
ORIGINAL RESEARCH
published: 05 November 2015
doi: 10.3389/fict.2015.00023

Edited by:
Graham Cormode,

University of Warwick, UK

Reviewed by:
Justin Thaler,

Yahoo Labs, USA
Ahmed Metwally,
Google Inc., USA

*Correspondence:
Srikanta Tirthapura

snt@iastate.edu

Specialty section:
This article was submitted to Big

Data, a section of the
journal Frontiers in ICT

Received: 20 August 2015
Accepted: 19 October 2015

Published: 05 November 2015

Citation:
Singh SA and Tirthapura S (2015)

An evaluation of streaming
algorithms for distinct counting

over a sliding window.
Front. ICT 2:23.

doi: 10.3389/fict.2015.00023

An evaluation of streaming
algorithms for distinct counting
over a sliding window
Sneha Aman Singh and Srikanta Tirthapura*

Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, USA

Counting the number of distinct elements in a data stream (distinct counting) is a
fundamental aggregation task in database query processing, query optimization, and
network monitoring. On a stream of elements, it is commonly needed to compute an
aggregate over only the most recent elements, leading to the problem of distinct counting
over a “sliding window” of the stream. We present a detailed experimental study of
the performance of different algorithms for distinct counting over a sliding window. We
observe that the performance of an algorithm depends on the basic method used, as well
as aspects such as the hash function, the mix of query and updates, and themethod used
to boost accuracy. We compare the performance of prominent algorithms and evaluate
the influence of these factors, leading to practical recommendations for implementation.
To the best of our knowledge, this is the first detailed experimental study of distinct
counting over a sliding window.

Keywords: distinct counting, data stream, sliding window, big data, experimental evaluation, real-time analytics

1. INTRODUCTION

Let S be a stream of identifiers, each chosen from a universe U. We consider the problem of
maintaining the number of distinct identifiers in S in a single pass through S using limitedmemory, a
problemwe henceforth refer to as “distinct counting.” Distinct counting is a fundamental problem in
databaseswith awide variety of applications in database query processing and optimization (Selinger
et al., 1979; Youssefi and Wong, 1979; Whang et al., 1981, 1990; Gelenbe and Gardy, 1982) and
network monitoring (Tosun, 2007; Lahiri et al., 2011; Singh and Tirthapura, 2014) and is one of the
earliest problems studied in the area of streaming algorithms.

An example application of distinct counting in network monitoring is to track the number of
distinct network connections established by a source IP address. Tracking sources that establish a
large number of distinct connections can help identify network anomalies such as wormpropagation
and DDoS attacks (Venkataraman et al., 2005). Since a network monitor has to simultaneously
monitor a number of sources, it cannot afford to use much memory for each source and needs a
small-space data structure for counting the number of distinct identifiers per source. Further, it is
necessary to count the number of distinct identifiers within a subsequence of the stream consisting
of the most recently observed elements, commonly modeled using a “sliding window” in the stream.
Aggregation over a sliding window arises naturally in real-time monitoring situations such as
network traffic engineering, telecom analytics, and cyber security (e.g., Datar et al., 2002; Gibbons
and Tirthapura, 2002; Golab et al., 2003; Tirthapura et al., 2006; Braverman and Ostrovsky, 2007;
Busch and Tirthapura, 2007; Fusy and Giroire, 2007). For instance, in network traffic engineering

Frontiers in ICT | www.frontiersin.org November 2015 | Volume 2 | Article 231

http://www.frontiersin.org/ICT
http://www.frontiersin.org/ICT/editorialboard
http://www.frontiersin.org/ICT/editorialboard
http://dx.doi.org/10.3389/fict.2015.00023
https://creativecommons.org/licenses/by/4.0/
mailto:snt@iastate.edu
http://dx.doi.org/10.3389/fict.2015.00023
http://crossmark.crossref.org/dialog/?doi=10.3389/fict.2015.00023&domain=pdf&date_stamp=2015-11-05
http://www.frontiersin.org/Journal/10.3389/fict.2015.00023/abstract
http://www.frontiersin.org/Journal/10.3389/fict.2015.00023/abstract
http://www.frontiersin.org/Journal/10.3389/fict.2015.00023/abstract
http://loop.frontiersin.org/people/265692/overview
http://loop.frontiersin.org/people/187323/overview
http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive


Singh and Tirthapura Evaluation of distinct counting algorithms

(Fraleigh et al., 2000), current network performance is monitored
over a sliding window to adjust the bandwidth of the network
dynamically.

A time-based sliding window of length T is defined as the
set of the stream elements that have arrived within the last T
time units, for some parameter T. The abstraction of a sliding
window is well accepted today and has found its way into the
query processing interface of major stream-processing systems,
including IBM Infosphere Streams (Nasgaard et al., 2009) and
Apache Spark Streaming (Zaharia et al., 2013). For instance, in
IBM Infosphere Streams, it is possible to apply each streaming
aggregation operator (including distinct counting) over a sliding
window. In this work, we consider the efficient implementation of
distinct counting over a sliding window of a stream.

From a theoretical perspective, distinct counting is widely stud-
ied (e.g., Flajolet and Martin, 1985; Flajolet, 1990; Whang et al.,
1990; Haas et al., 1995; Alon et al., 1996; Charikar et al., 2000;
Gibbons and Tirthapura, 2001; Bar-Yossef et al., 2002; Durand and
Flajolet, 2003; Woodruff, 2004; Fusy and Giroire, 2007; Gibbons,
2007; Chen and Cao, 2009; Giroire, 2009; Kane et al., 2010).
However, there has not beenmuch attention to engineering a good
implementation. Most current algorithms for distinct counting
over a stream (e.g., Flajolet and Martin, 1985; Whang et al., 1990;
Haas et al., 1995; Alon et al., 1996; Charikar et al., 2000; Gibbons
and Tirthapura, 2001; Bar-Yossef et al., 2002; Durand and Flajolet,
2003;Woodruff, 2004; Fusy andGiroire, 2007; Giroire, 2009; Kane
et al., 2010) have been designed for the case of “infinite window,”
where the scope of aggregation is all the elements seen so far.
There have been some algorithms designed for a sliding window
(e.g., Datar et al., 2002;Gibbons andTirthapura, 2002; Zhang et al.,
2010), but so far, there has not been a comprehensive evaluation
and comparison of different approaches.

We present the first detailed experimental evaluation of algo-
rithms for distinct counting over a sliding window. We consider
prominent algorithms and evaluate them with respect to their
memory consumption, processing time, query time, and accuracy.
In some cases that we considered, it was known previously how to
extend the algorithm to a sliding window, while in other cases,
we design an extension to a sliding window of a distinct counting
algorithm originally designed for the infinite window. We set out
to answer the following questions.

• How do different algorithms compare in terms of accuracy and
processing time, given the same amount of main memory?

• Most algorithms for distinct counting work as follows. They
first design a “rough” estimator whose output is a random
variable, but whose error can be large. Then, many such esti-
mators are aggregated in order to improve the accuracy. A few
different methods are used for boosting accuracy, including
“median-of-many,” “split-and-add,” and “stochastic averaging”;
these methods are described in Section 2. Which aggregation
method is suitable for each algorithm?

• Every algorithm known for distinct counting uses a hash func-
tion that maps input identifiers, which maybe non-uniformly
distributed within the input universe, to another universe,
where they are uniformly distributed. The hash function has
a significant impact on the accuracy and the runtime. Which

hash function gives the best performance? We compared five
popular hash functions,MurmurHash,1 JenkinsHash,2 modulo
congruential hash, Fowler-Noll-Vo (FNV)3 hash and the Secure
Hash Algorithm 1 (SHA-1)4.

• How is the performance of an algorithm affected by the relative
frequencies of queries (for the number of distinct elements)
versus element arrivals?

We consider the following prominent algorithms: Probabilistic
Counting with Stochastic Averaging (PCSA) (Flajolet and Martin,
1985; Datar et al., 2002), Randomized Wave (RW) (Gibbons and
Tirthapura, 2002), Linear Counting (LC) (Whang et al., 1990),
Durand-Flajolet (DF, also known as “Loglog” in the literature)
(Durand and Flajolet, 2003), and the first algorithm due to Bar-
Yossef et al. (2002), which we call BJKST1. Among these, RW is
the only algorithm which was designed for distinct counting over
a sliding window. Though PCSA was originally designed for an
infinite window, an extension to a sliding window was described
in Datar et al. (2002). For the rest of the algorithms, LC, DF, and
BJKST1, we present an extension for the case of a sliding window.
We discuss these algorithms in greater detail in Section 2.1.

1.1. Summary of Results
1.1.1. Accuracy
Given equal memory on the same dataset, we observed that the
Randomized Wave (RW) consistently produces the most accurate
estimate, followed by PCSA and then BJKST1. We also observe
that Linear Counting (LC) performs with good accuracy when
the memory allotted is large relative to the number of distinct
elements within a sliding window; when the memory allotted is
smaller, LC is unable to produce a reasonable estimate.

1.1.2. Runtime
When the frequency of updates (element arrivals) is much larger
than the frequency of queries, PCSA and DF are the fastest algo-
rithms, followed by RW and BJKST1. However, if the frequency of
queries increases, then the runtimes of PCSA, DF, and LC increase
significantly, and RW and BJKST1 are the fastest algorithms.

1.1.3. Hash Function
We found that all algorithms consistently give the most accurate
estimates when MurmurHash is used as the hash function. For-
tunately, it is also the fastest of all five hash functions that we
considered, so that MurmurHash is unambiguously the best hash
function among those we considered. While the accuracy of Jenk-
ins hash is close to MurmurHash, it is slower than MurmurHash.
The popular modulo congruential hash function performs much
worse than MurmurHash and Jenkins hash, in terms of accuracy.

1.1.4. Accuracy Boosting Method
We observed that PCSA and DF work best with stochastic aver-
aging. This is to be expected, since PCSA and DF were designed
with stochastic averaging in mind. Surprisingly, we found that the

1https://sites.google.com/site/murmurhash/
2http://www.burtleburtle.net/bob/hash/doobs.html
3http://www.isthe.com/chongo/tech/comp/fnv/
4https://tools.ietf.org/html/rfc3174

Frontiers in ICT | www.frontiersin.org November 2015 | Volume 2 | Article 232

https://sites.google.com/site/murmurhash/
http://www.burtleburtle.net/bob/hash/doobs.html
http://www.isthe.com/chongo/tech/comp/fnv/
https://tools.ietf.org/html/rfc3174
http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive


Singh and Tirthapura Evaluation of distinct counting algorithms

remaining algorithms (LC, RW, and BJKST1) performed with the
smallest average error when the entire space is allotted to a single
instance of the algorithm, with no further boosting of accuracy.

Note that our comparison keeps the total space fixed for dif-
ferent accuracy boosting methods. For instance, if we used the
median of five estimators as our accuracy boosting method, then
the space allocated to each instance of the algorithm is only a
fifth of the total space. Thus, our results do not contradict earlier
results due to Bar-Yossef et al. (2002) and Gibbons and Tirthapura
(2002), who advocate using themedian-of-many estimators. Their
observation is that the probability of being inaccurate can be
reduced by taking the median-of-many estimators, at the expense
of greater space. Our experiments show that if space is held fixed,
then the smallest average error is achieved when the entire space
(memory) is given to a single estimator.

Overall, if accuracy is the most important criterion, then RW
performs best. RW is also the fastest algorithm when the rate of
updates is low relative to the rate of queries (approximately <100
updates per query). PCSA is the best choice if processing time is
the most important criterion, and the rate of querying is not very
frequent.

1.1.5. Relation to Prior Work
Prior work on experimental evaluations of distinct counting
include Astrahan et al. (1987), Estan et al. (2006), Metwally
et al. (2008), and Resvanis and Chatzigiannakis (2009), who
compare the performance of different algorithms for distinct
counting, such as PCSA and Linear Counting, over an infinite
window. The most detailed comparison for distinct counting
algorithms over infinite window seems to be due to Metwally
et al. (2008), who grouped the algorithms into different cate-
gories: Logarithmic Hashing, e.g., PCSA (Flajolet and Martin,
1985); Interval-based, e.g., BJKST1 (Bar-Yossef et al., 2002); Pure
Bucket-based, e.g., Linear Counting (Whang et al., 1990); Hybrid
Bucket Sampling, e.g., Distinct Sampling (Gibbons and Tirtha-
pura, 2001); Hybrid Bucket Logarithmic, e.g., Multiresolution
Bitmap (Estan et al., 2006); and concluded that Linear Count-
ing is overall the best algorithm, both in terms of accuracy and
runtime.

Our work differs from that of Metwally et al. (2008) in the
following ways. Mainly, we consider aggregation over a sliding
window while they consider aggregation over an infinite window.
The algorithms involved are different, and the results that we
obtain are also different. In particular, we observe that Linear
Counting (LC) does not perform very well over a sliding window.
The accuracy of LC over a sliding window is very inconsistent for
our datasets when the memory used is<1,000–2,000KB; in some
cases, it does not even produce an estimate. In contrast, the accu-
racy of RW and PCSA is consistently within 1%, even when the
total memory is <1,000KB. The difference in results between the
sliding window case and the infinite window case is because the
sliding window data structure needs to maintain a timestamp (of
expiry) for each bit in the data structure maintained by LC. This
overhead significantly increases the space required by LC tomain-
tain an estimate of the distinct count and consequently decreases
its accuracy for a given space budget. In addition, our evalua-
tion considers important decisions, such as the choice of hash

function, and the accuracy boostingmethod. All implementations
in Metwally et al. (2008) used the modulo congruential hash
function; our experiments show that other hash functions perform
much better. Furthermore, different accuracy boosting methods
are not explored. The size of datasets that we consider (up to 100
million distinct elements) is much larger than in the experiments
of Metwally et al. (2008) (∼2 million distinct elements).

2. MATERIALS AND METHODS

There are two types of sliding windows commonly considered,
count-based window and time-based window. A count-based
window of size W is the set of the W most recent elements in
the stream. A time-based window of size T is the set of all stream
elements that have arrived within the T most recent time units.
We consider a time-based window, since a count-based window
is a special case of a time-based window. An algorithm for a time-
based window can also be used for a count-based window by
setting the timestamp to be equal to the stream position.

2.1. Algorithms
We present an overview of the algorithms that we consider. For
the following discussion, we assume that the domain of elements
is [N]= {1, 2, .. . ., N}, and that N is a power of 2. Each element
of the stream is a tuple (e, t), where e∈ [N] and t≥ 0 is an integer
timestamp. We assume that timestamps are in a non-decreasing
order, but not necessarily consecutive. When a query is posed
at time t, the requirement is to estimate the number of distinct
elements within a timestamp based sliding window of size T, i.e.,
those elements with timestamps r such that (t−T+ 1)≤ r≤ t.

2.1.1. Probabilistic Counting with
Stochastic Averaging
We recall the PCSA algorithm for an infinite window (Flajolet
and Martin, 1985). The algorithm maintains a bit vector B of size
log2N. It uses a hash function h: [N]→ {1, 2, . . ., log2 N}, such that
for each e∈ [N], and b∈ {1, 2, . . ., log2 N}, Pr [h(e)= b]= 2−b.
Initially, all bits ofB are set to 0.When an element e arrives,B[h(e)]
is set to 1. The intuition is that approximately 2i distinct elements
must be seen before B[i] is set to 1. When there is a query for
the number of distinct elements, the bits of B are scanned from
position 1 onward, to find the index of the lowest bit x that is not
set. The estimate returned is 1.29281× 2x+1.

To adapt this to a sliding window, we use ideas from Datar
et al. (2002) and Zhang et al. (2010). Instead of a bit vector B,
we use a vector M of length log2N, indexed from 1 till log2N, to
store timestamps. Initially, all entries of M are set to 0. When an
element (e, t) arrives, M[h(e)] is set to t. Note that M[i] tracks
the latest timestamp at which an element hashes to index i. When
there is a query for the number of distinct elements within a time-
based sliding window of size T, the algorithm scans M to find the
smallest index x such that either M[x] is 0, or the timestamp of x
has expired, i.e., M[x]< (t−T+ 1), where t is the current time.
The estimate returned is 1.29281× 2x+1, as before.

We implement an enhancement of the above basic scheme,
based on stochastic averaging (PCSA), also proposed in Fla-
jolet and Martin (1985). In PCSA, k copies of the above data

Frontiers in ICT | www.frontiersin.org November 2015 | Volume 2 | Article 233

http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive


Singh and Tirthapura Evaluation of distinct counting algorithms

structure are used. Input elements are first partitioned into k non-
overlapping groups, using a hash function g; an element (e, t) is
forwarded to one of the k data structures, according to g(e). The
final estimate is 1.29281 × k× 2x̂+1, where x̂ is the average of the
individual xs obtained from the k different data structures. Similar
to PCSA for an infinite window, the processing time per element
of PCSA for a slidingwindow isO(1), and the query time isO(k log
N). Suppose that a timestamp can be stored in T bits. The space
taken by the sliding window version is O(T k log N) bits, which is
a factorΘ(T ) larger than the infinite window version which takes
O(k log N) bits of space.

AMS, due to Alon et al. (1996) is another algorithm for distinct
counting for an infinite window, with the same intuition as PCSA.
ThoughAMS provides a cleaner theoretical guarantee than PCSA,
PCSA has been found to be more accurate in practice than AMS,
for example, as in the evaluation by Gibbons (2007).

2.1.2. Linear Counting
Linear Counting, due to Whang et al. (1990), uses a bit vector B of
size n=Dmax/ρ, where Dmax is an upper bound on the maximum
number of distinct elements in the data stream, and ρ is a constant
called the “load factor.” The algorithm uses a hash function h:
[N]→ {1, 2, . . .,N} such that for each e∈ [N], and b∈ {1, 2, . . ., n},
Pr [h(e)= b]= 1/n. Initially, all bits in B are set to 0. Each element
e of the data stream is uniformly and independently hashed to an
index in the bit vector, and the corresponding bit is set to 1. When
a query is made, the number of distinct elements is estimated as
m ln (n/m) where m is the number of bits in B that are still 0.
Whang et al. (1990) show that accurate estimates can be obtained
when ρ≤ 12. However, when ρ is significantly >12, the estimates
are poor due to a large density of 1s in the bit array.

We extend the above to a sliding window as follows. Instead of
a bit vector, we use a vector of timestamps, M, of size n, indexed
from 1 till n. When element (e, t) arrives,M[h(e)] is set to t. When
a query is made for the number of distinct elements within the
window, the entire vectorM is scanned and the number of indices
that either have value 0 or whose timestamps have expired is used
instead of m in the above formula. Note that the processing time
per element isO(1) and the time to answer a query isO(n), which
is expensive since n is linear in the number of distinct elements.
The total time is still reasonable if the frequency of queries is
small when compared with the frequency of updates (infrequent
queries), but poor if queries are more frequent.

For the case of frequent queries, wemodified LC by introducing
a data structures in addition toM – a list L that comprises of tuples
of the form (t, a) and is ordered according to t, the time stamp
of observation, and a is the value to which the element hashes
to. In the vector M, in addition to a timestamp t, there is also a
pointer to the occurrence of t in L, so that if an element with a
new timestamp hashes to an index in M, the corresponding entry
with older timestamp is deleted from the list, and the newer entry
with current timestamp is made at the head.

The modified version of LC, which we call “LC2,” requires not
only 2T bytes tomaintain two copies of timestamp per index ofM
but also an overhead for maintaining an list, which can be twice
the pointer size in a typical implementation such as the C++

Standard Template Library. The expired timestamp is determined

from the tail of L in constant time. A single variable can keep
track of the number of indexes with expired timestamps or with an
initial value of zero.When a query is posed, the number of relevant
bits can be determined in O(1) time. Overall, we get O(1) time
for update as well as a query, but at the cost of a significant space
overhead. A significant drawback of LC is that ρ cannot exceed 12
(Whang et al., 1990), so that the space used by the algorithm is
at least Dmax/12. The accuracy of the estimate falls drastically as ρ
increases.

2.1.3. BJKST1
BJKST1 is the first algorithm in Bar-Yossef et al. (2002). We
first describe the infinite window version and then present an
adaptation to a sliding window. Each stream element is hashed
uniformly using a function h: [N]→ [N3]. At each instant the
algorithm maintains the τ smallest hash outputs, for some τ that
depends on the desired accuracy. When a query is posed, an
estimate of distinct count is returned as τN3/vτ , where vτ is the
τ th smallest hash output.

We propose the following adaptation to the sliding window.
We associate with each value among the τ smallest hash outputs,
a timestamp equal to the most recent time when this value was
observed. It is not possible to maintain τ th minimum of hash
outputs exactly in a sliding window using a bounded space for a
fixed value of τ (as discussed in Datar et al. (2002), maintaining
the minimum over a sliding window requires linear space in the
worst case). So we vary the value of τ so that the algorithm uses
a bounded space to estimate distinct count. As the hash outputs
of data elements are generated randomly, the algorithm uses an
expected space cost of O(log N/ϵ2) to estimate distinct count,
where we set the maximum value of τ to a constant θ which
depends on the space allocated to the algorithm. Our idea is influ-
enced by the algorithm for computing minimum element over a
sliding window in Datar et al. (2002) and Fusy and Giroire (2007).

Wemaintain a list L of (h(e), t) tuples, where e is the element ID
observed at timestamp t.When a new element (e, t) is observed, all
the elements e′ with h(e′) greater than h(e) are deleted, and (h(e), t)
is inserted at the head of the list. Note that in some cases, as a
consequence of this deletion, the size of the list may even reduce
to 1 (consider the case when element (e, t) has the smallest value
of hash output h(e) in current window). If the size of the list is at
least θ, we set the value of τ as θ to compute the number of distinct
elements, else we set it to the current size of the list.

Thus, at any point of time, the list is ordered by both times-
tamp and hash value of the element ID, i.e., for a sequence of
elements (e1, t1), (e2, t2), . . ., (en, tn), h(e1)< h(e2)< . . . < h(en)
and t1 < t2 < . . . < tn, and this allows us to retrieve the τ th smallest
hash values within the window.

We did not implement the second and third algorithms in Bar-
Yossef et al. (2002) for the following reason. These algorithms
theoretically use slightly smaller space than BJKST1, but there
are additional factors hidden in the Õ notation, as well as large
constant factors, so practically their space requirement is much
larger, as also analyzed in Metwally et al. (2008). Both algorithms
suppress factors involving log(1/ϵ) and log log(N) factors from the
space cost. The algorithm by Fusy and Giroire (2007) is similar to
the one by BJKST1 but does not give a smooth trade-off between

Frontiers in ICT | www.frontiersin.org November 2015 | Volume 2 | Article 234

http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive


Singh and Tirthapura Evaluation of distinct counting algorithms

space and relative error, like in BJKST1. The algorithm due to
Kane et al. (2010) is theoretically space optimal and can potentially
be extended to sliding windows. But we are not aware of an imple-
mentation of this algorithm, even in the infinite window case.

2.1.4. Durand-Flajolet
The Loglog algorithm by Durand and Flajolet (2003) for infinite
window derives its name from the space cost of the algorithm
which is O(log logN). However, the sliding window version of
the Loglog algorithm does not have a space complexity of O(log
logN), due to the need to maintain timestamps, and is more
expensive. Hence, the name “Loglog” is not applicable here, and
we simply call it the “DF algorithm.”

The algorithm hashes each stream element to a binary string y
of lengthO(logN), and finds the rank of first 1-bit from the left in
y, r(y). It finds the maximum r(y), say r, over all stream elements.
This requires only O(log log(N)) space, since a single variable
needs to be maintained to keep a track of the maximum. Similar
to PCSA, DF uses I different bit vectors and does a stochastic
averaging to find the average of maximum r from all bit vectors.
When a query is posed, the estimate of the distinct count is
returned as 0.39701× I× 2(avg(max(r))+1).

However, in the sliding window case, there is no easy way to
maintain r over all bits set by active elements, since this value is
not a non-decreasing number, like in the case of infinite window.
Instead, similar to the PCSA algorithm, we use a vector, M, of
length T to store timestamps. In particular, each index i of the
vector M maintains the most recent timestamp during which an
element was hashed to y, such that r(y)= ti. The space taken by
this data structure is no longerO(log logN). In answering a query,
max(r) is determined as the rank of the highest index inM which
contains a non-expired timestamp.

Super Loglog (Durand and Flajolet, 2003) and HyperLogLog
(Heule et al., 2013) are modifications of Loglog that use smaller
bit vectors to reduce the space cost of the algorithm. See the study
on engineering a distinct count algorithmbyHeule et al. (2013) for
further details. However, these modifications do not payoff in the
sliding window scenario due to the additional cost of maintaining
the timestamps, which dominate the memory cost and negate the
advantage due to smaller bit vectors.

2.1.5. Randomized Wave
The RW algorithm by Gibbons and Tirthapura (2002, 2004)
is based on sampling via a hash function. A hash function h:
[N]→ [0, . . . , log2N] is used that maps elements to levels as
follows: the probability of an element being assigned to level j is
2–(j+1). At each level i, the algorithm maintains a (doubly linked)
list of elements (e,t) Li ordered by the timestamp t of observation.
Element e when observed at time t is inserted into lists L0, L1,
L2, . . . , Lh(e). If the element has already appeared in Li, then its
timestamp is updated to equal the current time. To determine if an
element has been observed in the current window, an additional
data structure, a hash map, is used, with the element identifier as
the key, and the pointer to its occurrence in Li as the value. If a level
becomes full (i.e., its size exceeds the budget allotted to it), then the
oldest elements in the level are deleted from the hash map as well
as the list. Furthermore, when an element expires from the sliding

window, it is also discarded from the data structure. Discarding
oldest elements is a constant time operation because the oldest
elements are stored at the tail of the list.

When a query is made, the lowest numbered level which con-
tains the entire current sliding window is determined, say ℓ. The
estimate of the number of distinct elements is computed as 2ℓ|Sℓ|,
where Sℓ is the set of all elements in level l. We have optimized the
above algorithm by inserting element e into only level h(e), rather
than all levels from0 to h(e). This improves the processing time for
an element by roughly a factor of two, while somewhat increasing
the query time, since in order to process a query the algorithm
needs to consider elements in all levels 0 . . . ℓ, rather than only at
level ℓ.

The adaptive sampling algorithm by Wegman (see Flajolet,
1990 for a description) is another algorithm originally designed
to compute distinct count over an infinite window. We note that
if this algorithm is adapted to a sliding window setting, the result
is an algorithm similar to RW.

2.2. Accuracy Boosting Methods
In the “median-of-many” approach, used in RW and BJKST1, k-
independent copies of the algorithm are run in parallel on the
input stream, and the final estimate is the median of the estimates
returned by the k different copies. In “split-and-add,” the universe
of input identifiers is partitioned into k non-overlapping sets of
approximately equal size using a hash function. This induces k
non-overlapping substreams of the original stream, each of which
is processed separately by individual copies of the algorithm. The
final estimate is obtained by adding the estimates produced from
the k copies. In “stochastic averaging,” used in PCSA and DF,
the universe is partitioned into k non-overlapping intervals using
a hash function, inducing k non-overlapping substreams of the
original stream. The final estimate is obtained by computing a
function fi over the ith substreamand applying a different function
g over the average of the outputs of the functions over the k
partitions.

2.3. Experimental Setup
Weperformed all experiments on a 64-bit RedHat Linuxmachine
with 4 cores and a processor speed of 3.50GHz, with 16GB RAM.
We used C++ with the Standard Template Library (STL), and the
gcc compiler.We implemented the algorithms PCSA, LC, BJKST1,
DF, and RW, as described in Section 2.1. We also implemented an
exact algorithm for the number of distinct elements over a sliding
window having a high space complexity.

2.3.1. Datasets
We used eight datasets for our experiments – five synthetically
generated datasets following a Uniform Random or Zipfian distri-
bution, a network traffic trace, Bigrams in a Text File, and a dataset
derived from a real-world graph.

The Uniform Random dataset was synthetically generated by
choosing elements uniformly at random from the set of unsigned
integers ranging 1–100 million. This has a total of 500 million
elements, with ∼100 million distinct elements and an average of
about 97 million distinct elements in a sliding window of size
45min. We added timestamps to the dataset so that the total time

Frontiers in ICT | www.frontiersin.org November 2015 | Volume 2 | Article 235

http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive


Singh and Tirthapura Evaluation of distinct counting algorithms

of observation of the data is about an hour. Since the dataset has a
uniform distribution, each element occurs with approximately the
same frequency.

We generated four Zipfian datasets by choosing elements
through a Zipfian distributionwithα-parameter 1.3, 1.35, 1.4, and
1.5 from the set of integers ranging 1–5 million. Each dataset has
a total of 500 million elements. In this paper, we have chosen to
display the graphs from the Zipfian dataset of α-parameter 1.3
with ∼2.8 million distinct elements and an average of about 2.3
million distinct elements in a 45-min sliding window. The results
from the remaining three datasets are similar to the one we have
shown in the paper. The total time of observation of the data set
is set to 1 h.

The network trace data is generated from anonymized traffic
traces taken at a west coast OC48 peering link for a large ISP.5 We
consider each source-destination pair as a single element. This has
about 400 million elements, with ∼26 million distinct elements,
and an average of about 19 million distinct elements in a 45-min
sliding window. Data were generated over a time period of 1 h.

The Bigrams in a Text File is generated by compiling all text
versions of ebooks provided by Project Gutenberg,6 and then
generating bigrams from the compiled text. This dataset has about
181 million elements with ∼43.1 million distinct elements and
an average of about 35 million distinct elements in a 45-min
sliding window. We added timestamps so that the total time of
observation of the dataset is 1 h.

The Friendster Social Network graph is obtained from the Stan-
ford Network Analysis Project.7 The graph has about 66 million
vertices and about 1.8 billion edges. We use this network to
construct a dataset as follows: we select each edge in the graph
with probability 0.6 and include endpoints of selected edge as two
elements in the stream. The dataset has ∼2 billion elements with
about 55 million distinct elements and an average of about 51
million distinct elements in a 45-min sliding window.

2.3.2. Evaluation Metrics
We compare different algorithms by running them on the same
datasets and allotting to each of them the same memory budget.
Themainmeasures of the performance of these algorithms are the
accuracy and the running time.

The accuracy of an algorithm is expected to improve as the
allotted memory increases. We use two measures of accuracy, the
average relative error and the worst case relative error. The relative
error for a single query is defined as |d − d̂|/n, where d is the
exact number of distinct elements within the window, and d̂ is the
estimate of the distinct number of elements within the window
returned by the algorithm. The average relative error is the mean
of the relative errors taken over all queries for a dataset, and the
worst case relative error is the maximum of the relative errors
across all queries. To get stable results, every data point in the plot
is the median of 10 runs of the algorithm.

The running time of the algorithm is the total time taken by the
algorithm to process all the elements observed in the datastream
and answer the distinct count query.

5https://data.caida.org/datasets/oc48/oc48-original/
6https://www.gutenberg.org/
7http://snap.stanford.edu/data/index.html

3. RESULTS

The performance of an algorithm is influenced by the hash func-
tion used and the accuracy boosting method. In the following
experiments, we first determine the best hash function and accu-
racy boosting method for each algorithm and then use these in
further comparing different algorithms.

We further run experiments to see the trend of the accuracy and
the runtime variation with the change in size of the window for a
fixed memory budget.

3.1. Evaluation of Hash Function
The goal of our first set of experiments is to find the best
hash function to use with these algorithms. We implemented
the distinct counting algorithms in an identical manner, except
for the hash function. We tried five different hash functions –
MurmurHash, Jenkins, Modulo congruential hash, SHA-1, and
Fowler-Noll-Vo hash or FNV. We used the most recent ver-
sion of MurmurHash, called “MurmurHash3,” and of Jenkins,
called “Spooky hash.” Modulo congruential hash is the function
h(x)= (a·x+ b) mod p, where p is a large prime number and a,b
are randomly chosen integers modulo p. While simple, this func-
tion has interesting theoretical properties (Carter and Wegman,
1979). We use SHA-1 rather than SHA-2 since SHA-1 performs as
fast as SHA-2 and requires smaller memory. Though SHA-1 is less
secure than SHA-2, this is not an issue for distinct counting. We
used the most recent version of FNV, FNV-1a.

The space budget for these experiments was fixed at 1,000KB,
and the window size was set at 45min. The results of the per-
formance of algorithms for different hash functions have been
shown for the real network trace in Figure 1. Similar results were
obtained for the other datasets, but they are not shown here due to
space constraint. For the LC algorithm, no reasonable results were
obtained for any dataset with 1,000KB space, and hence we have
not shown results for LC.

3.1.1. Observation
MurmurHash has themost consistent accuracy, and its accuracy is
better than all other hash functions that we considered. It also runs
faster than the others. Jenkins and FNV are close to MurmurHash
in terms of both accuracy and runtime. The total runtime ofMod-
ulo congruential hash is close to MurmurHash, but its accuracy
is poor and inconsistent. SHA-1 performs the worst in terms of
runtime, and the total runtime using SHA-1 is almost 2–3× slower
than using MurmurHash, Modulo congruential hash and Jenkins.
The accuracy of SHA-1 is consistent and better than Modulo
congruential hash, but not as good as MurmurHash, Jenkins or
FNV. Hence, we have chosen MurmurHash for the rest of our
experiments.

3.2. Evaluation of Accuracy
Boosting Method
The idea here is that the estimation accuracy can be improved by
running multiple instances of an estimator, and combining the
results in some manner. The use of accuracy boosting methods
has been advocated in the past for distinct counting, including
in Flajolet and Martin (1985), Gibbons and Tirthapura (2001),

Frontiers in ICT | www.frontiersin.org November 2015 | Volume 2 | Article 236

https://data.caida.org/datasets/oc48/oc48-original/
https://www.gutenberg.org/
http://snap.stanford.edu/data/index.html
http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive


Singh and Tirthapura Evaluation of distinct counting algorithms

FIGURE 1 | Comparison of hash functions for different algorithms using network trace.

FIGURE 2 | Comparison of accuracy boosting methods using network trace (space cost: 1,000KB, window size: 45min).

Bar-Yossef et al. (2002), and Kane et al. (2010). The goal of
this set of experiments is to determine which accuracy boosting
method serves best for an algorithm. We considered three meth-
ods, “median-of-many,” “split-and-add,” and “stochastic averag-
ing,” which have been explained earlier in Section 2.2.

Any method such as the above certainly improves accuracy
when compared with each individual estimator. However, when
total memory of each algorithm is held fixed while increasing the
number of instances, each instance gets proportionately smaller
memory, resulting in lower accuracy for each individual instance.
So it is not clear that accuracy boosting is useful to improve
the overall accuracy of an algorithm given a fixed memory bud-
get. Note that the past literature proves that accuracy boosting
method such as the “median-of-many”method improves the over-
all accuracy of the algorithm provided the space allocated for the
algorithm is also linearly increased.

From our experiments, we observed that, for the “median-of-
many” method, the runtime increases linearly with the number
of parallel instances, but it stays almost the same for split-and-
add and stochastic averaging. The reason is that in the “median-
of-many” method, the entire data stream is passed as input to,
say, k different instances of algorithm resulting in linear increase
in processing time for “median-of-many” method, contrary to
the other two methods where data stream is divided into non-
overlapping subsets which are in turn passed as input, each to an
individual estimator of algorithm, hence resulting in no increase
in runtime.

We implemented different accuracy boosting methods for each
algorithm on every dataset. The findings for each dataset were
similar. We found that RW performs best without accuracy boost-
ing, i.e., when a single instance is used and the entire memory is
given to that instance. Figure 2 shows the results of experiments
performed using a space budget of 1,000KB and window size
45min on the network trace. Overall, the average relative error of
RW without accuracy boosting method was better than with any
accuracy boosting method. As the number of instances increase,
the accuracy of the algorithmdecreases due to the aforementioned
reason. The total memory required by RW is O(log (1/δ)/ϵ2)
words, where O(log (1/δ)) is the number of instances run for the
algorithm. If the space budget is kept fixed, then the value of ϵ
increases with the increase in the number of instances, resulting
in a lower accuracy.

A similar result is observed with BJKST1 (Figure 2). The algo-
rithm maintains the τ smallest hash values for each instance,
and when multiple instances are used, the value of τ decreases
proportionally to keep the overall memory constant. We found
that the average relative error of BJKST1 was the smallest without
accuracy boosting. While Bar-Yossef et al. (2002) suggested using
the median-of-k, the study by Giroire (2009) and Zhang et al.
(2010) suggested stochastic averaging as an improvement. Note
that these did not focus on keeping thememory budget fixedwhile
applying the accuracy boosting method to the algorithms. Per our
observation, the average relative error is minimized by giving the
entire memory to a single instance.

Frontiers in ICT | www.frontiersin.org November 2015 | Volume 2 | Article 237

http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive


Singh and Tirthapura Evaluation of distinct counting algorithms

FIGURE 3 | Dependence on space for network trace with a window size of 45min.

FIGURE 4 | Dependence on space for Zipfian data with a window size of 45min.

PCSA and DF combine many instances of a basic algorithm,
which uses a bit vector of a fixed size, using stochastic averaging.
We tried combining multiple instances of PCSA and DF using
median-of-k method as well as split-and-add, but the error was
worse when compared with using a single instance for both PCSA
and DF (giving the entire memory to stochastic averaging). In
Figure 2, using a single instance implies that only stochastic
averaging is used over a fixed number of bit vectors determined
from the space budget.

LC performs best when the entire space is given to a single
instance.We tried using independent smaller bit vectors, followed
by accuracy boosting, but this mostly led to invalid results. In
case of median-of-k, the load factor of each smaller bit vector
increased drastically, and the instances often failed to produce any
reasonable estimates.

3.3. Evaluation of Algorithms
We implemented each algorithm using the best hash function
(MurmurHash), and also the best accuracy boosting method
specific to the algorithm. We ran experiments over all the 8
datasets for different space budget keeping the time-based sliding
window fixed at 45min. We also ran experiments over the 8
datasets for varying window size, keeping the space budget fixed
at 1,000KB. We have shown results for only 5 of the 8 datasets due
to space constraint. We study the performance of algorithms for
(1) different space budgets given a fixed window size (shown in
Figures 3–7) and (2) different window sizes given a fixed space
budget (shown in Figures 9 and 10). We find the median of 10
runs of each experiment to get the corresponding data point to
obtain a consistent graph plot.

3.3.1. Accuracy
We observe that for a fixed window size, the accuracy of RW
and PCSA is the best for small-space budgets. As the allocated
space is increased, the accuracy of RW becomes better than
that of the other algorithms. We observe that as space increases,
improvement in accuracy is the most significant in RW.

LC does not produce any result below a space threshold which
depends on the number of distinct elements within the sliding
window. Given a window size of 45min, LC yields result for
a minimum space of 1,700KB for the Zipfian dataset. It does
not produce a valid result for other datasets for a space budget
as large as 2MB. Among the other algorithms, we observe that
PCSA and RW algorithm produces the most accurate result. As
we increase the space budget, RW outperforms PCSA in terms
of accuracy. According to the figures, DF algorithm is the least
accurate algorithm.

In the study by Metwally et al. (2008), LC emerged as the most
accurate algorithm for distinct counting for a given space budget,
beating out PCSA and other alternatives. Our conclusions are
different from those ofMetwally et al. (2008), for the following rea-
sons. First, note that their evaluation was for a different problem,
that of distinct counting over an infinite window. The algorithms
in Metwally et al. (2008) used a bit vector as a data structure
to implement LC, which can accommodate a large number of
distinct elements before the load factor gets too large, while we
need to have a vector of timestamps to implement LC, which takes
much more space (we used 32 bit timestamps). Furthermore, the
number of distinct elements in the dataset used in Metwally et al.
(2008) is ∼2 million, while the number of distinct elements in
our datasets is much larger, leading to a higher load factor for the

Frontiers in ICT | www.frontiersin.org November 2015 | Volume 2 | Article 238

http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive


Singh and Tirthapura Evaluation of distinct counting algorithms

FIGURE 5 | Dependence on space for Uniform Random dataset with a window size of 45min.

FIGURE 6 | Dependence on space for Bigram dataset with a window size of 45min.

FIGURE 7 | Dependence on space for Friendster graph data with a window size of 45min.

same memory allocated for LC. Since the accuracy of LC is very
dependent on the number of distinct elements in the dataset, it is
no longer the most accurate algorithm in our study, except for the
case when the allocated memory is relatively large.

RW and PCSA are the two most accurate algorithms so we use
Figure 8 to show the variation in the results obtained for RW and
PCSA, respectively, over 10 different runs. These figures show the
minimum, maximum, median, and first and third quartile values
of average relative error obtained for RW and PCSA. From the
figures, it is evident that these algorithms consistently perform
well and that other than a few outliers, the variation in the average
relative error is small (<1%). Due to a constraint in space, we have
not added the graph for BJKST1, but the variation in BJKST1 is
similar to RW and PCSA. We have also shown the variation in
the results for DF algorithm over 10 runs in Figure 8. We observe

that there is a large variation in the results for DF for small-space
budget which gets better as the space allocated to the algorithm is
increased.

We also performed an evaluation of the effect of the window
size on the accuracy of each algorithm for a fixed space budget
of 1000KB (shown in Figures 9 and 10). We conclude from the
figures that there is no clear correlation between the window
size and the accuracy of algorithms. Also, the runtime of the
algorithms do not seem to be affected when the window size
is varied. The runtime of the algorithms do not vary with the
window size because the total size of the dataset remains the same
even when we vary the size of the window over which aggregation
is performed. Though we have shown results for only the Bigrams
dataset and the Friendster graph, we obtained the same result for
the rest of the dataset.

Frontiers in ICT | www.frontiersin.org November 2015 | Volume 2 | Article 239

http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive


Singh and Tirthapura Evaluation of distinct counting algorithms

FIGURE 8 | Distribution of average relative error of (A) RW, (B) PCSA, and (C) DF for Zipfian data (bottom and top of each box are 1st and 3rd quartiles, respectively,
band within the box is the median, and uppermost and lowermost end of whiskers of each box are max and min, respectively).

FIGURE 9 | Dependence on window size for Bigram dataset for a fixed space budget of 1,000KB.

FIGURE 10 | Dependence on window size for Friendster graph data for a fixed space budget of 1,000KB.

3.3.2. Runtime
The running time of LC is the smallest followed by PCSA and DF.
These algorithms are faster than RW (∼2–4 times) and BJKST1
(∼4–5 times), as shown in Figures 3–7. We observed that on
increasing the space allotted to each algorithm, the runtime for
each algorithm increases only slightly. While all the algorithms
that we considered have O(1) (amortized) processing time per
item, the processing times of these algorithms are different since
PCSA, DF, and LC use very simple data structures (arrays) while
RW and BJKST1 use a hash table as well as a list, which are
relatively more expensive than an array.

We ran an experiment to compare the runtime performance of
an array, an STL list, an STL unorderedmap (a hashmapwithO(1)
lookup time), and an STL map (an ordered map with O(log (n)
lookup time, where n is the size of a dataset). We observed that

the total time taken to insert 100,000 elements (elements inserted
were valued 1–100,000) into an array is 1.3ms whereas a simple
insertion of elements in STL unordered map, STL map, and STL
list is 14, 41, and 6.7ms, respectively. Furthermore, we performed
an additional experiment to measure the total time taken by STL
unordered and ordered map to simultaneously insert and delete
each input so that at no point in time, the map size is >1. The
runtime for the unordered and ordered map for this experiment
were 20 and 25ms, respectively.

For RW and BJKST1 algorithms, there is an insertion in both
map and list for each incoming element, whereas the deletion of
elements from these data structures occurs at the end of every
time unit. PCSA and DF algorithms require a simple insertion
in an array for each incoming element. Considering that the
number of insertions in array for PCSA and DF is the same as the

Frontiers in ICT | www.frontiersin.org November 2015 | Volume 2 | Article 2310

http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive


Singh and Tirthapura Evaluation of distinct counting algorithms

FIGURE 11 | Dependence on rate of query for Zipfian data for a space cost 3,000KB and a window size of 45min.

number of insertions in both map and list for RW and BJKST1,
in addition to the deletion of expired elements from RW and
BJKST1 (note that PCSA and DF do not require to update the
arrays for expired elements which leads to the significantly high
query time for these algorithms), the difference in efficiency of
list, map, and array is responsible for the difference in algorithm
runtimes.

3.3.3. Query Frequency
The rate of queries (relative to the rate of updates) has an impor-
tant bearing on the performance of an algorithm. We can think
of two extremes here: one extreme is continuous monitoring,
where there is a query after each update, and in the other extreme
there is a query only at the end of observation. We use the term
“query ratio” to mean the ratio between the number of updates
and the number of queries for determining the number of distinct
elements in the window.

While the performance of RWandBJKST1 is not affectedmuch
by the query ratio, LC, PCSA, and DF algorithms are significantly
affected. In particular, answering a query using these algorithms
requires a scan of the entire vector, which is very expensive. As
described in Section 2.1, we also implemented a version of LC
optimized for frequent queries, which we call LC2. We call the
version that is not optimized for frequent queries as LC1.We could
show the result pertaining to LConly for theZipfian dataset.Other
datasets need space much > 3MB for producing a valid result for
LC1 and LC2. We ran experiments over all the datasets using a
space budget of 3MB and a window size of 45min. Smaller space
allocation (<3MB) did not work for LC2 even for the Zipfian
dataset as the data structure used by LC2 requires large space. The
X-axis represents the rate at which a query is posed. For instance,
the x-value, 10,000, implies that a query is made every 10,000
updates. Figure 11 shows a significant increase in the runtime of
LC1 as the rate of querying increases. LC2 performs consistently,
without being affected by the rate of querying, similar to the other
algorithms. However, this runtime of LC2 comes at the expense of
accuracy, since additional space is taken up by the data structures
for improving the query time. This also implies that LC2 would
requiremuch larger space for producing a valid result for a dataset.

Figure 11 also shows that the runtime of PCSA and DF is
significantly large when query ratio is close to 1. However, the
runtime of PCSA and DF, similar to LC1, reduces quickly with a
decrease in query rate. The results from the Friendster graph and

the network trace imply the same, but we have excluded it from
the paper due to space constraint.

The runtime of LC1, PCSA, and DF algorithms increases
drastically with query rate. This is because these algorithms
require to perform a linear scan on the vector maintained by
them so as to find the information that is required to compute
the distinct count.

4. DISCUSSION

We presented a detailed experimental evaluation of algorithms
for distinct counting over a sliding window. We considered
alternatives for different aspects of an implementation, including
the basic algorithm, the hash function, the method for boosting
accuracy, and the impact of query/update ratio. While there is
no clear “best” method that works better than the rest under all
situations, our experiments bring out a few combinations that
work close to the best.

For a given space budget, if the average relative error is themost
important criterion, then using a single instance of Randomized
Wave algorithm with the Murmurhash function is close to the
best in most situations. If execution time is the most important
criterion, then for the scenario where the ratio of number of
updates to the number of queries is low, PCSA usingMurmurhash
performs close to the fastest under most situations. However, if
the ratio of updates to queries decreases, then the runtimes of
PCSA andDF increase, andwhen this ratio is small (<100, inmany
cases), RW and BJKST1 perform better in terms of runtime. In
such cases, RW is clearly the best option, both in terms of accuracy
as well as runtime.

Overall, we observe that for a given space budget, ran-
dom sampling-based schemes, such as RW, perform better than
bitmap-based schemes, such as LC. This is because bitmap-based
schemes, such as PCSA and LC, become more expensive space-
wise when a timestamp is added to each bit in the vector, while
a random sampling-based algorithm, such as RW, is not affected
as much since it already stores the actual element identifiers in the
sample, and adding a timestamp to the identifier does not increase
the overhead by very much.

FUNDING

Supported in part by IBM PhD Fellowship.

Frontiers in ICT | www.frontiersin.org November 2015 | Volume 2 | Article 2311

http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive


Singh and Tirthapura Evaluation of distinct counting algorithms

REFERENCES
Alon, N., Matias, Y., and Szegedy, M. (1996). “The space complexity of approx-

imating the frequency moments,” in Proceedings of the Twenty-Eighth Annual
ACM Symposium on Theory of Computing (STOC) (New York, NY: ACM),
20–29.

Astrahan, M. M., Schkolnick, M., and Whang, K.-Y. (1987). Approximating the
number of unique values of an attribute without sorting. Inf. Syst. 12, 11–15.
doi:10.1016/0306-4379(87)90014-7

Bar-Yossef, Z., Jayram, T. S., Kumar, R., Sivakumar, D., and Trevisan, L. (2002).
“Counting distinct elements in a data stream,” in Proceedings of the 6th Interna-
tional Workshop on Randomization and Approximation Techniques (RANDOM)
(London: Springer-Verlag), 1–10.

Braverman, V., and Ostrovsky, R. (2007). “Smooth histograms for sliding windows,”
in Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer
Science (Washington, DC: IEEE Computer Society), 283–293.

Busch, C., and Tirthapura, S. (2007). “A deterministic algorithm for summarizing
asynchronous streams over a sliding window,” in Proceedings of the 24th Annual
Conference on Theoretical Aspects of Computer Science (Aachen: Springer-
Verlag), 465–476.

Carter, L., and Wegman, M. N. (1979). Universal classes of hash functions. J.
Comput. Syst. Sci. 18, 143–154. doi:10.1016/0022-0000(79)90044-8

Charikar, M., Chaudhuri, S., Motwani, R., and Narasayya, V. (2000). “Towards
estimation error guarantees for distinct values,” in Proceedings of the Nineteenth
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems
(PODS) (New York, NY: ACM), 268–279.

Chen, A., and Cao, J. (2009). “Distinct counting with a self-learning bitmap,” in
Proceedings of the 2009 IEEE International Conference on Data Engineering
(ICDE) (Shanghai: IEEE Computer Society), 1171–1174.

Datar, M., Gionis, A., Indyk, P., and Motwani, R. (2002). Maintaining stream
statistics over sliding windows. SIAM J. Comput. 31, 1794–1813. doi:10.1137/
S0097539701398363

Durand, M., and Flajolet, P. (2003). “Loglog counting of large cardinalities
(extended abstract),” in Proceedings of ESA 2003, 11th Annual European Sym-
posium on Algorithms (Budapest: Springer), 605–617.

Estan, C., Varghese, G., and Fisk, M. (2006). Bitmap algorithms for counting active
flows on high-speed links. IEEE/ACM Trans. Netw. 14, 925–937. doi:10.1109/
TNET.2006.882836

Flajolet, P. (1990). On adaptive sampling. Computing 43, 391–400. doi:10.1007/
BF02241657

Flajolet, P., and Martin, G. N. (1985). Probabilistic counting algorithms for data
base applications. J. Comput. Syst. Sci. 31, 182–209. doi:10.1016/0022-0000(85)
90041-8

Fraleigh, C., Moon, S., Diot, C., Lyles, B., and Tobagi, F. (2000). Architecture of a
PassiveMonitoring System for Backbone IP Networks. Sprint lab (TR00-ATL-101-
801).

Fusy, E., and Giroire, F. (2007). “Estimating the number of active flows in a data
stream over a sliding window,” in Proceedings of the 9th Workshop on Algorithm
Engineering and Experiments and the Fourth Workshop on Analytic Algorithmics
and Combinatorics (Philadelphia, PA: Society for Industrial and Applied Math-
ematics), 223–231.

Gelenbe, E., and Gardy, D. (1982). “The size of projections of relations satisfying
a functional dependency,” in Proceedings of the 8th International Conference on
Very Large Data Bases (San Francisco, CA: Morgan Kaufmann Publishers Inc.),
325–333.

Gibbons, P. B. (2007). “Distinct-values estimation over data streams,” in In Data
Stream Management: Processing High-Speed Data (Springer).

Gibbons, P. B., and Tirthapura, S. (2001). “Estimating simple functions on the
union of data streams,” in Proceedings of the Thirteenth Annual ACM Sympo-
sium on Parallel Algorithms and Architectures (SPAA) (New York, NY: ACM),
281–291.

Gibbons, P. B., and Tirthapura, S. (2002). “Distributed streams algorithms for
sliding windows,” in Proceedings of the Fourteenth Annual ACM Symposium on
Parallel Algorithms and Architectures(SPAA) (New York, NY: ACM), 63–72.

Gibbons, P. B., and Tirthapura, S. (2004). Distributed streams algorithms for sliding
windows. Theory Comput. Syst. 37, 457–478. doi:10.1007/s00224-004-1156-4

Giroire, F. (2009). Order statistics and estimating cardinalities of massive data sets.
Discrete Appl. Math. 157, 406–427. doi:10.1016/j.dam.2008.06.020

Golab, L., DeHaan, D., Demaine, E. D., Lopez-Ortiz, A., and Munro, J. I. (2003).
“Identifying frequent items in sliding windows over on-line packet streams,” in
Proceedings of the 3rd ACM SIGCOMM Conference on Internet Measurement
(IMC) (New York, NY: ACM), 173–178.

Haas, P. J., Naughton, J. F., Seshadri, S., and Stokes, L. (1995). “Sampling-based
estimation of the number of distinct values of an attribute,” in Proceedings of the
21th International Conference on Very Large Data Bases (VLDB) (San Francisco,
CA: Morgan Kaufmann Publishers Inc.), 311–322.

Heule, S., Nunkesser, M., and Hall, A. (2013). “Hyperloglog in practice: algorithmic
engineering of a state of the art cardinality estimation algorithm,” in Proceedings
of the 16th International Conference on Extending Database Technology (EDBT)
(New York, NY: ACM), 683–692.

Kane, D. M., Nelson, J., and Woodruff, D. P. (2010). “An optimal algorithm for the
distinct elements problem,” in Proceedings of the Twenty-Ninth ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems (PODS) (New
York, NY: ACM), 41–52.

Lahiri, B., Chandrashekar, J., and Tirthapura, S. (2011). “Space-efficient tracking
of persistent items in a massive data stream,” in Proceedings of the 5th ACM
International Conference on Distributed Event-Based System (DEBS) (New York,
NY: ACM), 255–266.

Metwally, A., Agrawal, D., and Abbadi, A. E. (2008). “Why go logarithmic if we
can go linear?: towards effective distinct counting of search traffic,” in 11th
International Conference on Extending Database Technology (EDBT) (New York,
NY: ACM), 618–629.

Nasgaard, H., Gedik, B., Komor, M., and Mendell, M. (2009). “Ibm infosphere
streams: event processing for a smarter planet,” in Proceedings of the 2009 Con-
ference of the Center for Advanced Studies on Collaborative Research, CASCON
‘09 (Riverton, NJ: IBM Corp.), 311–313.

Resvanis, M., and Chatzigiannakis, I. (2009). “Experimental evaluation of duplicate
insensitive counting algorithms,” in Proceedings of the 2009 13th Panhellenic
Conference on Informatics (Washington, DC: IEEE Computer Society), 60–64.

Selinger, P. G., Astrahan, M. M., Chamberlin, D. D., Lorie, R. A., and Price, T. G.
(1979). “Access path selection in a relational database management system,” in
Proceedings of the 1979 ACM SIGMOD International Conference onManagement
of Data (New York, NY: ACM), 23–34.

Singh, S. A., and Tirthapura, S. (2014). Monitoring persistent items in the union
of distributed streams. J. Parallel Distrib. Comput. 74, 3115–3127. doi:10.1016/j.
jpdc.2014.07.008

Tirthapura, S., Xu, B., and Busch, C. (2006). “Sketching asynchronous streams over
a sliding window,” in Proceedings of the Twenty-Fifth Annual ACM Symposium
on Principles of Distributed Computing (New York, NY: ACM), 82–91.

Tosun, A. S. (2007). “Space-efficient structures for detecting port scans,” in Pro-
ceedings of the 18th International Conference on Database and Expert Systems
Applications (Berlin: Springer-Verlag), 120–129.

Venkataraman, S., Song, D., Gibbons, P. B., and Blum, A. (2005). “New streaming
algorithms for fast detection of superspreaders,” in Proceedings of Network and
Distributed System Security Symposium, NDSS ‘05’ (San Diego, CA: Internet
Society), 149–166.

Whang, K.-Y., Vander-Zanden, B. T., and Taylor, H.M. (1990). A linear-time proba-
bilistic counting algorithm for database applications.ACMTrans. Database Syst.
15, 208–229. doi:10.1145/78922.78925

Whang, K.-Y., Wiederhold, G., and Sagalowicz, D. (1981). “Separability – an
approach to physical data base design,” in Very Large Data Bases, Proceedings
of the 7th International Conference (Cannes: VLDB Endowment), 320–332.

Woodruff, D. (2004). “Optimal space lower bounds for all frequency moments,”
in Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete
Algorithms (Philadelphia, PA: Society for Industrial and Applied Mathematics),
167–175.

Youssefi, K., and Wong, E. (1979). “Query processing in a relational database
management system,” in Proceedings of the Fifth International Conference onVery
Large Data Bases – Volume 5, VLDB ‘79 (Rio de Janeiro: VLDB Endowment),
409–417.

Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S., and Stoica, I. (2013). “Dis-
cretized streams: fault-tolerant streaming computation at scale,” in Proceedings
of the Twenty-Fourth ACMSymposium onOperating Systems Principles, SOSP ‘13
(New York, NY: ACM), 423–438.

Zhang,W., Zhang, Y., Cheema,M. A., and Lin, X. (2010). “Counting distinct objects
over slidingwindows,” in Proceedings of the Twenty-First Australasian Conference

Frontiers in ICT | www.frontiersin.org November 2015 | Volume 2 | Article 2312

http://dx.doi.org/10.1016/0306-4379(87)90014-7
http://dx.doi.org/10.1016/0022-0000(79)90044-8
http://dx.doi.org/10.1137/S0097539701398363
http://dx.doi.org/10.1137/S0097539701398363
http://dx.doi.org/10.1109/TNET.2006.882836
http://dx.doi.org/10.1109/TNET.2006.882836
http://dx.doi.org/10.1007/BF02241657
http://dx.doi.org/10.1007/BF02241657
http://dx.doi.org/10.1016/0022-0000(85)90041-8
http://dx.doi.org/10.1016/0022-0000(85)90041-8
http://dx.doi.org/10.1007/s00224-004-1156-4
http://dx.doi.org/10.1016/j.dam.2008.06.020
http://dx.doi.org/10.1016/j.jpdc.2014.07.008
http://dx.doi.org/10.1016/j.jpdc.2014.07.008
http://dx.doi.org/10.1145/78922.78925
http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive


Singh and Tirthapura Evaluation of distinct counting algorithms

on Database Technologies – Volume 104, ADC ‘10 (Darlinghurst: Australian
Computer Society, Inc.), 75–84.

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2015 Singh and Tirthapura. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use, dis-
tribution or reproduction in other forums is permitted, provided the original author(s)
or licensor are credited and that the original publication in this journal is cited, in
accordance with accepted academic practice. No use, distribution or reproduction is
permitted which does not comply with these terms.

Frontiers in ICT | www.frontiersin.org November 2015 | Volume 2 | Article 2313

http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive

	An evaluation of streaming algorithms for distinct counting over a sliding window
	1. Introduction
	1.1. Summary of Results
	1.1.1. Accuracy
	1.1.2. Runtime
	1.1.3. Hash Function
	1.1.4. Accuracy Boosting Method
	1.1.5. Relation to Prior Work


	2. Materials and Methods
	2.1. Algorithms
	2.1.1. Probabilistic Counting with Stochastic Averaging
	2.1.2. Linear Counting
	2.1.3. BJKST1
	2.1.4. Durand-Flajolet
	2.1.5. Randomized Wave

	2.2. Accuracy Boosting Methods
	2.3. Experimental Setup
	2.3.1. Datasets
	2.3.2. Evaluation Metrics


	3. Results
	3.1. Evaluation of Hash Function
	3.1.1. Observation

	3.2. Evaluation of Accuracy Boosting Method
	3.3. Evaluation of Algorithms
	3.3.1. Accuracy
	3.3.2. Runtime
	3.3.3. Query Frequency


	4. Discussion
	Funding
	References


