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Adiabatic methods are potentially important for quantum information protocols because
of their robustness against many sources of technical and fundamental noise. They
are particularly useful for quantum transport, and in some cases elementary quantum
gates. Here, we explore the extension of a particular protocol, dark state adiabatic
passage, where a spin state is transported across a branched network of initialized spins,
comprising one “input” spin, and multiple leaf spins. We find that maximal entanglement
is generated in systems of spin-half particles, or where the system is limited to one
excitation.
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1. Introduction

Techniques of adiabatic passage are of interest from fundamental viewpoints, and also for their
robustness against many sources of technical noise (Král et al., 2007). The canonical example is
stimulated Raman adiabatic passage, STIRAP (Gaubatz et al., 1988), where an electron is transported
between two meta-stable states, by applying two laser pulses that couple the meta-stable states to an
excited state, or occasionally a continuum (Peters et al., 2005; Dreisow et al., 2009a). By applying
the laser pulses adiabatically in the so-called counter-intuitive ordering, where the unpopulated
transition is coupled before the laser that addresses the particle to be transferred, the transported
particle can move between the two states without ever populating the excited state. In this way,
the protocol shows robustness against spontaneous emission, and because the population at any
time only goes like the ratio of the Rabi frequencies of the two fields, STIRAP is also robust against
fluctuations in the total laser intensity when the fields come from the same source.

A conceptual breakthrough occurred in 2002 when Brandes and Vorrath (2002) reported a
method to use STIRAP to transfer electrons between wells in a double quantum dot. This was
significant as it was the first time that the use of engineered, as opposed to naturally occurring,
systems was considered. Following spatial STIRAP, schemes have been proposed where only the
spatial tunneling interaction is varied to affect the counter-intuitive pulse sequence, and these are
sometimes termed coherent tunneling adiabatic passage, CTAP. Eckert et al. considered atomic
transport through optical potentials (Eckert et al., 2004), Siewert and Brandes proposed transport
in superconducting networks (Siewert and Brandes, 2004), and Greentree et al. proposed electronic
transport in quantum dot and phosphorus in silicon systems (Greentree et al., 2004). Later proposals
included Bose–Einstein condensates (Graefe et al., 2006; Rab et al., 2008), optical waveguides
(Paspalakis, 2006; Longhi et al., 2007), Bose–Hubbard systems (Bradly et al., 2012), sonic systems
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(Menchon-Enrich et al., 2014), polarization (Dimova et al., 2015),
and spin chains (Ohshima et al., 2007; Oh et al., 2013; Greentree
and Koiller, 2014). Spatial adiabatic passage in spin chains is
usually termed dark state adiabatic passage, DSAP, and is the
subject of this work.

The combination of designed Hilbert spaces with adiabatic
processes leads to interesting new protocols and opportunities.
In particular, adiabatic passage enables quantum gates via the
method outlined by Unanyan, Shore, and Bergman (Unanyan
et al., 1999; Kis and Renzoni, 2002; Devitt et al., 2007; Hope et al.,
2015), interferometers (Jong and Greentree, 2010), interaction-
freemeasurements (Hill et al., 2011), and robust splitters (Dreisow
et al., 2009b; Chung et al., 2012; Ciret et al., 2012).

Here, we consider the combination of DSAP with branched
spin networks to explore how entanglement is generated between
the leaf nodes, i.e., end points of the network. We also note
that adiabatic passage on lattice networks has been considered
(Longhi, 2014). Our aim can be understood with respect to
Figure 1A, which shows a simple network where all of the spins
are initialized in their lowest spin state, except for the “initial” spin,
which is set to some particular state. We perform the counter-
intuitive pulse sequence (described explicitly below) with an
XX+YY+ZZHamiltonian, and explore how the initial spin state
is distributed between the leaf nodes. In its simplest form, this
case has been considered as a means to create a superposition of
a single particle amongst the leaf nodes (Greentree et al., 2006;
Hill et al., 2011; Rangelov and Vitanov, 2012), and this case is
isomorphic to the spin-half case discussed below. We extend this
work by exploring networks of higher spin systems and multiple
leaf nodes.We observe more complicated behavior, although such

A

B

FIGURE 1 | (A) Schematic showing a network for four spin-one particles, with
starting node L, central node M, and two leaf nodes R1 and R2. Spin–spin
couplings are indicated by the solid lines connecting the spins. (B) Dark state
adiabatic passage is achieved by utilizing the counter-intuitive pulse
sequence. To transport spin information from L to R1 and R2 requires
ΩR(0)≫ΩL(0) and ΩL (tmax)≫ΩR(tmax). The exact shape of the pulse is of
little importance provided that adiabaticity is preserved, and here we have
chosen squared sinusoidal coupling for simplicity.

behavior does not appear to lead to entangled states superior to the
spin-half case.

This paper is organized as follows: we first describe the Hamil-
tonian for DSAP with high-spin systems. We then show results
for spin-half, spin-one, and spin-three-half networks. In all cases,
we show the adiabatic evolution and quantify the final entan-
glement generated. Finally, we compare the protocols and offer
perspectives.

2. Hamiltonian and Methods

In its most general form, we consider the adiabatic transport
of spin information from an initial spin, L, to some entangled
state of final (or leaf) spins, R1 to RN, via a middle spin, denoted
M, which takes the analogous role of the unpopulated excited
state in STIRAP. We assume a uniform, time invariant magnetic
field B aligned with the Z direction, which energetically separates
manifolds of different numbers of excitations. We assume time-
varying inter-site couplings between the spins and themiddle spin
only, where the L−M coupling strength is ΩL (t) and theM−Rj
coupling strength isΩRj . The Hamiltonian for our network can be
expressed as

H =
∑
i

BJ Zi +

[
ΩL(t)J+L J−M +ΩR(t)

∑
j

J+M J−Rj
+H.c.

]

+ α

(
J ZL J ZM +

∑
j

J ZMJ ZRj

)
, (1)

where the index i ranges across all spins {L,M, R1 . . .RN}, and the
index j ranges across all leaf spins R1 to RN. Jz, J+, and J− are the
Z-projection of the spin operator, spin-raising, and spin-lowering
operators respectively. The Hamiltonian preserves the number
of excitations meaning that subspaces of different numbers of
excitation can be treated separately in the adiabatic passage. α
is the coefficient of the always-on ZZ coupling and is to prevent
occupation of spin M, and operates in a similar fashion to the
role of central state detuning in Bradly et al. (2012). The value
of α was set to 1× 10−2 B for all systems. Smaller values create
degeneracies, which can create transient population inM. Larger
values of α will not alter our results, provided α≪ B.

DSAP of the spin state from the initial to the final site(s) utilizes
the counter-intuitive pulse ordering, i.e., the ΩRi coupling should
be high before ΩL. For our numerical results, for simplicity we
have chosen:

ΩL(t) = Ωmax sin
(

πt
2tmax

)
, ΩRj(t) = Ωmax cos

(
πt

2tmax

)
, (2)

where tmax is the total time for the transport, and 0≤ t< tmax is the
time. This is shown in Figure 1B. In keeping with other adiabatic
passage protocols, the exact form of the Ω is relatively unimpor-
tant providing that the counter-intuitive ordering is maintained,
i.e., ΩL(t) ≪ ΩRj(t) as t→ 0, ΩL(t) ≫ ΩRj(t) as t→ tmax, and
the variation in the Ω satisfy the adiabaticity criterion, so that
for every pair of eigenstates |ψ⟩, |ϕ⟩ with respective eigenenergies
E|ψ⟩ and E|ϕ⟩

⟨ϕ|∂tH|ψ⟩ ≪ |E|ϕ⟩ − E|ψ⟩|. (3)
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Although our calculations are performed explicitly as a func-
tion of time and without assuming adiabaticity, all of the results
we show below are in the adiabatic limit.

While the Hamiltonian and pulse ordering can allow for adi-
abatic passage of the state in site L to the recipient spins Rj, it is
important to stress that DSAP is also dependent on the choice of
the initial state of all spins other than L. For simplicity, we will
assume a state with all spins M and Rj prepared in their lowest
spin projection with respect to the z axis. Another enabling state
has all spins in the highest spin projections and yields completely
symmetric results. In the case of transport in a linear chain of three
spin-one systems, it is possible to observe dark state adiabatic
passage with several configurations of the non-L spins (Greentree
and Koiller, 2014). It remains an open question as to whether
it is possible to realize dark state adiabatic passage in branched
networks with any configuration of non-L spins apart from all
such spins aligned parallel or antiparallel with the Z axis. Prelim-
inary investigations show that the antisymmetric combination of
non-L states, i.e., states of the form (1

√
2)|γ⟩ ⊗ (| z̄max ... z̄max⟩ −

|zmax...zmax⟩), where γ is the unknown spin to be transported and
zmax (z̄max) themaximum(minimum) spin projection, do not yield
smooth adiabatic transport. Hence, it is uncertain whether or not
branched dark state adiabatic passage is possible with other spin
configurations. Nevertheless, this is an interesting question for
future research.

We quantify the DSAP by two methods. First is to identify
the final states for various network configurations. Second, we
examine the entanglement that is generated between the Rj nodes.
Because we are dealing with multi-partite systems of varying
dimensionality, there is no unique way to quantify entanglement.
For simplicity, we choose to use the entanglement of formation
(Wootters, 1998;Wong andChristensen, 2001), which is an entan-
glement monotone for pure states, where 0 corresponds to no
entanglement and 1 tomaximal entanglement for that system. The
entanglement of formation for a pure state |ψ⟩ is defined

E(|ψ⟩) ≡ −Tr(ρR1 log2 ρR1) = −Tr(ρR2 log2 ρR2) (4)

where ρR1 is the partial trace of |ψ⟩⟨ψ| over subsystemR2 and ρR2 is
the partial trace of |ψ⟩⟨ψ| over subsystemR1. In the configurations
with more than two recipients, we quantify the entanglement of
formation as being between one arbitrary leaf spin and all other
recipient leaf spins.

3. Results

3.1. Spin-Half Networks
The case of spin-half networks with one excitation is formally
equivalent to the case of multi-recipient adiabatic passage (Green-
tree et al., 2006; Rangelov and Vitanov, 2012), and so we consider
it here purely for the purposes of review and to compare with our
other results.

We denote the spin projections of the spins with respect to
their Jz eigenvalue. We define |1⟩ as the state with spin projection
parallel to the external magnetic field, i.e., with spin projection
~/2; and |1̄⟩ as the state antiparallel to the external field, with spin
projection −~/2. The middle and leaf (right) spins are assumed
initialized in |1̄⟩, and we study the adiabatic passage for different

initial (left) spin states. The evolution is indicated in Figure 2. The
general formof the dark state, i.e., the eigenstate, which defines the
adiabatic passage, for n leaf nodes for the case considered above is

|D0⟩ =

nΩR|11̄1̄1̄...1̄⟩ − ΩL
(
|1̄1̄11̄...1̄⟩

+|1̄1̄1̄1...1̄⟩+ · · ·+ |1̄1̄1̄...1⟩
)√

n2Ω2
R + nΩ2

L
. (5)

Equation (5) shows that for the two leaf configuration, an initial
excitation at L (ΩL = 0) is adiabatically transported to an equally
weighted, maximally entangled state of the Rj (ΩR = 0). As the
number of leaves is increased, we see the formation of W-like
states, which have a lower entanglement (as quantified by the
entanglement of formation) with increasing n.

3.2. Spin-One Networks
Spin-one networks are more complicated than spin-half, and are
no longer isomorphic to the simple case of direct particle trans-
port, although in certain cases a spin-one chain can be treated as
a form of particle transport (Haldane, 1983; Affleck et al., 1987).
Spin-one DSAP faithfully transmits the state of an arbitrary qutrit
from one end of the chain to the single recipient spin at the other
end of the chain (Greentree and Koiller, 2014). However, as we
will show, the branched geometry maps the doubly excited state
partially into product states of two sites with one excitation each,
rather than solely an entangled state of both excitations in one or
the other site, thereby failing to preserve the integrity of the qutrit.

A

B

C

FIGURE 2 | Population evolution for spin-half networks with (A) two
leaf nodes, (B) three leaf nodes, and (C) four leaf nodes. The excitation
begins at L, i.e., in the state |11̄...1̄⟩ and moves to an equally weighted
superposition of all of the leaf nodes, which is a W state across the spins Rj.
All initial and final states as well as the quantified entanglement related to each
protocol are summarized in Table 1.
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As before, we define our basis states with respect to the Z
projections of the individual spins. The states are |1⟩, |0⟩, |1̄⟩ cor-
responding to the spin projections ~, 0, and −~. As before, we
initialize spins M and Rj to |1̄⟩ (antiparallel to the Z field). In the
spin-one system, transport from L to Rj can be achieved for either
one excitation (|0⟩) or two excitations (|1⟩).

When limiting the system to one excitation, i.e., choosing the
initial state of spinL to be |0⟩, the transport achieved in all configu-
rations is the equivalent of the spin-half case and the entanglement
of formation for both spin-one and spin-half is the same. The
evolution for three configurations, with two, three and four leaf
nodes, is shown in Figures 3A–C.

In the two-excitation subspace for two leaf nodes, the evolution
becomes more complicated due to the number of ways the exci-
tations can be shared between the leaf nodes. Figure 3D shows
the transport with starting state |11̄1̄1̄⟩ with two leaf nodes. The
counter-intuitive pulse sequence ensures that all of the excitation
is transported from L to the Rj without final occupation of M.
However, the final state is complicated by the fact that there are
more ways for the excitation to be shared between the Rj than in
the one-excitation case. The pertinent eigenstate for the DSAP is

|D0⟩ =

2Ω2
R|11̄1̄1̄⟩+ΩLΩR

(
|01̄1̄0⟩+ |01̄01̄⟩

)
+Ω2

L
(
2|1̄1̄00⟩+ |1̄1̄11̄⟩+ |1̄1̄1̄1⟩

)√
4Ω2

R + 2Ω2
LΩ

2
R + 6Ω2

L
. (6)

This state shows features in common with more conventional
adiabatic passage evolution. As ΩR(0)≫ΩL(0), we retrieve the
starting configuration, i.e., |D0⟩ → |11̄1̄1̄1̄⟩. In the adiabatic limit,

the state of M is always 1̄, and the final state has excitation only
in the leaf nodes. The final state is, however, more complicated in
the two-excitation subspace.We observe the formation of a super-
position of a W-like state: |1̄1̄11̄⟩ + |1̄1̄1̄1⟩, and the state |1̄1̄00⟩,
with most of the population in |1̄1̄00⟩. We find that |D0⟩ has less
entanglement than a W state (as measured by entanglement of
formation), and less entanglement than the state formed from the
one-excitation state.

The three and four leaf node configurations with two excita-
tions are more complicated, and we do not show the null states, as
these are complicated and do not provide additional insight into
the evolution. The final state configuration for the three leaf node
configuration gives rise to a superposition of two W-like states:

|D0(tmax)⟩ =
2√
15
(
|1̄1̄1̄00⟩+ |1̄1̄01̄0⟩+ |1̄1̄001̄⟩

)
+

1√
15
(
|1̄1̄11̄1̄⟩+ |1̄1̄1̄11̄⟩+ |1̄1̄1̄1̄1⟩

)
. (7)

This entangled state includes all of the possible ways that the
two excitations can be shared between the leaf nodes, but the
system is more strongly weighted toward configurations where
the excitations are shared most evenly. We term this sharing the
egalitarian principle, i.e., we expect the adiabatic passage to always
favor the configurations where the excitations are most equally
shared between the leaf nodes. While the egalitarian principle is
phenomenologically observed rather than fundamentally derived,
we point out that the coupling J+MJ

−
Rj

+ J−Rj
J+M , which appears in

the Hamiltonian, eq. (1), couples states with a single excitation

A

B

C

D

E

F

FIGURE 3 | Spin-one networks for DSAP. For the case of one excitation and (A) two leaf nodes, (B) three leaf nodes, and (C) four leaf nodes; we observe results
equivalent to those seen for the spin-half networks. For two excitations and (D) two leaf nodes, (E) three leaf nodes, and (F) four leaf nodes, we observe evolution to
a more complicated final state, via a transient, W-like state, as shown. The sharing of the population between the states is determined by the egalitarian principle as
discussed in the text. Final states for two excitations and four nodes are not given here due to the large number of states involved, but is quantified, along with
entanglement of formation, in Table 1.
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swapped. A state with multiple excitations in one site, therefore,
does not couple directly to a state with the multiple excitations
swapped to a different site. This could be an underlying reason
for the preferential distribution of excitations due to arguments
analogous to statistical reasons for the increase of entropy.

Similarly, the four leaf node configuration with two excitations
also obeys the egalitarian principle, with a contribution from aW-
like state, and states where the excitations are shared on two of the
leaf nodes with an amplitude twice that of the W-like state.

|D0(t)max⟩ =
1√
7
(|1̄1̄001̄1̄⟩+ |1̄1̄01̄01̄⟩+ |1̄1̄01̄1̄0⟩+ |1̄1̄1̄001̄⟩

+ |1̄1̄1̄01̄0⟩+ |1̄11̄1̄00⟩) + 1
2
√
7
(
|1̄1̄11̄1̄1̄⟩

+|1̄1̄1̄11̄1̄⟩+ |1̄1̄1̄1̄11̄⟩+ |1̄1̄1̄1̄1̄1⟩
)
. (8)

As before, the system is weighted toward configurations where
the excitations are shared as evenly as possible, and this results in
a state with less entanglement than configurations with fewer leaf
nodes.

3.3. Spin-Three-Half Networks
We now consider spin-three-half networks. We again define the
eigenstates with respect to the JZ projection, labeling the states
|3⟩, |1⟩, |1̄⟩, |3̄⟩ corresponding to the eigenvalues +3~/2, +~/2,
−~/2,−3~/2, respectively. In the spin-three-half system, transport
can be achieved by using one, two, or three excitations. When

limiting the system to one excitation, the transport achieved in
all configurations is the equivalent of the spin-half case and the
entanglement of formation was found to be equal in both cases.
When limiting the system to two excitations, Figures 4A–C,
the transport produces final states that are equivalent to those
obtained in the spin-one case. However, the final states occur with
different populations here than they do in the spin-one system.
This is due to the additional

√
3 factor from the J+ and J− spin

operators, which also modifies the degree of entanglement pro-
duced. Such results are expected to quantitatively affect analogous
transport through higher spin networks (i.e., networks with spin
>3/2) without modifying the qualitative form of the adiabatic
passage or the final entangled states.

With three excitations (initial state 33̄3̄ · · · 3̄⟩) the evolution is
more complicated still, as shown in Figures 4D–F. However, we
still find that the egalitarian principle holds, with all possible final
states represented in the final superposition, but the states with
the most equal sharing of the excitation favored. This sharing
of excitations reduces the overall entanglement in systems with
increasing number of leaf nodes.

4. Discussion

Dark state adiabatic passage can be used to generate entanglement
in small networks, and we have shown the properties of the
evolution and entanglement in networks of spin-half, spin-one,
and spin-three-half systems. Our results for the final state and

A

B

C

D

E

F

FIGURE 4 | Evolution of systems of spin-three-half particles with two and three excitations. The two-excitation results for (A) two leaf nodes, (B) three leaf
nodes and (C) four leaf nodes, are qualitatively similar to the analogous spin-one systems, although quantitatively different due to the different couplings. Three
excitations for (D) two leaf nodes, (E) three leaf nodes, and (F) four leaf nodes, exhibit excitation sharing following the egalitarian principle as before, albeit with
increased complexity due to the large number of states involved in the transport. Some states are not shown here for reasons of space, but all of the final states can
be found in Table 1.
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TABLE 1 | Summary of final states following multiple recipient dark state adiabatic passage, and entanglement of formation.

Figure Spin Nodes Ψ0 Ψf Entanglement

Figure 2A 1/2 2 |11̄1̄1̄⟩ 1√
2
(|1̄1̄1̄1⟩ + |1̄1̄11̄⟩) 1

Figure 2B 1/2 3 |11̄1̄1̄1̄⟩ 1√
3
(|1̄1̄1̄1̄1⟩ + |1̄1̄1̄11̄⟩ + |1̄1̄11̄1̄⟩) 0.9183

Figure 2C 1/2 4 |11̄1̄1̄1̄1̄⟩ 1
2 (|1̄1̄11̄1̄1̄⟩ + |1̄1̄1̄11̄1̄⟩ + |1̄1̄1̄1̄11̄⟩ + |1̄1̄1̄1̄1̄1⟩) 0.8113

Figure 3A 1 2 |01̄1̄1̄⟩ 1√
2
(|1̄1̄01̄⟩ + |1̄1̄1̄0⟩) 1

Figure 3B 1 3 |01̄1̄1̄1̄⟩ 1√
3
(|1̄1̄01̄1̄⟩ + |1̄1̄1̄01̄⟩ + |1̄1̄1̄1̄0⟩) 0.9183

Figure 3C 1 4 |01̄1̄1̄1̄1̄⟩ 1
2 (|1̄1̄01̄1̄1̄⟩ + |1̄1̄1̄01̄1̄⟩ + |1̄1̄1̄1̄01̄⟩ + |1̄1̄1̄1̄1̄0⟩) 0.8113

Figure 3D 1 2 |11̄1̄1̄⟩
√

2
3 (|1̄1̄00⟩) +

√
1
6 (|1̄1̄1̄1⟩ + |1̄1̄11̄⟩) 0.8072

Figure 3E 1 3 |11̄1̄1̄1̄⟩
√

4
15 (|1̄1̄1̄00⟩ + |1̄1̄01̄0⟩ + |1̄1̄001̄⟩)

+
√

1
15 (|1̄1̄11̄1̄⟩ + |1̄1̄1̄11̄⟩ + |1̄1̄1̄1̄1⟩) 0.7264

Figure 3F 1 4 |11̄1̄1̄1̄1̄⟩ 1√
7 (|1̄1̄001̄1̄⟩ + |1̄1̄01̄01̄⟩ + |1̄1̄01̄1̄0⟩

+|1̄1̄1̄001̄⟩ + |1̄1̄1̄01̄0⟩ + |1̄1̄1̄1̄00⟩)
+ 1

2
√

7 (|1̄1̄11̄1̄1̄⟩ + |1̄1̄1̄11̄1̄⟩ + |1̄1̄1̄1̄11̄⟩ + |1̄1̄1̄1̄1̄1⟩) 0.5152

– 3/2 2 |1̄3̄3̄3̄⟩ 1√
2
(|3̄3̄1̄3̄⟩ + |3̄3̄3̄1̄⟩) 1

– 3/2 3 |1̄3̄3̄3̄3̄⟩ 1√
3
(|3̄3̄1̄3̄3̄⟩ + |3̄3̄3̄1̄3̄⟩ + |3̄3̄3̄3̄1̄⟩) 0.9183

– 3/2 4 |1̄3̄3̄3̄3̄3̄⟩ 1
2 (|3̄3̄1̄3̄3̄3̄⟩ + |3̄3̄3̄1̄3̄3̄⟩ + |3̄3̄3̄3̄1̄3̄⟩ + |3̄3̄3̄3̄3̄1̄⟩) 0.8113

Figure 4A 3/2 2 |13̄3̄3̄⟩
√

3
5 (|3̄3̄1̄1̄⟩) +

√
1
5 (|3̄3̄13̄⟩ + |3̄3̄3̄1⟩) 0.9021

Figure 4B 3/2 3 |13̄3̄3̄3̄⟩ 1
2 (|3̄3̄1̄1̄3̄⟩ + |3̄3̄1̄3̄1̄⟩ + |3̄3̄3̄1̄1̄⟩)
+ 1

2
√

3
(|3̄3̄13̄3̄⟩ + |3̄3̄3̄13̄⟩ + |3̄3̄3̄3̄1⟩) 0.7080

Figure 4C 3/2 4 |13̄3̄3̄3̄3̄⟩
√

3
22 (|3̄3̄1̄1̄3̄3̄⟩ + |3̄3̄1̄3̄1̄3̄⟩ + |3̄3̄3̄3̄1̄1̄⟩

+|3̄3̄13̄3̄1̄⟩ + |3̄3̄3̄1̄1̄3̄⟩ + |3̄3̄3̄1̄3̄1̄⟩)
+ 1√

22
(|3̄3̄13̄3̄3̄⟩ + |3̄3̄3̄13̄3̄⟩ + |3̄3̄3̄3̄13̄⟩ + |3̄3̄3̄3̄3̄1⟩) 0.4997

Figure 4D 3/2 2 |33̄3̄3̄⟩ 3
2
√

5 (|3̄3̄11̄⟩ + |3̄3̄1̄1⟩) + 1
2
√

5 (|3̄3̄33̄⟩ + |3̄3̄3̄3⟩) 0.9763

Figure 4E 3/2 3 |33̄3̄3̄3̄⟩ 3
√

3√
85
|3̄3̄1̄1̄1̄⟩ + 3√

85
(|3̄3̄3̄1̄1⟩ + |3̄3̄11̄3̄⟩

+|3̄3̄13̄1̄⟩ + |3̄3̄1̄13̄⟩ + |3̄3̄1̄3̄1⟩ + |3̄3̄3̄11̄⟩)
+ 1√

85
(|3̄3̄33̄3̄⟩ + |3̄3̄3̄33̄⟩ + |3̄3̄3̄3̄3⟩) 0.6297

Figure 4F 3/2 4 |33̄3̄3̄3̄3̄⟩ 3
√

3√
220

(|3̄3̄1̄1̄1̄3̄⟩ + |3̄3̄1̄1̄3̄1̄⟩+
|3̄3̄1̄3̄1̄1̄⟩ + |3̄3̄3̄1̄1̄1̄⟩) + 3√

220
(|3̄3̄11̄3̄3̄⟩

+|3̄3̄13̄1̄3̄⟩ + |3̄3̄13̄3̄1̄⟩ + |3̄3̄1̄13̄3̄⟩
+|3̄3̄1̄3̄13̄⟩ + |3̄3̄1̄3̄3̄1⟩ + |3̄3̄3̄11̄3̄⟩
+|3̄3̄3̄13̄1̄⟩ + |3̄3̄3̄1̄13̄⟩ + |3̄3̄3̄1̄3̄1⟩
+|3̄3̄3̄3̄11̄⟩ + |3̄3̄3̄3̄1̄1⟩) + 1√

220
(|3̄3̄33̄3̄3̄⟩

+|3̄3̄3̄33̄3̄⟩ + |3̄3̄3̄3̄33̄⟩ + |3̄3̄3̄3̄3̄3⟩) 0.3889

entanglement of formation for these networks are summarized
in Table 1. Networks of spin-half systems show the creation of
W-like states across the leaf nodes, and can be understood anal-
ogously to particle splitting in spatial adiabatic passage networks
(Hill et al., 2011; Rangelov and Vitanov, 2012). However, the
higher spin systems exhibit what we term an egalitarian princi-
ple, where the excitations are distributed across all possible leaf
nodes, but with the states with the most equal distribution of the
excitations more strongly represented in the final entangled state.
This overrepresentation of states with equal sharing reduces the

entanglement of formation observed in the high-spin systems,
with the consequence that systems with fewer excitations and
fewer leaf nodes exhibit greater entanglement. This result is likely
to be significant in the development of quantum protocols for
high-spin and qudit systems.
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