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This paper describes a variational method of joint three-dimensional structure and motion
scene flow recovery from a single image sequence. A basic scheme is developed by
minimizing a functional with a term of conformity of scene flow and depth to the image
sequence spatiotemporal variations, and quadratic smoothness regularization terms. The
data term follows by rewriting optical velocity in the optical flow gradient constraint in
terms of scene flow and depth. As a result, this problem statement is analogous to the
classical Horn and Schunck optical flow formulation except that it involves scene flow
and depth rather than image motion. When discretized, the Euler–Lagrange equations
give a large scale sparse system of linear equations in the unknowns of the scene flow
three coordinates and depth. The equations can be ordered in such a way that the
corresponding matrix is symmetric positive definite, so that they can be solved efficiently
by Gauss–Seidel iterations. Experiments are shown to verify the scheme’s validity and
efficiency.

Keywords: computer vision, motion analysis, scene flow, 3D motion, depth

1. Introduction

Scene flow is the field over the image domain of the visible environmental surfaces three-
dimensional (3D) velocities. Only the visible surfaces are relevant in the definition because they
alone, not the occluded, contribute to visual information. As a result, the scene flow domain
is the image domain: at each image point, scene flow consists of the velocity vector of the
corresponding visible environmental surface point. It is the time derivative of the point 3D
position.

For a working definition of scene flow, letΩ be the common domain of an image sequence I(x, t),
where x= (x, y) designates image position, and t is time. For each point, x∈Ω, let P′ = dP

dt be the
velocity vector of the visible environmental point P= (X, Y, Z) projected on x. Scene flow is the
velocity vector field, F = (U,V,W) = ( dXdt ,

dY
dt ,

dZ
dt ) over Ω. It is a function of image position and

time: F=F(x, t).
Scene flow is a fundamental dimension of three-dimensional scene analysis for the obvious reason

that it describes the motion of real objects in the environment. Moreover, it is related to optical flow
via depth (Mitiche and Aggarwal, 2013). It can be regarded as a three-dimensional analog of optical
flow: at each point x∈Ω, and each instant of time, scene flow is the velocity vector of the visible
environmental point P, which projects on x, whereas optical flow is the velocity vector of the image
of P at x.

From a broad perspective, scene flow can be computed in one of two ways: parametric and
non-parametric. Parametric methods use a parametric form of the scene flow coordinates and
non-parametric methods compute scene flow directly as a vector field without resorting to an
intermediate representation.
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Investigations of parametric scene flow generally assume that
environmental objects are rigid and, therefore, decompose scene
flow in terms of 3D translational and rotational parameters
(Mitiche and Aggarwal, 2013). This representation leads to the
Longuet–Higgins and Pradzny fundamental equations (Longuet-
Higgins and Prazdny, 1980) relating the rigid motion parame-
ters, depth, and optical flow. Depth and the rigid screw motion
parameters become the unknown 3D variables to determine, from
which scene flow can be recovered a posteriori. Inmost studies, the
Longuet–Higgins and Pradzny equations underlie the recovery
of rigid body structure and motion from image sequences, even
when not used explicitly.

Current parametric methods can be separated into two broad
categories, those which treat the case of a viewing system mov-
ing in a static environment and those which allow the viewing
system and the environmental objects to move simultaneously
and independently. In the first case, the problem is significantly
simpler because the single 3D motion to take into account is
that of the viewing system (Bruss and Horn, 1983; Adiv, 1985;
Horn andWeldon, 1988; Shahraray and Brown, 1988; Heeger and
Jepson, 1992; Taalebinezhaad, 1992; De Micheli and Giachero,
1994; Gupta and Kanal, 1995; Xiong and Shafer, 1995; Hung and
Ho, 1999; Brodsky et al., 2000; Srinivasan, 2000; Liu et al., 2002).
Moreover, segmentation of the environment into differently mov-
ing objects is not an issue in a static environment, simplifying the
problem further.

The simultaneous motion of the viewing system and viewed
objects has also been the subject of several studies (MacLean et al.,
1994; Weber and Malik, 1997; Fejes and Davis, 1998; Mitiche and
Hadjres, 2003; Mitiche and Sekkati, 2006; Sekkati and Mitiche,
2006a,b, 2007). The non-variational methods in MacLean et al.
(1994), Weber and Malik (1997), and Fejes and Davis (1998)
assume that optical flow is given beforehand and segment the
visual field into differently moving rigid objects by grouping pro-
cesses, such as region growing by 3D motion (Weber and Malik,
1997), clustering of 3D motion via mixture models (MacLean
et al., 1994), and clustering via oriented projections of optical flow
(Fejes and Davis, 1998).

The variational methods in Mitiche and Hadjres (2003),
Mitiche and Sekkati (2006), and Sekkati and Mitiche
(2006a,b, 2007) use functionals with a data term based
on the Longuet–Higgins and Prazdny rigid motion model
and a regularization term to account for 3D interpretation
discontinuities; they mainly differ in the way these discontinuities
are represented.

Non-parametric scene flow computation methods seek to
recover scene flow at each point of the image domain without
recourse to a parametric form of the movements or surfaces in
space. Such methods are most relevant when practicable models
of scene flow cannot be assumed, as with, for instance, articulated
human and animal motion.

Because scene flow is related to depth, via optical flow, which
they jointly define (Mitiche and Aggarwal, 2013), non-parametric
scene flow computation has been generally studied in the context
of stereoscopy (Zhang and Kambhamettu, 2000; Pons et al., 2003;
Vedula et al., 2005; Huguet and Devernay, 2007; Wedel et al.,
2008, 2011; Rabe et al., 2010; Basha et al., 2013; Vogel et al., 2013),

although it stands independent of stereoscopy. Here following,
we will show that non-parametric scene flow can actually be
recovered from a single image sequence. We will describe a
variational scheme reminiscent of the Horn and Schunck opti-
cal flow estimation method. The functional of this formulation
has two terms: a data term, which relates 3D velocity to depth
via the image sequence spatiotemporal variations, and a classic
smoothness regularization term. The data term falls out simply by
rewriting the Horn and Schunck optical flow constraint linearly
in terms of scene flow and depth. The Euler–Lagrange equations
corresponding to the minimization of the objective functional
yield, when discretized, a large sparse system of linear equations,
which can be solved efficiently by Jacobi/Gauss–Seidel iterations.
The scheme can be generalized to boundary preserving formula-
tions as in optical flow estimation (Deriche et al., 1995; Aubert
et al., 1999).

The remainder of this paper is organized as follows: Section
2 formulates the problem and develops the objective functional.
Section 3 deals with the optimization of the objective functional.
It derives the Euler–Lagrange equations and the corresponding
discrete system of linear equations in the variables of scene flow
and relative depth. It also shows that the matrix of this system
is symmetric positive definite, which prescribes a solution by
Jacobi/Gauss–Seidel iterations. Section 4 addresses the problem of
regularized spatiotemporal derivative computation and Section 5
gives experimental results.

2. Formulation

The problem is to recover scene flow and depth from an image
sequence I: (x, y, t)→ I(x, y, t), where (x, y) are the coordinates
over the bounded image domain Ω, and t ∈R+ is time. The for-
mulation starts with the Horn and Schunck optical flow gradient
constraint (Horn and Schunck, 1981), which relates the coordi-
nate functions, u and v, of optical flow to the image sequence
spatiotemporal variations:

Ixu + Iyv + It = 0, (1)

where Ix, Iy, It are the image spatiotemporal partial derivatives.
Let P be a point in space (X, Y, Z), its 3D coordinates, and (x, y) its
image coordinates. The viewing systemmodel geometry is shown
in Figure 1. Derivation with respect to time of the projection
equations x = fXZ and y = fYZ , where f is the focal length, gives
the coordinates u, v of optical velocity as functions of scene flow
and depth:

u =
dx
dt =

fU− xW
Z ; v =

dy
dt =

fV− yW
Z , (2)

whereZ designates depth (Figure 1) and (U,V,W) = ( dXdt ,
dY
dt ,

dZ
dt )

is the scene flow atP. Substitution of these optical flow expressions
in the gradient constraint (1), followed by themultiplication of the
left hand side byZ ̸= 0 gives the following linear constraint relating
scene flow and depth to the image spatiotemporal derivatives:

fIxU + fIyV− (xIx + yIy)W + ItZ = 0. (3)
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FIGURE 1 | The viewing system is symbolized by a Cartesian reference
system (O; X,Y,Z) and central projection through the origin. The Z-axis
is the depth axis. The image plane π is orthogonal to the Z-axis at distance f,
the focal length, from O.

There are two important observations to make about this
linear equation. First, an obvious observation is that this
equation evaluates at each point of the image domain:
fIx(x)U(x)+ fIy(x)V (x)− (xIx(x)+ yIy(x))W(x)+ It (x)Z (x)= 0
and, therefore, contains four unknown variables at each point.
As with optical flow computation (Hildreth, 1984), this says that
any local interpretation of the variables is ambiguous. Dense
interpretation, i.e., global over the image domain, which is of
interest to us here, will require additional constraints. In a classic
way, we will use a variational statement of the problem where
these additional constraints characterize the variables as smooth
over the image domain.

The second observation is that the equation, being homoge-
neous, has a trivial solution, U =V =W = 0; Z= 0, in which, of
course, we are not interested, and can easily avoid in practice.
More importantly, since we are dealing with an actual physical
problem, the environmental depth field and scene flow, which
gave rise to the image spatiotemporal variations, constitute a
solution but so does any scaled version of it: if (U, V, W), Z is
a solution, so is k(U, V, W), kZ for some arbitrary real k. This is
a limitation inherent to the recovery of 3D structure and motion
from 2D image sequences (Ullman, 1983).

Theoretically, the scale can be fixed by setting the depth of a
particular point, in which case the depth of any other point is
relative to it. However, this is hardly an answer, because setting the
depth of a point would affect a single equation out of thousands
that generallymake up the discrete systemof equations in practice.
Along a different vein, a particular solution can be picked by
imposing it a given norm. For instance, we could, say, compute
a unit norm solution: ||(U, V, W, Z)||= 1 by solving under this
constraint the system of equations of the problem. We will follow
instead an effective simple scheme: we will adopt a variational
formulation of the problem where the scale of interpretation is
fixed by solving for depth Zr relative to a fronto-parallel plane

ΠZ0 :Z=Z0, for some arbitrary positive depth, Z0. More precisely,
this is done by first rewriting Eq. (3) as follows:

fIxU + fIyV− (xIx + yIy)W + It(Z− Z0) + ItZ0 = 0, (4)

and then making a change of variable Zr←Z−Z0, which would
give:

fIxU + fIyV− (xIx + yIy)W + ItZr + ItZ0 = 0 (5)

For notational simplicity and economy, we can reuse the symbol
Z to designate relative depth Zr, in which case we write Eq. (5) as:

fIxU + fIyV− (xIx + yIy)W + ItZ + ItZ0 = 0 (6)

By rewriting this data equation with respect to reference, plane
ΠZ0 effectively fixes the scale of 3D interpretation because for
another reference plane, say Z1 = kZ0, the equation integrity is
maintained by the correspondingly scaled interpretation k(U, V,
W), kZ and, inversely, for a scaled solution k(U, V, W), kZ the
equation integrity is maintained by a reference plane at kZ0. The
trivial solution, which is now (0, 0, 0, −Z0), rather than (0, 0, 0,
0), can be avoided in practice simply by initializing away from
it in the iterative algorithm that we are about to develop. This
iterative algorithm, as will be detailed subsequently, consists of
Gauss–Seidel iterations, which at each step solve by singular value
decomposition local 4× 4 systems of linear equations resulting
from the objective functional Euler–Lagrange equations.

We can now formulate the problem of joint computation of
scene flow and relative depth from a single image sequence as the
minimization of the following functional:

E(U,V,W,Z|I) =
1
2

∫
Ω

( fIxU + fIyV− (xIx + yIy)W + ItZ

+ ItZ0)2dxdy

+
α

2

∫
Ω

(∥ ∇U∥2+ ∥ ∇V∥2+ ∥ ∇W∥2)dxdy

+
β

2

∫
Ω
∥ ∇Z∥2dxdy, (7)

where α and β are positive constants balancing the contributions
of the smoothness terms. This functional can be modified to
preserve the boundaries of scene flow/depth via discontinuity
preserving regularization (Deriche et al., 1995).

3. Optimization

The Euler–Lagrange equations corresponding to the objective
functional (7) are the following coupled partial differential equa-
tions:

fIx(fIxU + fIyV + (−xIx − yIy)W + ItZ + ItZ0)− α∇2U = 0
fIy(fIxU + fIyV + (−xIx − yIy)W + ItZ + ItZ0)− α∇2V = 0
(−xIx − yIy)(fIxU + fIyV + (−xIx − yIy)W + ItZ + ItZ0)

− α∇2W = 0
It(fIxU + fIyV + (−xIx − yIy)W + ItZ + ItZ0)− β∇2Z = 0,

(8)
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to which we add the Neumann boundary conditions on the
solution at the boundary ∂Ω of Ω:

∂U
∂n

= 0, ∂V
∂n

= 0, ∂W
∂n

= 0, ∂Z
∂n

= 0, (9)

where ∂
∂n is the differentiation operator in the direction of the

normal n of ∂Ω.
Let Ω be discretized as a unit-spacing grid D and the grid

points indexed by the integers {1,2, . . ., N}. Pixels are indexed in
the lexicographical order, i.e., top-down and left-to-right. N = n2
when the image is n× n. Let a= fIx, b= fIy, c=−(xIx + yIy),
d= It. For all grid point I ∈ {1, 2, . . .,N}, a discrete approximation
of the Euler–Lagrange equations (8) is:

a2iUi + aibiVi + aiciWi + aidiZi + aidiZ0 − α
∑
j∈Ni

(Uj − Ui) = 0

biaiUi + b2iVi + biciWi + bidiZi + bidiZ0 − α
∑
j∈Ni

(Vj − Vi) = 0

ciaiUi + cibiVi + c2iWi + cidiZi + cidiZ0 − α
∑
j∈Ni

(Wj −Wi) = 0

diaiUi + dibiVi + diciWi + d2i Zi + d2i Z0 − β
∑
j∈Ni

(Zj − Zi) = 0

(10)

where (Ui, Vi, Wi, Zi)= (U, V, W, Z)i is the scene flow at i; ai,
bi, ci, di are the values at i of a, b, c, d, respectively, and Ni is the
set of indices of the neighbors of i. For the four-neighborhood,
card (Ni)= 4 for points interior in D, and card (Ni)< 4 for
boundary points. The Laplacian ▽2Q, Q∈ {U, V, W, Z}, in the
Euler–Lagrange equations, has been discretized as 1

4
∑

j∈Ni
(Qj−

Qi), where the factor 1
4 is absorbed by α and β. Rewriting (10),

and where ni = card(Ni), we have the following system of linear
equations, I ∈ {1, . . ., N}:

(S)



(a2i + αni)Ui + aibiVi + aiciWi + aidiZi−α
∑
j∈Ni

Uj =−aidiZ0

biaiUi + (b2i + αni)Vi + biciWi + bidiZi−α
∑
j∈Ni

Vj =−bidiZ0

ciaiUi + cibiVi + (c2i + αni)Wi + cidiZi−α
∑
j∈Ni

Wj =−scidiZ0

diaiUi + dibiVi + diciWi + (d2i + βni)Zi−β
∑
j∈Ni

Zj =−d2i Z0

Let q= (q1, . . ., q4N) t ∈ R4N be the vector with coordi-
nates q4i–3 =Ui, q4i–2 =Vi, q4i–1 =Wi,q4i =Zi, I∈ {1, . . ., N},
and r= (r1,. . .r4N)t ∈R4N, the vector with coordinates r4i–3 =
−ai diZ0, r4i–2 =−bi diZ0, r4i–1 =−ci diZ0, and r4i = −d2i Z0, i ∈
{1, . . ., N}. System (S) of linear equations can be written in matrix
form as:

Aq = r (11)

where A is the 4N× 4N matrix with elements A4i−3,4i−3 = a2i +
αni;A4i−2,4i−2 = b2i + αni; A4i−1,4i−1 = c2i + αni;A4i,4i =
d2i + βni;A4i–3,4i–2 =A4i–2,4i–3 = aibi;A4i–3,4i–1 =A4i–1,4i–3 = aici;
A4i–3,4i =A4i,4i–3 = aidi; A4i–2,4i–1 =A4i – 1 ,4i–2 = bici; A4i–2,4i =

A4i,4i–2 = bidi; A4i–1,4i =A4i,4i–1 = cidi; for all I∈ {1, . . ., N};
A4i–3,4j–3 =A4i–2,4 j–2 =A4i–1,4j–1 =−α and A4i–4j =−β, for all
i, j∈ {1, . . ., N} such that j∈Ni, all other elements being equal
to zero.

System (S) is a large scale sparse system of linear equations.
Such systems are best solved by iterative methods designed for
sparse matrices (Ciarlet, 1982; Stoer and Bulirsch, 2002). Here
following, we prove that matrix A is symmetric positive definite,
which implies an effective solution of Eq. (11) by 4× 4 block-wise
Gauss–Seidel iterations.

One can easily verify that matrix A is symmetric. Matrix A is
also positive definite. To show this, we verify that qtAq> 0 for all
q∈R4N, q ̸= 0. We have:

qtAq

=
N∑
i=1

(a2i + αni)Ui + aibiVi + aiciWi + aidiZi − α
∑
j∈Ni

Uj

Ui

+
N∑
i=1

biaiUi + (b2i + αni)Vi + biciWi + bidiZi − α
∑
j∈Ni

Vj

Vi

+
N∑
i=1

ciaiUi + cibiVi + (c2i + αni)Wi + cidiZi − α
∑
j∈Ni

Wj

Wi

+
N∑
i=1

diaiUi + dibiVi + diciWi + (d2i + βni)Zi − β
∑
j∈Ni

Zj

Zi

(12)

Following algebraic manipulations, we get:

qtAq =
N∑
i=1

(aiUi + biVi + ciWi + diZi)2

+ α

N∑
i=1

(
ni(U2

i + V2
i + W2

i )
)

+ β

N∑
i=1

(
ni(Z2

i )
)

− α

N∑
i=1

∑
j∈Ni

UjUi +
∑
j∈Ni

VjVi +
∑
j∈Ni

WjWi


− β

N∑
i=1

∑
j∈Ni

ZjZi

 (13)

If we distribute the ni terms Ui of the second row into the
corresponding neighborhood sum of the third row, we will get:

N∑
i=1

niU2
i −

N∑
i=1

∑
j∈Ni

UjUi =
N∑
i=1

∑
j∈Ni;j>i

(U2
i + U2

j − 2UjUi)

=
N∑
i=1

∑
j∈Ni;j>i

(Ui − Uj)
2
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Using similar manipulations for the other variables (V,W,Z), we
arrive at the expression we need:

qtAq =
N∑
i=1

(aiUi + biVi + ciWi + diZi)2

+ α

N∑
i=1

∑
j∈Ni;j>i

(
(Ui − Uj)

2 + (Vi − Vj)
2 + (Wi −Wj)

2)
+ β

N∑
i=1

∑
j∈Ni;j>i

(
(Zi − Zj)

2) (14)

For q ̸= 0, we have qt Aq= 0 if and only if the terms in both
sums on the right-hand side of (14) are zero. The second-sum
terms are zero if and only if the scene consists of a fronto-
parallel plane (plane Z=Z0) under constant translation ((Ui, Vi,
Wi)=T). The first-sum terms are zero if and only if all vectors
(ai,bi,ci,di)i = (Ixi,Iyi, −xiIxi− yiIyi, Iti) lie in a hyperplane for all
(xi,yi)∈D. This is possible if and only if the spatiotemporal visual
pattern is null, which is an irrelevant case. Therefore, qt Aq> 0
for q ̸= 0 andA is positive definite. This means that the point-wise
and block-wise Gauss–Seidel and relaxation iterative methods for
solving system (11) converge (Ciarlet, 1982; Stoer and Bulirsch,
2002).

For a 4× 4 block division of matrix A, the Gauss–Seidel itera-
tions consist of solving, for each i, ∈{1, . . .,N}, the following 4× 4
linear system of equations, where k is the iteration number:

(a2i + αni)Uk+1
i + aibiVk+1

i + aiciWk+1
i + aidiZk+1

i

= −aidiZ0 + α

( ∑
j∈Ni;j<i

Uk+1
j +

∑
j∈Ni;j>i

Uk
j

)

biaiUk+1
i + (b2i + αni)Vk+1

i + biciWk+1
i + bidiZk+1

i

= −bidiZ0 + α

( ∑
j∈Ni;j<i

Vk+1
j +

∑
j∈Ni;j>i

Vk
j

)

ciaiUk+1
i + cibiVk+1

i + (c2i + αni)Wk+1
i + cidiZk+1

i

= −cidiZ0 + α

( ∑
j∈Ni;j<i

Wk+1
j +

∑
j∈Ni;j>i

Wk
j

)

diaiUk+1
i + dibiVk+1

i + diciWk+1
i + (d2i + βni)Zk+1

i

= −d2i Z0 + β

( ∑
j∈Ni;j<i

Zk+1
j +

∑
j∈Ni;j>i

Zk
j

)
,

which can be done efficiently by the singular value decomposition
method (Forsythe et al., 1977).

4. Estimation of the Spatiotemporal
Derivatives

The purpose is to estimate the spatiotemporal derivatives Ix, Iy,
It, from two consecutive images of a sequence. The estimation of
a function derivative from inaccurate data is an ill-posed prob-
lem because small changes in the function values can result in

arbitrarily large errors in the derivative estimated by finite differ-
ences (Terzopoulos, 1986). Therefore, image noise can adversely
affect the quality of motion interpretation that uses finite dif-
ference image derivatives. In motion analysis, the problem has
been generally approached by local averaging of the finite differ-
ence derivatives (Horn and Schunck, 1981). However, regularized
differentiation can be more effective as we show in the following.

4.1. Differentiation by Averaging Finite
Differences
Following the formulas in the Horn and Schunck paper on optical
estimation (Horn and Schunck, 1981), motion analysis studies
have generally used forward first differences to represent deriva-
tives, locally averaged to counter the effect of noise:

Ix(r, c) ≈ 1
4

1∑
∆r=0

{ I(r + ∆r, c + 1, 0)− I(r + ∆r, c, 0)

+I(r + ∆r, c + 1, 1)− I(r + ∆r, c, 1)}

Iy(r, c) ≈ 1
4

1∑
∆c=0

{ I(r + 1, c + ∆c, 0)− I(r, c + ∆c, 0)

+I(r + 1, c + ∆c, 1)− I(r, c + ∆c, 1)}

It(r, c) ≈ 1
4

1∑
∆r=0

1∑
∆c=0
{I(r+ ∆r, c+∆c, 1)− I(r+∆r, c+ ∆c, 0)}

(15)

where I0 is the current image and I1 the next. The spatial deriva-
tives have sometimes been estimated using averages of central
differences.

Global averaging of the finite difference approximations can be
done using L2 smoothing of the derivatives finite differences: a
derivative estimate g is computed by minimizing:

E(g) =
1
2

∫
Ω

(
(g− g0)2 + γ ∥ ∇g∥2

)
dxdy, (16)

where g is a partial derivative function and g0 its finite difference
approximation from I. The corresponding Euler–Lagrange equa-
tion g− g0− γ▽2 g= 0 is then discretized to yield a large sparse
system of linear of equations.

4.2. Regularized Differentiation
Although image data smoothing is commonly done in motion
analysis, it does not generally solve the derivative estimation ill-
posedness, so that prior de-noising of the image independently of
differentiation followed by finite difference approximation is not
generally effective (Chartrand, 2005). A more productive method
is to state differentiation within Tikhonov regularization theory
for ill-posed problems (Cullum, 1971; Hanke and Scherzer, 2001).
In Hanke and Scherzer (2001), the problem was to find a smooth
approximation of the true derivative y’ of a function y from given
data ỹi. This was done by determining an approximation f of y,
which minimizes an objective functional having a term of dis-
crepancy between f and the given data, and a regularization term
to penalize the L2 norm of f′′. The derivative was subsequently
evaluated on f. The objective functional in Hanke and Scherzer
(2001) was investigated in earlier studies (Schoenberg, 1964; Rein-
sch, 1967), which showed that it is minimized by a natural cubic
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spline. In Cullum (1971), the differentiation process itself was reg-
ularized: the formulation sought to determine an approximation u
of the true derivative, which minimized a functional containing a
data fidelity term via a Fredholm integral of anti-differentiation,
and penalty term via the L2 norm of u and u’. More recently,
Chartrand (2005) investigated total variation (TV) regularization
in conjunction with an anti-differentiation data discrepancy term
as in Cullum (1971). The discrete implementation of the ensuing
problem followed a standard numerical scheme in TV restoration
(Vogel, 2002).

In the following, we will estimate the derivatives, Ix and Iy,
by a variational method, which uses an anti-differentiation data
discrepancy term as in Cullum (1971) and Chartrand (2005) and
an L2 smoothness regularization. Enforcing smoothness on the
derivatives is consistent with the L2 regularization in the scene
flow estimation scheme we have described. For reasons that will
become clearer later, the formulation does not apply to It given
that the time axis is sampled only at two points; recall that we are
to estimate the derivatives from two consecutive images. Instead,
It can be estimated by regularized forward differences or simply
by the Horn and Schunck formulas.

We will describe the method for Ix. The derivative Iy can be
treated by the same formulas using the transposed image. Con-
sider Ix at some fixed time t, so that it is viewed as a function of
the image spatial coordinates but not of time. For convenience, we
will also drop time from the coordinates of I. Let Ω = [0,l]× [0,l].
The partial derivative, Ix, will be computed as theminimizer of the
following functional:

E(g) =
1
2

∫
Ω

(
∥ Ag− I∥2 + λ ∥ ∇g∥2

)
dxdy (17)

where ▽ is the spatial gradient, λ is a positive constant, and A is
the integral operator of anti-differentiation defined by:

Ag(x, y) =
∫ x

0
g(z, y)dz (18)

The Euler–Lagrange equation corresponding to (18) is:

A∗(Ag− I)− λ∇2g = 0 (19)

where A* is the adjoint operator of A, defined by:

A∗g(x, y) =
∫ l

x
g(z, y)dz (20)

Here following is a discretization of Eq. (19) leading to a large-
scale sparse system of linear equations. As before, let the points of
the discretization grid D be listed top-down and left to right. The
image in this lexicographical order is I∈RN, where N = n2 for an
image of size n× n. Let gi,i= 1, . . .,N, be g evaluated at grid point
I, and g∈RN the corresponding vector. For simplicity, we will
use the same symbol to designate the linear operators, A and A*,
in (19) and their corresponding discretization matrix. Using the
composite trapezoid quadrature rule for integral approximation

(with one-pixel data spacing) (Forsythe et al., 1977), the N×N
matrix A is defined by:

A(kn + i, kn + 1) = 1
2 ; i = 2, ..., n; k = 0, ..., n− 1

A(kn + i, kn + i) = 1
2 ; i = 2, ..., n; k = 0, ..., n− 1

A(kn + i, kn + i− j) = 1; i = 3, ..., n; j = 1, ..., i− 2,
k = 0, ..., n− 1,

and all of the other elements are zero. The elements of rows kn+ 1;
k= 0, . . ., n− 1 are zero to reflect the integral in (18) when x= 0.
Matrix A is block diagonal sparse, with blocks of size n× n. The
N×N matrix A* is similarly defined:

A∗(i, i) = 1
2 ; i ∈ [1, n2], i ̸= kn, k = 1, ..., n

A∗(kn + i, (k + 1)n) = 1
2 ; i = 1, ..., n− 1; k = 0, ..., n− 1

A∗(kn + i, kn + i + j) = 1; i = 1, ..., n− 1;
j = 1, ..., n− i− 1, k = 0, ..., n− 1,

and all the other elements are zero. The elements of rows kn, k= 1,
. . ., n are zero to reflect the integral in (21) when x= l. Matrix A*
is block diagonal sparse, with blocks of size n× n. The Laplacian
term in Eq. (20) can be discretized as λ

∑
j∈Ni

(gj − gi), where
the factor of the approximation is absorbed by β, and Ni is the
set of indices of the neighbors of i. The corresponding matrix is
defined by:

L(i, i) = −λni; i = 1, ...,N
L(i, j) = λ; j ∈ Ni,

where ni = card(Ni). The system of linear equations to solve is:(
A∗A− L

)
g = A∗I (21)

This large scale sparse system of linear equations can be solved
efficiently by an iterative method such Gauss–Seidel.

4.3. Example
Here following is an example. It uses the noised synthetic pyrami-
dal image of Figure 2. The derivatives computed using regularized
differentiation and the Horn and Schunck averaging are shown
graphically in the figure. The values computed by regularized dif-
ferentiation are closer to the true values: the mean squared error
between true and computed values are 0.0409 for the regularized
values and 1.086 for the Horn and Schunck averaging. Derivatives
are measured in gray levels [(0 255) range] per pixel. The value of
λ is 5.0 and the SNR is 0.5.

5. Experimental Results

This section presents various experiments on synthetic and real
sequences to verify the validity of the method and its implemen-
tation. We show the recovered depth using anaglyphs (red/cyan)
and color-coded displays, and novel viewpoint images. Color-
coded depth is a standard display style. Anaglyphs are a conve-
nient means for the subjective appraisal of the computed object
structure. They are constructed from one of the two input images
used in the experiment and the recovered depth map. Anaglyphs
are best perceived on good-quality photographic paper. When
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FIGURE 2 | From the left to the right: the noised 2D pyramidal image (SNR= 0.5); the partial derivatives Ix and Iy using Horn and Schunck averaging
of forward image differencing; the partial derivatives, Ix and Iy , using regularized differencing (λ=5.0).

FIGURE 3 | Synthetic squares sequence. From left to right: The first of the two images; the vector-coded ground truth; optical flow corresponding to the
estimated scene flow; optical flow computed directly by the Horn and Schunck method.

viewed on standard screens, they are generally better perceived
with full color resolution. Finally, we also show a novel viewpoint
image, i.e., a picture of the reconstructed object as viewed from
a viewpoint different from the one of either of the two input
images.

For scene flow, we show a vector display of its projection from
some viewpoint. Also, and since we have no ground truth of scene
flow for the used sequences, we show the optical flow correspond-
ing to it compared to the optical flow computed directly by the
Horn and Schunck algorithm. We provide also a comparison to
the optical flow ground truth using three kinds of error: average
angular error (aae), standard angular error (stae), and endpoint
error (epe). This is a good indirect way to evaluate scene flow com-
putation results because the behavior of the Horn and Schunck
method is a generally well-understood benchmark.

The formulation parameters were determined empirically. Dis-
tances aremeasured in pixels; the fronto-parallel plane positionZ0
has been fixed to 6× 104 pixels. The camera focal length f has been
approximated to 600 pixels (Sekkati andMitiche, 2007); the initial
value of scene flow and depth at each point are, respectively, 0 and
Z0. Coefficients α and β are given in the caption of each figure.
Regularized differentiation’s coefficient λ is fixed to 1 in all the
examples.

In general, all of the proof-of-concept examples we show in the
following support the validity of the scheme and its implementa-
tion. In the examples discussed below, one canmake the following
observations/conclusions:

• In all the examples, the scene flow and induced optical flow
are consistent with the actual motion of the objects.

• The color-coded depth display is in line with the structure of
the objects (i.e., the relative depth of object surfaces).

• The obtained optical flow is in keeping with the output of
the well tested/researched benchmark algorithm of Horn
and Schunck. It is worth noting here that the velocities we
obtained are less noisy than those computed with Horn and
Schunck algorithm. This can be explained by the fact that our
method benefited from the use of (i) 3D information and (ii)
better estimates of the image spatiotemporal derivatives via
regularized differentiation.

• In all examples, the corresponding anaglyphs offered viewers
a strong sense of depth.

5.1. Synthetic Squares Sequence
This is a sequence of two consecutive images of two overlapping
squares moving against a moving background, to evaluate quan-
titatively the computed scene flow. This evaluation is done via
the image motion that it induces. This induced motion will be
compared to the actual image motion and the motion computed
by the Horn and Schunck algorithm. The actual image motions
are, in pixels: (−1,−1) for the upper square, (1,1) for the lower, and
(0,−1) for the background. Noise has been added independently
in the first and second image. Noise values are from a discretized,
shifted, truncated Gaussian in the interval between 0 and 100
gray levels, within the overall range 0–255 of the image. The first
of the two images is shown in the leftmost display of Figure 3;
the vector-coded ground truth and the computed image motion
are displayed in the second and third images, respectively; the
results with the Horn and Schunck method are shown in the
rightmost image. In general, such vector displays are meant to
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FIGURE 4 |Marbled-blocks sequence results (better perceived when figures are enlarged on screen). Parameters: α= 6×107 and β = 102. First
row from left to right: an anaglyph of the structure reconstructed from the method’s output and the first frame of the input image sequence; a color-coded
display of the recovered depth along with the used color palette, with depth increasing from right (red) to left (purple); novel viewpoint images of the two moving
blocks. Second row: a view of the scene flow vectors; optical flow corresponding to the estimated scene flow (2); the optical flow computed directly by the Horn
and Schunck algorithm.

reassure that the image motion is visually consistent with its
expected overall appearance. Quantitatively, the average angular
error for the image motion induced by the computed scene flow
is 15° and the average error on the length is 0.4 pixel. The Horn
and Schunck algorithm was overwhelmed by the image noise; its
average angular error is 42° and the average error on the length is
1 pixel. The proposed scheme has performed better than the Horn
and Schunck algorithm because it used subsuming higher level 3D
information, from which image motion can be recovered point-
wise according to model Eq. 2, as well as a better estimate of the
image spatiotemporal derivatives via regularized differentiation.

5.2. Marbled-Block Sequence
In this example, we use the Marbled-block synthetic sequence
from the database of KOGS/IAKS Laboratory, Germany. There
are three blocks in this sequence, two of which are moving. The
rightmost block moves in depth to the left and the one in the
middle moves forward to the left. There are aspects, which make
3D interpretation challenging: the blocks have a macro texture
of weak spatiotemporal intensity variations within the textons
and similar to the texture of the floor. As a result, the occluding
boundaries of the blocks are ill defined at places. The blocks also
cast shadows which move. Results are shown in Figure 4. The
first row depicts (from left to right): an anaglyph of the structure

reconstructed from the method’s output and the first frame of
the input image sequence; a color-coded display of the recovered
depth along with the used color palette1; and novel viewpoint
images of the two moving blocks. Second row: a view of the scene
flow vectors; optical flow corresponding to the estimated scene
flow (2); the optical flow computed directly by the Horn and
Schunck algorithm.

5.3. Cylinder and Boxes Sequence
This second example uses a real image sequence [courtesy of
Debrunner and Ahuja (1998)], shown in Figure 5. This sequence
depicts threemoving objects: a boxmoving to the right at an image
rate of about 0.30 pixel per frame; a cylindrical surface rotating
about a vertical axis at a velocity of one degree per frame, and
moving laterally to the right at an image rate of about 0.15 pixel per
frame and, finally, a flat background moving to the right (parallel
to the box motion) at approximately 0.15 pixel per frame. In this
example, the 3D interpretation and recovery is hard because of
its unhelpful 3D motion. Results are displayed in Figure 5: first
row from left to right: an anaglyph of the structure reconstructed
from the method’s output and the first frame of the input image

1We used the same color palette for all examples, with depth increasing from right
(red) to left (purple)
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FIGURE 5 | Cylinder and box sequence results (better perceived when figures are enlarged on screen). Parameters: α= 6×106 and β = 104. First row
from left to right: an anaglyph of the structure reconstructed from the method’s output and the first frame of the input image sequence; a color-coded display of the
recovered depth; novel viewpoint images the cylindrical surface and the box. Second row: a view of the scene flow vectors; optical flow corresponding to the
estimated scene flow (2); the optical flow computed by the Horn and Schunck algorithm.

FIGURE 6 | Berber figurine sequence results (better perceived when figures are enlarged on the screen). Parameters: α= 6×107; β = 5×104. First row
from left to right: an anaglyph of the structure reconstructed from the method’s output and the first frame of the input image sequence; a color-coded display of the
recovered depth; novel viewpoint images of the figurine. Second row: a view of the scene flow vectors; optical flow corresponding to the estimated scene flow (2);
the optical flow computed by the Horn and Schunck algorithm.
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FIGURE 7 | Pharaohs figurines sequence (better perceived when figures are enlarged on screen). Parameters: α= 6×107; β =×102. First row from
left to right: an anaglyph of the structure reconstructed from the method’s output and the first frame of the input image sequence; a color-coded display of the
recovered depth; novel viewpoint images of the figurines. Second row: a view of the scene flow vectors; optical flow corresponding to the estimated scene flow;
optical flow computed by the Horn and Schunck algorithm.

sequence; a color-coded display of the recovered depth; novel
viewpoint images of the cylindrical surface and the box. Second
row: a view of the scene flow vectors; optical flow corresponding
to the estimated scene flow (2); the optical flow computed by the
Horn and Schunck algorithm.

5.4. Berber Sequence
This example uses the Berber real sequence. The figurine rotates
about a nearly vertical axis and moves forward to the left in a
static environment. Figure 6 displays the results: first row from
left to right: an anaglyph of the structure reconstructed from the
method’s output and the first frame of the input image sequence;
a color-coded display of the recovered depth; novel viewpoint
images of the figurine. Second row: a view of the scene flow
vectors; optical flow corresponding to the estimated scene flow (2);
the optical flow computed by the Horn and Schunck algorithm.

5.5. Pharaohs Sequence
This example uses the Pharaohs real image sequence. There are
two moving figurines in a static environment; the leftmost trans-
lates left and forward; the rightmost rotates about a nearly ver-
tical axis to the right. Results are shown in Figure 7: first row
from left to right: an anaglyph of the structure reconstructed
from the method’s output and the first frame of the input image
sequence; a color-coded display of the recovered depth; novel
viewpoint images of the figurines. Second row: a view of the
scene flow vectors; optical flow corresponding to the estimated
scene flow; optical flow computed by the Horn and Schunck
algorithm.

TABLE 1 | Average angular error (aae), standard angular error (stae), and
endpoint error (epe) for the optical flow corresponding to the estimated
scene flow using regularized differentiation (RD) vs. optical flow computed
directly by the Horn and Schunck algorithm (HS).

Errors RD HS

Marbled-block aae 4.14 4.09
stae 8.56 8.73
epe 0.10 0.08

Cylinder aae 18.68 15.72
stae 18.91 18.42
epe 0.78 0.68

Berber aae 11.61 10.18
stae 10.16 10.50
epe 0.41 0.35

Pharaohs aae 20.01 27.87
stae 19.21 27.83
epe 0.62 0.82

Coefficient λ was fixed equal to 1 for all the examples.

The results for scene flow are shown in Table 1 for each of the
examples described above.

6. Conclusion and Discussion

The goal of this study was concurrent recovery of scene flow
and depth from a monocular image sequence. We developed a
variational method, which minimizes a functional containing a
data term of joint scene flow and depth conformity to the image
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sequence spatiotemporal variations, and quadratic smoothness
regularization terms. The data term follows rewriting optical flow
as a function of scene flow and depth in the classical optical flow
gradient constraint of Horn and Schunck. As a result, the formu-
lation is analogous to the classical Horn and Schunck optical flow
estimation method, except that it involves the variables of scene
flow and depth rather than image motion. Monocular processing
is a unique feature of this scheme because previous scene flow
recovery schemes have used binocular image sequences rather
than a single image stream as in this study.

Another characteristic is the occurrence of both depth and
scene flow as unknowns in the equations used to state the problem.
The variational paradigm fitted naturally with these equations to
give a single optimization formulation, free from the intervention
of outside processes since all the relevant variables, namely depth
and scene flow coordinates, occur simultaneously. As a result, the
formulation translates into a tractable algorithm whose behav-
ior can be explained. This algorithm follows the discretization
of the objective functional Euler–Lagrange equations, giving a
large scale sparse system of linear equations in the unknowns of
depth and the three scene flow coordinates. The equations can
be ordered in such a way that its matrix is symmetric positive
definite such that they can be solved efficiently by Gauss–Seidel
iterations.

The focus of this study being on the formulation proper, it was
sufficient to use Gauss–Seidel iterations in the proof-of-concepts
examples that we described in the experimental section. How-
ever, one can explore other schemes for more efficient numeri-
cal resolution as the literature on large sparse systems of linear
equations is quite vast. For instance, one can investigate (Ciarlet,
1982) classical convergence acceleration of the Gauss–Seidel by
successive over-relaxation, or an iterative scheme designed for
positive definite systems, such as the conjugate gradient algo-
rithm. The sequential subspace correction (SSC) method (Hack-
bush, 1994), which would process the minimization in the four
independent linear subspaces of depth and scene flow coordinates

sequentially can also prove to be quite efficient; for each subspace,
the Gauss–Seidel iterations can be used. The SSC can be paral-
lelized. There is also a rich literature on efficient modern Krylov
subspace methods where a matrix need only be specified as a
matrix–vector operator (Simoncini and Szyld, 2007).

This study used Tikhonov regularization for scene flow and
depth. It did not affect the purpose of formulating monocu-
lar recovery of these variables. However, quadratic regulariza-
tion smooths the variables recovered at and in the proximity of
their discontinuities, namely sharp changes in depth and motion
boundaries. There are several ways of specifying boundary pre-
serving recovery (Mitiche and Aggarwal, 2013). For instance,
one can use the Aubert et al. function, in place of the quadratic
function, or simply the L1 norm. In addition to preserving dis-
continuities, the L1 norm can be approximated in practice for
faster computation without affecting accuracy in a noticeable way.
Both motion and depth discontinuities can also be preserved by
concurrent motion computation and segmentation (Mitiche and
Sekkati, 2006).

The examples we gave are for proof of concept only. They show
that the formulation is sound, correctly implemented, but has
obvious limitations, such as boundary blurring interpretation and
use of approximate camera parameters. Nevertheless, the results
clearly indicate that the method is worthy of further investigation.
We are currently extending it to account formotion and depth dis-
continuities via L1 regularization. We are also investigating joint
motion segmentation and estimation, an extension to scene flow
and depth of the scheme in (Mitiche and Sekkati, 2006). Exper-
imental validation must be based on a larger database of three-
dimensional moving objects of various geometries that would
test various difficulties, such as motion and depth discontinuities,
motion of large extent, and image noise and resolution in com-
mon practical settings. In particular, quantitative validation will
require computer graphics generation of appropriate synthetic
objects in motion for which ground truth scene flow can be
calculated.
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