u1–u2)/SEM. Thus,
within the parameters of this experiment (and above any typical
n) it is a mathematical necessity that when the SEM bars do not
overlap, a t-test on those same data would be significant above an
alpha criterion of around p< 0.03 for a one-tailed t-test for effects
in the expected direction (as most were in this experiment).

The low number of tests within proposed statistical families,
the presence of consistent global trends, and guidelines cited
here below, all argue against correcting any values for multi-
ple comparisons (Rothman, 1990; Saville, 1990; Perneger, 1998;
Feise, 2002; Gelman et al., 2012). Further, many statisticians do
not recommend numerically correcting for multiple comparisons
(Rothman, 1990; Saville, 1990). Rather, it is often suggested to
document individual uncorrected comparisons and descriptive
statistics (e.g., SEM or effect sizes), while being transparent that
no correction was performed. Further, it should be noted that
our conclusions rested not upon a single test, but upon globally
uniform patterns.

Automated data processing and plotting were programed in the
R-project statistical environment (Core Team, 2013).

3. Analysis and Results

3.1. Compliance with Gaze Assistance was
Confirmed
3.1.1. Procedure and Justification
To determine whether participants actually used the assistive
frame cue, we employed two overlapping measures to see how
quickly participants responded to frame cues, one with the eyes,
and another with the mouse: (1) For the eyes, we calculated the
mean duration of the most neglected frame cue, for each of the 7
blocks (i.e., 4, 5, . . . ,10 map task panels) in the treatment group,
only in the Helpful “On” condition. This duration was defined as
an interval from when the most neglected cue frame started to
highlight a map panel task to when that frame disappeared from
that panel (Figure 2A). Since a cue framedisappeared fromapanel
immediately after that panel received the participant’s point of
gaze, the duration is an estimate of the cue-to-eye response time.

(2) For the mouse, we calculated the mean time between the most
neglected frame cue starting to highlight a map panel task and a
mouse clicking on that panel. We calculated this measure for each
of the 7 blocks in “On” and “Random” groups (Figure 2B).

3.1.2. Result
The duration from the cue starting until the gaze or click inter-
action with that map task was reduced as map number increased
(Figures 2A,B), perhaps reaching a lower threshold. Participants
in the On group subjectively reported using the Helpful cues via
verbal self-report during and after the experiment.

3.1.3. Interpretation
The decreasing durations for the Helpful frame cue condition
suggested that the users were consistently looking at, and taking
action (clicking), on the highlighted map panel tasks, confirming
usage of the Helpful frame cue. This decrease in time means that
participants utilized the cuing system to a greater degree over time,
until an observed ceiling of compliance. The increasing duration
in the Random condition associated with increased map task
numbers, suggesting participants were choosing which map panel
task to look at independently of the frame highlighting. This was
as expected, since the participants in the Random condition were
instructed that the frames were irrelevant to game-play.

3.2. Mouse and Click Efficiency Measures
were Improved
3.2.1. Procedure and Justification
Multiple measures of mouse and click efficiency were calculated
to determine the strategies employed by users in the better-
performing Helpful frame cue condition: (1) The total number of
paths users set to send the robot to primary targets was calculated;
(2) the total number of pathswas calculated as a baseline reference;
(3) the total number of clicks was calculated as another baseline
reference.

3.2.2. Result
The number of paths the users set to send the robot directly to
primary targets was higher (better) withHelpful frames compared
to both controls, while the Random condition had the lowest
(worst) values (Figure 3A). The total number of paths set for
robots to go to any location was not appreciably different between
conditions (Figure 3B), and the total number of clicks in the block
was not appreciably different (Figure 3C).

3.2.3. Interpretation
Use of the eye tracking cuing system improved strategic efficiency
of user’s mouse interaction with the task. Since it appeared that
relevant clicks were increased in number over irrelevant clicks in
the Helpful condition, these measures inspired the next analysis
to explore micromanaging.

3.3. Micromanaging Measures were Reduced
3.3.1. Procedure and Justification
When performing the task a user could have either sequentially
specified many intermediate path goals along the way to a target,
or sent the semi-automated robot directly toward a primary rescue
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A

B

FIGURE 2 | Participants followed the Helpful frame cue eye aid on
average. (A) The duration of time a frame cue highlighted the most
neglected map panel task served as an estimate of the time since the frame
cue appeared until the participant looked at the cued map panel task.

(B) Another similar duration was calculated: given that a frame cue was on
the map panel task, the mean duration until participants clicked on that map
panel task. Both results confirmed that participants were using the frame
cues as instructed.

target with a single click at its ultimate goal. These two strate-
gies illustrate the range of behaviors for “micromanaging” the
robot’s location and path. Two measures of micromanaging were
defined. (1) The ratio of clicking directly on-target path goals
(clicking on the target) versus clicking on non-target (intermedi-
ate location) path goals was computed. This proportion resulted
in our micromanaging coefficient, with lower numbers indicating
less micromanaging (Figure 4A). (2) Another measure related to
micromanaging was defined as the average length of a path. Path
length was the mean distance from the robot’s current location, to
the end-goal of the path set for that robot (Figure 4B).

3.3.2. Result
The Helpful frame cue condition demonstrated less micromanag-
ing behavior than the Off frames condition, which in turn
demonstrated less than the Random condition (Figure 4A). Path
length was longer in the Helpful frame cue condition (Figure 4B).
Interestingly, when averaging across all conditions, to plot all
individual data points, longer path length was associated with
higher total scores (Figure 4C).

3.3.3. Interpretation
These results highlighted the importance of utilizing automated
systems to their fullest extent, often even when such automation
is incomplete and error prone. Some robots heading directly
to targets likely took inefficient paths, whereas other robots
were not directed to targets at all, the latter being a much
more important task to satisfy. This cuing system reduced

such irrational perseverance and micromanaging behavior, and
improved reliance on the semi-autonomous robots. Participants
in the Helpful condition appeared to rely more on the robot’s
sub-optimal automation.

3.4. Large-Scale Movement was Greater for
Gaze and Reduced for Mouse
3.4.1. Procedure and Justification
To ascertain information about the type of movement strategies,
the mouse and gaze were performing across conditions, the global
and local dynamics of eye movements were explored. Multiple
measureswere calculated: (1) For both themouse and the gaze, the
number of times the mouse or gaze switched between map panel
tasks in the array of 4–10 panels was calculated for each condition.
The larger this number, the greater the global movement, and
large-scale task switching. (2) A related measure was generated by
taking the mean time that the mouse or gaze spent within a single
map panel task, before leaving it andmoving to the nextmap panel
task, averaged across all map panel tasks in a single block.

3.4.2. Result
The Helpful frames increased the number of macro-level map
panel task switches for gaze relative to the two control condi-
tions (Figure 5A, left Y-axis). Fascinatingly, a similar measure
for mouse movement yielded the opposite pattern, with reduced
global mouse movement (Figure 5B, left Y-axis). This opposite
pattern was confirmed in another related measure. With Helpful
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FIGURE 3 | Participants clicked more efficiently. (A) Participants in
Helpful frame conditions set a greater number of paths to targets
(number of times the robot was sent directly to the target by the human).
By contrast, there were no convincing effects for (B) total number of

paths (number of locations the robot was directed toward by the human),
or (C) total number of clicks (all clicks within the block, whether relevant
or not). Overall, participants displayed an improved efficiency of strategy
in their clicks.

frames less eye time was spent per panel on average (Figure 5A,
right Y-axis), while for the mouse, the opposite was true with
more time per panel (Figure 5B, right Y-axis). Note that right
Y-axes display inverted values. This increased activity of the gaze
for global movement was also associated with higher total scores
when comparing across all individuals in the study (Figure 5C).

3.4.3. Interpretation
These results suggested that gaze movements were more dis-
tributed, long range, or global, while the mouse made fewer
macro-level map panel task transitions, perhaps for more efficient
task switching. These results inspired the next measure, extending
the investigation of mouse movements.

3.5. Mouse Movements Appeared more Local
and Clustered
3.5.1. Procedure and Justification
To further characterize the global–local properties of mouse
movements, these were analyzed using twomeasures: (1) The total
cumulative distance covered by the mouse traversing the com-
puter monitor over the course of a block, for each condition and
block, was computed. (2) A novel measure of mouse-clustering
was defined. Mouse movements were classified into clusters by
setting an upper limit on the Euclidean distance (>2 cm) between
a minimum number of sequential adjacent fixation coordinates,
which spanned roughly 100ms. We then quantified the pro-
portion of mouse movements not in clusters (large movements)
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FIGURE 4 | Micromanaging was reduced with Helpful frame cues.
(A) Helpful frame groups micromanaged less than controls, by setting
larger percentages of paths directly from the robot to the target, rather
than specifying intermediate points along the way first. (B) We calculated
a mean path length using the distance the robot had to cross to get to
each assigned target location. Participants set longer more direct paths

with the Helpful frames. (C) When including all, conditions, individuals,
and blocks, in this analysis, longer paths associated with better
performance, such that individuals who set longer paths tended to
perform better. Overall, participants in the Helpful frame cue condition
sent the robot more directly to targets, which allowed the robot algorithm
to make micro-decisions.

versus within clusters (small adjacent movements). The propor-
tion of adjacent long movements (>2 cm) versus shorter move-
ments estimated the degree to which mouse movements were

clustered. Larger values indicate greater proportion of long move-
ments, and smaller values indicate greater clustering (smaller
movements).
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FIGURE 5 | Participants’ gaze and mouse switches across map
panel tasks (left Y-axis) and mean time spent on each map panel
task before continuing (right Y-axis). [(A)-left] Gaze switched map
tasks more frequently over the whole trial in the Helpful “On” condition
compared to controls. [(B)-left] Mouse switched map tasks less
frequently over the whole trial in the Helpful “On” condition compared to

controls. [(A)-right]. Note: inverted scale. Participants spent less time
gazing at each panel in the experimental “On” conditions, and [(B)-right]
more time for mouse. (C) Number of gaze map panel task switches
positively associated with better score across all observations. Overall,
the gaze demonstrated more global movement, while the mouse showed
reduced global movement.

3.5.2. Result
Surprisingly, despite the above discussed decrease in global
mouse movement (number of panel mouse switches), an increase

in mouse mileage was observed in the Helpful experimental
condition, indicating more local movement relative to global
movement with the mouse (Figure 6A). With Helpful frames,
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more clustered micro-movements were observed compared to
the control conditions, and the Random condition showed
an exaggerated decrease of mouse micro-movements with less
clustering (Figure 6B). Greater cumulative mouse mileage over
all observations was positively associated with higher total scores
(Figure 6C).

3.5.3. Interpretation
There was an observed opposite pattern in the gaze and mouse
measures for map panel task switches (previously), which agreed
with the current result of higher mouse mileage when compared
to lower mouse global switches. Together, these indicated a func-
tional specialization. Specifically, the mouse and gaze could work
more independently; i.e., the gaze could search broadly, and the
mouse could move in a more clustered local manner. In conclu-
sion, with Helpful frames compared to other conditions, the eye-
gaze appeared to specialize for global search, while the mouse for
local movement.

3.6. Measures of Gaze Demonstrated more
Saccades and Fewer Fixations
3.6.1. Procedure and Justification
Much previous work defines the basic terminology for eye-gaze
patterns (Goldberg and Kotval, 1999; Jacob and Karn, 2003; Poole
and Ball, 2006). A fixation is defined as a consistent gaze position
within roughly two degrees of visual angle with a minimum dura-
tion (usually 100–200ms), and velocity lower than a threshold
(around 15–100°/s). Saccades are fast movements of the eyes,
ranging from 20 to 100ms depending on experimental context. A
gaze is defined as a series of repeated contiguous fixations within
an area of interest; a fixation occurring outside the area of interest
ends the gaze. Search behavior can be characterized by breaking
down punctuated eye movements to particular locations by their
duration, into fixations (typically >120ms) and saccades (typi-
cally <120ms). Fixation and saccade measurements have been
shown to be informative of attentional processing (Velichkovsky
et al., 2000; Velichkovsky, 2002; Unema et al., 2005). Importantly,
the fixation-to-saccade ratio has be used as an index of processing
(fixation) versus search (saccades) (Goldberg and Kotval, 1999);
higher ratios indicate either more processing and/or less search
activity than lower ratios.

To further explore search behavior, two measures were com-
puted: (1) We estimated the fixation-to-saccade ratio. Fixations
were gazes lasting >120ms, within roughly 1 cm, while any
shorter duration movements were classified as saccades. (2) To
explore the temporal relationship between the mouse and gaze
during search, a measure of how long the mouse and gaze were
separated before reuniting was calculated, the mouse-gaze sep-
aration duration. Specifically, when the mouse and gaze over-
lapped in 2D space (were on the same square centimeter), they
were classified as overlapping. The mean duration between these
overlap events was computed, to represent the duration of time
the mouse and gaze spent separate. The average duration in time
between these overlap events (i.e., the mean duration of time-
segments where the mouse and gaze were separate) was plotted
(Figure 7B).

3.6.2. Result
In the Helpful frames condition, the fixation-to-saccade ratio was
lower, with a smaller proportion of fixations or greater proportion
of saccades (Figure 7A). Further, the Random condition had
larger ratios than the Off condition. With Helpful frames the
duration in mean time the mouse and gaze were separate for a
contiguous block before reuniting, was larger compared to con-
trols (Figure 7B). Though the Random condition may have had a
longermouse-gaze separation duration thanOff, these differences
were not consistent. Greater duration of time between this spatial
overlap of mouse and gaze positively associated with higher total
scores (Figure 7C).

3.6.3. Interpretation
More short saccades and fewer long fixations would be classi-
cally interpreted to mean that participants searched more and
processed less, respectively. These results indicated that the eye
gaze may have specialized for search behavior (saccades) over
processing (fixations), which could then be more efficient and
directed. This was congruent with the above finding of greater
global movement of the eyes with Helpful frames. This fur-
ther supports the notion that the mouse and gaze were able to
be functionally and spatially independent to a greater degree
in the Helpful frames condition. This indicates a functional
specialization of the mouse and gaze in the Helpful frames
condition.

3.7. Gaze, Mouse, and Click Timing: The Hand is
Quicker than the Eye
3.7.1. Procedure and Justification
To further elucidate mouse-gaze relationships, three more novel
measures were defined: (1) Mouse-gaze distance around click.
It was predicted that the mouse and gaze would be closer in
2D space around the time of a click, relative to when clicks
were not occurring. To test this prediction, the distance between
the mouse and gaze was plotted as a function of time, time-
locked to the click, averaged across all clicks and across all blocks
(Figure 8A). Time-locking refers to using a consistent time-point
of reference for the purpose of averaging in relation to that point.
In order to calculate the mean distance time series, for each
click, we collected the time series of mouse and gaze position
information 200ms before and after that click, and computed the
mouse-gaze distance during that period surrounding the click.
For example, there were many clicks for each participant over
the course of the experiment. For every click in each condition,
we calculated mouse-gaze distances between the 200ms before
and after the click, generating as many time-series as clicks. The
time-course of mouse-gaze distance was averaged over all these
instances while time-locked to the click. To do so, for each point
in time within the window (33ms increments), we calculated
the average distance at that equivalent time point across all time
series. Following this procedure, we were able to generate a sin-
gle distance time series for each condition. This measure was
inspired by event related potential (ERP) analyses derived from
electroencephalogram (EEG) recordings of neuronal activity. In
those analysis, EEG waveforms are averaged time-locked to a
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FIGURE 6 | Mouse movements were more local and more
clustered in the experimental “On” condition compared to
controls. (A) Over the course of a block, the mouse traversed more total
distance, in pixels, in “On” condition compared to controls. (B) Measures
of mouse clustering were developed, with higher ratios indicating a
greater proportion of larger distributed movements, and smaller numbers

indicating increased proportion of clustered small movements. Y-axis
plotted the ratio of long-range mouse movements/short-range adjacent
movements. Mouse movements were more clustered in the Helpful
experimental condition. (C) Greater mouse mileage associated with
better performance. Overall, Helpful frame groups showed an increase in
local mouse activity.

particular event of interest to increase the signal to noise (SNR)
of the neurological correlates of that event, when the neurological
event is minuscule relative to background noise. This method
applied here served to increase the SNR of factors related to clicks

(mouse-gaze distance), revealing the small statistical relationship
between mouse and gaze, in relation to the timing of clicks.
(2) Mouse-click distance around click. A similar measure was
calculated where the location of the click was treated as fixed, and
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FIGURE 7 | Gaze, “search” versus “processing.” (A) Results indicated more
short saccades or fewer long fixations in experimental “On” condition. (B) In
Helpful frame conditions, the duration of contiguous time the mouse and gaze
were separate before reuniting (i.e., are close) was longer. Thus, the mouse and

gaze were nearby less frequently with Helpful frames than controls.
(C) Mouse-gaze separation duration associated with better performance.
Overall, in the Helpful frames condition, the gaze appeared to specialize for
search behavior, and the mouse and gaze remained distant longer.

artificially distributed to the entire “mouse” time-line, and then
compared to the gaze over the same duration. In other words,
the distance between the gaze and the click itself was plotted over
the time just before and after the click. (3) Time-stepped mouse-
gaze correlation. To further explore whether the gaze follows the

mouse, or the opposite, a measure of mouse-gaze correlation was
computed over parametrically varied artificial time-shifts. For a
mouse position point and a gaze position at the same point of
time, we first calculated their distance, and this was the 0 delay
scenario. Then, we shifted the time series of mouse positions
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FIGURE 8 | Mouse-gaze-click temporal relationships. (A) Mean
mouse-gaze distance time-locked to the click across all trials (see text for
details). Y-axis is 2D spatial distance between mouse and gaze. In the Helpful
condition, participants’ mouse and gaze worked more independently,
apparently moving further apart between clicks. Based on minima in distance
relative to click (+20 to +55ms), mouse might have slightly lead or preceded
gaze. (B) Mouse and gaze distance, as a function of repeated artificial shift in
time to compare location, either comparing present to past locations of mouse

and gaze, or present to future locations. Y-axis is 2D distance between mouse
and gaze. 0 delay is real (actual) time for both mouse and gaze. Based on which
offset minimizes distance (mouse ahead of gaze by 33 or 66ms), mouse
location may predict gaze location in time. It is important to note that, on the
right half of the plot, the coordinates in mouse distance are at t=0 with the
gaze following at later time-steps (33ms increments), and on the left half of the
plot the gaze is at t= 0 with the mouse following at later time-steps. Overall,
both measures indirectly suggested that the mouse may have lead the gaze.

forward, e.g., the original time 0 became now −33ms, denoted
as delay −33ms, and used the new mouse position and gaze
position at the adjacent point in time to calculate mouse-gaze
distance. In other words, the coordinates for the mouse at time-
step t= 0, were used to calculate a distance from the gaze, at the
same time-step (t= 0), or at later or earlier time-steps (t= −33ms
or +33ms.). First, the mouse coordinates at t= 0 were compared
to the gaze coordinates at t= 0. Then, the mouse coordinates
at t= +33ms were compared to the gaze location at t= 0. This
was iterated forward and backward in time. The delay with the
minimum distance in this plot was the timing at which the mouse
and gaze were closest (most correlated) in space, out of all possible
artificial time-shifts we calculated. The average distance between
mouse and gaze was plotted as a function of the time-offset
(Figure 8B).

3.7.2. Result
The mouse and gaze appeared distant from each other, except
when they came close immediately after a click (Figure 8A). In
the Helpful “On” frames condition, the mouse and gaze were
much further apart immediately preceding and following the click.
The distance between mouse and gaze may have been closest
around 25–50ms after the click, congruent with the possibility
that themouse locationmay lead or predict the location of the gaze
(Figure 8A). Gaze-click distance (not graphically depicted) results
appeared equivalent to mouse-gaze distance plots (Figure 8A).
Time-stepped mouse-gaze correlations demonstrated that the

mouse and gaze were closest when the mouse lead the gaze by
33ms (Figure 8B).

3.7.3. Interpretation
The mouse-gaze-click analysis further extended the earlier obser-
vation that the mouse and gaze may have been functionally
specialized to a greater degree in the Helpful frames “On” con-
dition. An equivalence of gaze-click-click and gaze-mouse-click
plots indicated that themouse stills, slowingmovement just before
the click to a greater degree than the gaze, which continues to
move up until the click. The click analyses and the time-stepped
correlation both indicate, but do not necessitate, the conclusion
that the mouse preceded the gaze. These two findings supported
the adage that the “the hand is quicker than the eye,” and previous
studies (Land et al., 1999; Ishida and Sawada, 2004). Some studies
have also found that when manipulating objects the eyes follow
the hand (Ballard et al., 1992). Note, we only assert that the mea-
sured variable of mouse predicts the measured eye-gaze location,
not that one causes the other. A causal model might include
covert attention and internal motor-planning, which cause both
the hand to move and the eyes to follow. These ideas are con-
gruent with the role of intention and covert attention preceding
eye movements, e.g., as is demonstrated in parafoveal preview
(scanning the upcoming words with non-foveal retina) benefiting
reading speeds. Mouse-gaze-click measures suggested a greater
independence of function of mouse and gaze for the Helpful
conditions.
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3.8. Commonly Occurring Horizontal Transition
Biases were Reduced
3.8.1. Procedure and Justification
Much previous work has demonstrated that human observers
have a bias toward horizontal detection and transition over a
diagonal, even when diagonal transitions are optimal (Megaw
and Richardson, 1979; Parasuraman, 1986; Donk, 1994; Bellenkes
et al., 1997). It has been hypothesized that the human visual system
has a bias and enhanced ability to process horizontal search or
change (over vertical) due to the overwhelming experience of
most land dwelling vertebrates with information varying more in
horizontal plane than the vertical; alternatively, the majority of
written languages are read on a horizontal plane, with years of
reading experience also providing extensive practice with hori-
zontal visual shifts. To determine which specific biases users were
overcoming in mouse movements, we calculated full transition
matrices, for each block and condition. Each mouse transition
matrix contained the frequency of mouse transition from every
map panel task, to every other map panel task, over the entire
block. These matrices were then used to calculate horizontal and
diagonal transition counts for the mouse. These were then used
to compute the proportion of mouse cursor transitions diagonally
versus horizontally (Figure 9).

3.8.2. Result
With Helpful frames, participants transitioned more frequently
between map panel tasks diagonally relative to horizontally in the
Helpful frames condition compared to controls (Figure 9).

3.8.3. Interpretation
In addition to our previous demonstration of reducing global bias
(Taylor et al., 2015), this finding further suggested that theHelpful
frames may have reduced common biases and improved rational
search behavior.

3.9. Effect Sizes
To measure effect sizes, Cohen’s d was computed for the com-
parison of each control to the experimental condition. Tradi-
tional specifications classify effect sizes as: small at around <0.2,

medium ranging from 0.3–0.6, and large >0.6–0.8. With Cohens
d around 1, a difference between the means is large, at one full
SD. With a Cohen’s d value of 1, it is also the case that there
is a 76% chance that a participant sampled randomly from our
experimental condition will have a higher score than a participant
chosen randomly from a control condition (i.e., probability of
superiority), and that 84% of our experimental group is above the
mean of a control group (i.e., Cohen’s U3 percentage). Many of
our theoretically relevant effects demonstrated large effect sizes
around 1 or greater (Table 1).

3.10. Participant Sample Statistics
We confirmed that there were no incidental differences between
subject groups in each condition for measured features known
to influence experimental performance. To do so, we tested the
null hypothesis that each group had the same population mean
using ANOVA for the following measures: (A) hours of sleep in
the previous week did not differ (F = 0.2, p< 0.8), (B)mean age in
years was 26 and did not differ (F = 1.2, p< 0.3), and (C) multiple
measures of video game experience did not vary between condi-
tions, as measured by post-experimental surveys assessing multi-
ple measures of gaming frequency (F = 0.8, p< 0.5 – days/year;
F = 0.8, p< 0.5 – h/week), and gaming history (F = 0.1, p< 0.9 –
duration; F = 0.5, p< 0.6 – age started playing). Full details were
included in Taylor et al. (2015).

4. Discussion and Related Work

4.1. Divided Attention and Bias, Supervisory
Sampling, and Search
Dividing attention over multiple tasks or entities is notoriously
problematic for most humans (Watson and Strayer, 2010). For
example, operators have been found to be overly biased to themost
important elements of a display (Bellenkes et al., 1997). Biases
for search and scanning patterns appear in the upper left of a
display, hypothesized as an artifact of western left-to-right reading
(Megaw and Richardson, 1979). Operators are biased to use hori-
zontal over diagonal eye movements and scanning patterns, even
when diagonal scanning was optimal (Donk, 1994). Search also

4 5 6 7 8 9 10

0.000

0.025

0.050

0.075

0.100

off on random off on random off on random off on random off on random off on random off on random

Condition (3 groups): Off = no frames, On = helpful frames, Random = random frames

T
ra

n
s
it
io

n
s
: 
D

ia
g
 /
 H

o
ri

z
, 
M

o
u
s
e

condition

off

on

random

<== Number of maps on screen at one time ==>

FIGURE 9 | Mouse transitional frequencies were less biased
horizontally. Since horizontal transitions are typically over-represented in
humans, we measured the ratio of diagonal map-to-map transitions, over
horizontal transitions. Greater diagonal relative to horizontal transitions

were observed for mouse movement in the Helpful condition. For blocks
with only 4 or 5 map panel tasks, all fit on one row, and thus there were no
diagonal transitions. The Helpful group displayed reduced common toward
horizontal search behaviors.
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TABLE 1 | Effect sizes presented as Cohen’s d.

Measure Fig 4 Maps 5 6 7 8 9 10

– – On–Off On–Ra On–Off On–Ra On–Off On–Ra On–Off On–Ra On–Off On–Ra On–Off On–Ra On–Off On–Ra

Target paths primary 3A 0.43 0.47 0.07 0.4 0.37 0.8 0.59 0.96 0.94 1.14 1.01 1.3 0.82 1.13
Num. paths total 3B 0.02 0.24 0.02 0.14 0.26 0.01 0.13 0.17 0.14 0.19 0.2 0.1 0.03 0.31
Num. of clicks 3C 0.06 0.35 0.04 0.26 0.31 0.26 0.06 0.59 0.05 0.63 0.04 0.59 0.02 0.87
Micromanage coefficient 4A 0.09 0.27 0.16 0.27 0.16 0.58 0.17 0.58 0.6 0.86 0.58 0.89 0.55 0.84
Path length mean 4B 0.17 0.42 0.14 0.49 0.56 0.95 0.83 1.02 1.05 1.03 0.95 1.0 0.83 0.9
Panel gaze switches 5A 0.54 0.31 0.68 0.65 0.7 0.74 0.31 0.39 0.34 0.39 0.5 0.26 0.3 0.3
Panel mouse switches 5B 1.06 1.11 0.48 0.99 0.36 0.68 0.57 0.83 0.84 1.09 0.48 0.8 0.59 1.3
Mouse mileage 6A 0.65 1.24 0.63 1.43 0.5 1.5 0.66 1.53 0.91 1.56 0.54 1.05 0.61 1.31
Mouse clustering 6B 0.56 0.84 0.17 0.86 0.18 0.79 0.37 1.08 0.4 1.25 0.31 0.87 0.31 0.91
Fixation to saccade 7A 0.41 0.48 0.25 0.44 0.32 0.68 0.22 0.58 0.28 0.63 0.57 0.35 0.54 0.74
Mouse-gaze separation 7B 0.39 0.17 0.41 0.39 0.44 0.29 0.15 0.25 0.48 0.26 0.4 0.01 0.68 0.39
Trans: Diag-Horiz, mouse 9 NA NA NA NA 0.02 0.31 0.48 0.7 0.31 0.57 0.46 0.42 0.5 0.83

Left column specifies measure, and the second column specifies the corresponding figure in the main text. Top row specifies map number, and second row details the comparisons of
the experimental condition to each control: effect size of On compared to Off (On–Off), and of On compared to Random (On–Ra). Each row of data corresponds to the row-label at left.

tends to be overly biased toward central regions of available visual
space, termed an “edge effect” (Parasuraman, 1986). To remedy
some problems with divided attention, augmented displays have
been the subject of extensive study, such as classic experiments
with heads up displays (HUD), which superimposed important
information transparently over the frontal field of view (Wein-
traub, 1992; Newman, 1995; Wickens, 1997; Wickens and Seidler,
1997), with mixed results, such that care must be taken when
designing such assistive systems.

In supervisory control sampling tasks, where operators perform
something like instrument scanning or sampling (Moray, 1981,
1986), expertise improves sampling probabilities (Bellenkes et al.,
1997). Sampling reminders for these tasks similarly improve user
performance (Moray, 1981). This functions in part because gener-
ally, cuing targets can speed or increase the accuracy of detection
(Eriksen and Collins, 1969). Highlighting display elements in a
multi-display may assist in directing attention (Fisher and Tan,
1989; Hammer, 1999). Cuing for target detection has been stud-
ied in the real world in helmet displays, finding that cues were
helpful for expected targets, but harmful for unexpected targets
(Yeh et al., 1998). In theoretical support of external cuing, it has
been suggested that exogenously captured attention drives faster
saccades than endogenously intended reaction times as measured
by saccades (Kean and Lambert, 2003). Predictive displays show
operators what possible future states might arise (Kelley, 1968;
Gallaher et al., 1977; Lintern et al., 1990). Preview of which
element to attend to next may ameliorate delays for rapid decision
making (Grossman, 1960; Elkind and Sprague, 1961; Reid and
Drewell, 1972; Grunwald, 1985). Our algorithm took advantage
of many of these principles, using a simple external cue, which
applies domain-generally.

4.2. Task Switching
The costs for task switching are many: the rapid decision making
required, the code-switching needed to switch between tasks,
and the observed perseverance bias for continuing tasks longer
than ideal (Jersild, 1927; Sheridan, 1972; Moray, 1986; Rogers
and Monsell, 1995; Schutte and Trujillo, 1996). For tracking or
decision tasks, a limit has been observed where human operators
can not reliably make greater than two decisions per second

(Craik, 1948; Elkind and Sprague, 1961; Fitts and Posner, 1967;
Debecker and Desmedt, 1970). Our system potentially eliminates
one decision per second, or per map switch, a non-trivial benefit.

Irrational perseverance is also illustrated by a past study show-
ing that when noticing a problem with one element, operators
failed to continue monitoring all tasks well, and did not move on
effectively (Moray and Rotenberg, 1989), which may have been
observed with our control conditions micromanaging more. For
task management, it has been shown that operators’ planning
strategies are not elaborate or ideal, and are typically overly sim-
plified (Liao and Moray, 1993; Raby and Wickens, 1994; Laude-
man and Palmer, 1995), because these planning strategies are
resource intensive and require high cognitive workload (Tulga and
Sheridan, 1980). Confusion between tasks when task switching is
greater for sub-tasks which are similar when compared to sub-
tasks which are dissimilar (Hirst and Kalmar, 1987), perhaps due
to what is termed outcome conflict (Navon, 1984; Navon and
Miller, 1987). Outcome conflict is complementary but different
from the multiple resource model (Wickens et al., 1986), where
different types of sensory input to an operator interfere less than
similar input (Tayyari and Smith, 1987; Martin et al., 1988). Our
system was particularly helpful for managing multiple similar
tasks.

To ameliorate task switching costs, visual external cues for
task switching may assist operators (Allport et al., 1994; Wick-
ens, 1997). Cuing important or neglected tasks can be helpful
(Wiener and Curry, 1980; Funk, 1996; Hammer, 1999); however,
doing so successfully in a domain-general manner has not been
accomplished. Secondary tasks have long been used to index
workload for a primary task (Rolfe, 1973; Ogden et al., 1979);
while indirectly these results speak to the benefit of eliminating
the secondary task (tracking gaze history) in our game. There-
fore, for high workload situations (like 8 or more maps here)
it may be optimal to have a computer-externalized planning
strategy.

Our studies took advantage of these phenomena to optimize the
primary task, when a secondary task is also helpful to perform, but
can be performed by the computer. Our frame cue aid may allow
for more full focus on a single map, with more effective and rapid
task switching between maps.
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4.3. Working Memory
With multiple entities to track and evaluate, past studies showed
that the human user is often limited by functional working
memory load. Different working memory resources are thought
to exist for different modalities or mental processes; for example,
visual working memory has been proposed to be stored in what
is called the visuospatial sketchpad (Salway and Logie, 1995),
with dissociable memory components for different modalities
(e.g., auditory) or even visual domains (Logie and Pearson, 1997).
Without rehearsal, the typical duration of working memory is
10–20s, though with more items in a set to remember the set
decays even faster (Brown, 1958; Peterson and Peterson, 1959;
Melton, 1963; Moray, 1986). The classically proposed number
of items capable of maintenance in working memory is seven
chunks of familiar information, plus or minus two (Miller, 1956).
However, artificial lab experiments produced an unrealistically
high estimate of seven items, whereas the real-world version of
working memory (running memory) is probably closer to five
chunks of familiar information (Moray, 1980). Expertise expands
working memory for items for which the expert has experience,
for example, in chess (Chase and Simon, 1973; Groot, 1978; Gobet,
1998) or computer programing (Vessey, 1985; Ye and Salvendy,
1994; Barfield, 1997), in part via chunking (Anderson and Neely,
1996a,b; Anderson et al., 1996). In summary, a single human is
capable, in principle, of monitoring multiple semi-autonomous
operations, but the number is limited, in part, by runningmemory
capacity. We expanded this functional capacity for multi-agent
management tasks, by delegating working memory requirements
to the computer.

With industrial relevance, vigilance tasks are hypothesized to
produce continuous loads on working memory (Parasuraman,
1979; Deaton and Parasuraman, 1988). Working memory updat-
ing is error prone when updating a similar variable repeatedly (as
in map location) as opposed to different variables (Yntema, 1963).
Items in working memory can experience retroactive interference
where items presented later interfere with the first, as well as
proactive interference where items presented before an item to be
remembered interfere (McGeoch, 1936; Keppel and Underwood,
1962; Anderson and Neely, 1996a), while up to 10 s between
item presentation is needed to offset these interference effects.
Maintaining an item in working memory is interfered with by
having participants attempt to maintain a second similar set of
items, more than if the second set of items is dissimilar to the
first (McGeoch, 1936; Bailey, 1989; Anderson andNeely, 1996a,b).
For example, presenting new spatial information interferes with
previously presented spatial information, compared to interfer-
ence from non-spatial information (Hole, 1996). Particularly for
a spatial task-like robot manipulation, spatial working memory is
taxed by performingmultiple spatial tasks at one time. Short-term
or working memory capacity is further limited by the fact that
keeping track of which items need to be re-checked (secondary
task) uses the same cognitive resources as the spatial manipulation
task (primary task), further limiting task performance by the
necessity of remembering attention history.

To perform optimally the user must, among other things,
rememberwherewasmonitored last, since the longer the time that
has elapsed since a check, the greater the probability of a situation

requiring human assistance; this, however, is also a spatial work-
ing memory task. With high numbers of tasks, working memory
load increases, as measured by blunting typical assistance via
peripheral preview (Tulga and Sheridan, 1980). Previous studies
have shown it can be practically helpful to supplement working
memory with an external display, e.g., air traffic control (Wiener
and Nagel, 1988) or cockpit display of traffic information (CDTI)
(Hart and Loomis, 1980).

Our algorithm aids multitasking in a domain-general manner,
for the first time. It is likely that one mechanism of action was via
the delegation of short-term working memory to the computer in
real time, freeing cognitive resources from a secondary task, so
that the resources can be invested in the primary task.

4.4. Augmented Cognition, Human-Agent,
Human–Robot, Human–Swarm Interaction, and
Automation Assistance
Extensive research has been performed under DARPA initiatives
to further real-time assistance for technical scenarios (St. John
et al., 2004). In such studies of augmented cognition, assistance
often involves detection and utilization of the human operator’s
mental state to optimize performance (Dorneich et al., 2003;
Schmorrow and McBride, 2004; Erdogmus et al., 2005; Greitzer,
2005; Ivory et al., 2005; Miller and Dorneich, 2006; Carlson et al.,
2007; Fuchs et al., 2007b; Kollmorgen, 2007; Schmorrow and
Reeves, 2007; Barber et al., 2008; Ushakov and Bubeev, 2008;
Vogel-Walcutt et al., 2008; Agarwal and Dagli, 2013; Kolsch et al.,
2013; Abbass et al., 2014; Putze and Schultz, 2014).

Similarly, human–robot interaction must be optimized for
human performance; such studies take the form of design-
ing command interfaces, optimizing naturalness, gesture-based
communication, hardware design, and social considerations
(Waldherr et al., 2000; Goodrich and Schultz, 2007; Lavine et al.,
2007; Pfeifer et al., 2007; Bicho et al., 2011; Goodrich et al.,
2011a,b; Lenzi et al., 2011; Sciutti et al., 2012; Canning and
Scheutz, 2013; Kondo et al., 2013; Murphy and Schreckenghost,
2013; Tiberio et al., 2013; Trafton et al., 2013). Human–robot
interactions are not always singular, and there has been progress
in the design and communication of human–robot teams
(Cuevas et al., 2007; Fiore et al., 2011). These multi-agent
communications become even more complex when consider-
ing autonomous swarm-based agents, and some studies have
begun to make progress in improving human control of swarms
(Naghsh et al., 2008; Hashimoto et al., 2009; Marjovi et al., 2009;
Ducatelle et al., 2011; Penders et al., 2011; Giusti et al., 2012a,b;
Goodrich et al., 2012, 2013; Kerman et al., 2012; Kolling et al.,
2012, 2013; Nagi et al., 2012; Brambilla et al., 2013; Mi and Yang,
2013). We build upon these studies by demonstrating a method to
improve human control over multiple automated agents.

Though simple cuing can assist users in knowing what to
attend to in multitasking scenarios (Seidlits et al., 2003; Boucheix
and Lowe, 2010; Groen and Noyes, 2010; Ozcelik et al., 2010),
the highly complex multitasking needed to manage multiple
autonomous agents, requires more advanced computational assis-
tance. For more abstract or complex tasks, proceduralization is a
term used to define systematic externalized systems for improv-
ing decision making (Bazerman, 1998), often with computer
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assistance (Dawes et al., 1989), which our system does. Computer-
ized displays to assist users in decision making are often domain-
specific expert systems (Shortliffe, 1983; Chignell and Peterson,
1988; Schkade and Kleinmuntz, 1994; Stone et al., 1997), whereas
our system is domain-general. Automation assistance has been
developed to assist human users in managing automation when
the tasks are complex and dynamic (Endsley, 1999; Inagaki, 2003;
Kaber and Endsley, 2004), which our algorithm would assist with
as well.

4.5. Real-Time Eye Tracking: Pupil Size,
Contingent, Gaze-Control, and Gaze-Aware
Gaze location can be used to modify a display or physical device
in real-time, depending on either pupil size or on the location
of gaze itself, with both summarized in the following five parts:
(1) Augmented cognition, (2) Contingency, (3) Gaze-control,
(4) Gaze-aware systems, and (5) Previous limitations.

4.5.1. Augmented Cognition: Real-Time Assessment
and Utilization of Pupil Size, as a Theoretical Proxy
for Cognitive Load
The DARPA augmented cognition initiative has considered the
use of gaze tracking as a potentially important for assisting users in
military scenarios (Crosby et al., 2003; Marshall and Raley, 2004;
Nicholson et al., 2005; Fuchs et al., 2007a; Stanney et al., 2009).
The majority of these studies used pupil dilation as a measure of
cognitive load (Marshall, 2002; Marshall et al., 2003; St John et al.,
2003; Taylor et al., 2003; Raley et al., 2004; St. John et al., 2004;
Johnson et al., 2005;Mathan et al., 2005; Russo et al., 2005; Ververs
et al., 2005; De Greef et al., 2007; Coyne et al., 2009), while only
few attempted to actually develop the technical infrastructure for
real-time assistance via gaze location (Barber et al., 2008), though
none produced results using gaze location.

4.5.2. Contingent: Gaze-Based Real-Time Display
Updating, as an Experimental Tool
Contingent (interactive) eye tracking is defined as modifying a
display or process in real-time based on gaze location, and has
previously been used in lab experiments, though often as an
impediment, not for the point of optimizing performance. Early
in the development of the technology, the fields of linguistics and
reading employed paradigms like the moving window paradigm
(Reder, 1973; McConkie and Rayner, 1975), which impedes the
user in real-time by replacing the upcoming periphery with
noise or random letters, for example, while reading, to eliminate
parafoveal preview; alternately one can also blur the periphery.
The moving mask paradigm is the opposite, blurring the fovea
(Rayner and Bertera, 1979); the moving mask paradigm has been
used to study visual learning (Castelhano and Henderson, 2008)
and visual search (Miellet et al., 2010). Another method is the
parafoveal magnification paradigm (Miellet et al., 2009), which
involves magnifying the periphery, to compensate for reduced
resolution in the periphery, and is also used in reading studies
to manipulate parafoveal preview. Others have created a central
hole allowing visibility only at the fovea, like seeing through a
telescope (Shimojo et al., 2003). In light of the fact that breaking
or harming performance can serve as an excellent experimental

probe, these paradigms were successful. However, none improved
human performance on a practical task in real-time.

4.5.3. Gaze Control: Computer, Robot, and
Swarm Control
A very large quantity of work on gaze-based paradigms, which are
intended to control computerized systems, wheelchairs, or other
robots with the eyes, exists. These have been pioneered both inside
academia and out, for groups of individuals with diseases like
amyotrophic lateral sclerosis (ALS), a peripheral motor-neuron
disease paralyzing the body, while leaving eye movements in
tact. These studies most often involve the movement of a cursor,
wheelchair, and accessories via the point of gaze, while defining
a variety of mouse-click paradigms, including blinks and others,
as well as the use of gaze location to control computer graphical
menus, zooming of windows, or context-sensitive presentation of
information (Jacob, 1990, 1991, 1993a,b; Jakob, 1998; Zhai et al.,
1999; Tanriverdi and Jacob, 2000; Ashmore et al., 2005; Laqua
et al., 2007; Liu et al., 2012; Sundstedt, 2012; Hild et al., 2013;
Wankhede et al., 2013). These paradigms have been extended to
improve upon human control of robots (Carlson and Demiris,
2009), as well as humans controlling swarms (Couture-Beil et al.,
2010; Monajjemi et al., 2013). Our study may assist those attempt-
ing to control multiple robots or swarms, since the algorithm may
improve a variety of such control systems.

Many of these gaze control-based paradigms are very beneficial,
and some include gaze-aware features, though we would like
to distinguish the purely gaze-aware from the purely control or
control which has some additional assistive function. The exper-
iments presented here demonstrate a gaze-aware system, which
can improve performance, without direct input, and may assist
operators in a variety of scenarios, both control and non-control.
We now progress to further discussion of gaze-aware components.

4.5.4. Gaze-Aware: Command vs. Assistance,
Domain-Specific vs. General, and
Descriptive vs. Predictive
Most gaze-display paradigms have some control component,
though some displays are purely gaze-aware but not intended
for user assistance: for example, video compression is used in
gaze contingent displays (GCDs) to maintain image resolution
while compressing the periphery and to optimize computational
resources (Reingold et al., 2003; Duchowski et al., 2004; Loschky
and Wolverton, 2007). Despite the fact that they do not assist
the user, these systems illustrate many good features of user-
assisting systems: being non-intrusive, intuitive, transparent, and
non-command, features which are currently underrepresented in
gaze or attentive user interfaces (AUIs).

Most of the currently existing gaze-aware systems or AUIs
actually also include an active control component, for example,
in the selection of which window to interact with, or which menu
item to enlarge. Many of these attentive or gaze-aware interfaces
are also quite domain-specific, with examples including reading,
menu selection, scrolling, or information presentation (Bolt, 1981;
Starker and Bolt, 1990; Sibert and Jacob, 2000; Hyrskykari et al.,
2003; Fono and Vertegaal, 2004, 2005; Iqbal and Bailey, 2004;
Ohno, 2004, 2007; Spakov and Miniotas, 2005; Hyrskykari, 2006;
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Merten and Conati, 2006; Kumar et al., 2007; Buscher et al., 2008;
Bulling et al., 2011).

In robot interaction, most real-time eye interfaces have been
designed to mimic gaze for social or communicative reasons
(Staudte and Crocker, 2008, 2009, 2011; Jones and Schmidlin,
2011; Boucher et al., 2012; Kohlbecher et al., 2012). Only few
human–robot studies took gaze location into consideration for
improving human task performance (DeJong et al., 2011), which
involved improving human performance in spatial transforma-
tions using robotic arms.

A common theme in gaze-aware interfaces is to attempt to
predict the users’ preferences or gaze location in domain-specific
scenarios, such asmap scanning, reading, eye-typing, or entertain-
ment media (Goldberg and Schryver, 1993, 1995; Salvucci, 1999;
Qvarfordt and Zhai, 2005; Bee et al., 2006; Buscher and Dengel,
2008; Jie andClark, 2008; Xu et al., 2008;Hwang et al., 2013). Some
of these attempts at prediction may generalize well to forecasting
wider subsets of real-world tasks (Hwang et al., 2013), though
still require intelligent computer vision, image processing, and
adaptation of algorithms for new tasks to be predicted optimally.
For a paradigm to be domain-general to the greatest degree, it
must eliminate specific prediction, relying upon description, or
generalized probability distributions over the display space.

Though some have attempted domain-general systems, such
attempts have interfered with the user by obscuring the display
inflexibly (e.g., make everything looked at entirely opaque), or
only apply to a specific subset of behavior, such as within some
types of search (Pavel et al., 2003; Roy et al., 2004; Bosse et al.,
2007). Our system addresses many of these limitations, in that
it does not require the computer have content knowledge (e.g.,
vision), is domain-general, intuitive, closed-loop, non-predictive,
and most importantly, effective.

4.5.5. Obviousness and Previous Limitations
Given the seeming obviousness of our solution, it is notable that
despite the need and benefit from this situation-blindmultitasking
aid, no others exist to date. The benefits were non-trivial, with
very large statistical effect sizes, and potential for wide generaliza-
tion. Previous eye trackers cost upwards of $20,000 USD, which
often prohibited this as a feasible solution. However, recently eye
trackers have come down in price, with the eye tracker used in

this study being printed on a 3D printer, with an open API, while
many others have nowpublished designs for open and inexpensive
hardware (Babcock and Pelz, 2004; Li et al., 2006; Lemahieu and
Wyns, 2011).

4.6. Conclusion
In part, previous applications attempted to predict human inten-
tions, to better provide the human with what they wanted. For
general benefits, it is more efficient to eliminate prediction, and
define domain-general probability utility over the visual display,
such that the display is transparent, non-interfering, and assis-
tive. Our application may function via delegating short-term
memory load to the computer, and reducing the number of
repeated decisions the user needed tomake. Highlighting the gaze
history on multiple tracking tasks could theoretically improve
performance on many tasks where the probability of task rele-
vance relates to the delay since gaze, even in complex ways. The
design of the assistive algorithms tested here demonstrated clearly
greater application-independence than any previousAUIs or gaze-
aware interfaces. Rather than enable novel control means, these
experiments demonstrated an overlay procedure to transparently
accelerate normal interaction or pre-existing control, likely gener-
alizing to a wide variety of multi-agent applications.
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