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View-based 3D object recognition requires a selection of model object views against
which to match a query view. Ideally, for this to be computationally efficient, such a
selection should be sparse. To address this problem, we partition the view sphere into
regions within which the silhouette of a model object is qualitatively unchanged. This
is accomplished using a flux-based skeletal representation and skeletal matching to
compute the pairwise similarity between two views. Associating each view with a node
of a view sphere graph, with the similarity between a pair of views as an edge weight, a
clustering algorithm is used to partition the view sphere. Our experiments on exemplar
level recognition using 19 models from the Toronto Database and category-level recogni-
tion using 150 models from the McGill Shape Benchmark demonstrate that in a scenario
of recognition from sparse views, sampling model views from such partitions consistently
boosts recognition performance when compared against queries sampled randomly or
uniformly from the view sphere. We demonstrate the improvement in recognition accuracy
for a variety of popular 2D shape similarity approaches: shock graph matching, flux graph
matching, shape context-based matching, and inner distance-based matching.

Keywords: view sphere partitioning, 3D object recognition, sparse views, flux graphs, shock graphs, shape context,
inner distance

1. INTRODUCTION

View-based object recognition has seen many recent advances with current state of the art systems
achieving promising category-level recognition results on large databases of real images. An effective
strategy here is to learn suitable models from images taken in a controlled fashion of several
exemplars from a particular category (Fergus et al., 2007; Savarese and Fei-Fei, 2007;Wu et al., 2010).
The hope here is that by learning from distinct views, one might be able to achieve recognition of
nearby views efficiently. Such methods must be trained systematically on these distinct views and
the typical strategy taken is to sample these views uniformly, as in the original principal component-
based method of Murase and Nayar (1995). As our community attempts to grapple with the full
complexity of object recognition from arbitrary views, we face the challenge that such methods may
not easily generalize to views that have not been seen before, at least notwithout a prohibitive amount
of training.

To gain further intuition about this problem, consider the sample silhouettes of a dog seen along
two different trajectories in Figure 1. In the first trajectory, we move from a top rear view to a
top front view (views 1–5) and in the second, we rotate around the dog showing side views (views
6–10). Qualitatively, views 6 through 10 are those from which the dog is most easily recognizable
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FIGURE 1 | Silhouettes of a dog are shown for viewpoints along two trajectories on the view sphere: (1–5) and (6–10).

in that prominent parts (the head, limbs, and tail) remain visible.
On the other hand, views in the first trajectory are more challeng-
ing to recognize because parts are foreshortened or occluded. This
example points to the need for judicious view sphere sampling to
achieve recognition from sparse views. Approaches that train on
views sampled uniformly on the view sphere do not reflect the
complex relationship between view stability and surface area on
the view sphere.

The problem of defining regions on the view sphere with quali-
tatively similar views of a 3D object has a long history in the com-
puter vision community, dating back to Koenderink’s notion of
transitions on the view sphere as one moves from one location to
another, as signaled by the appearance or disappearance of singu-
larities of the visual mapping (Koenderink and van Doorn, 1979).
This lead to a tremendous interest in the computer vision com-
munity in computing aspect graphs designed to capture changes
in appearance with viewpoint changes. A great deal of conceptual
progress was made in the late 80s and early 90s with techniques
developed for computing aspect graphs of polyhedra (Gigus et al.,
1988) of curved surfaces described algebraically (Petitjean et al.,
1992) along with considerations for the role of scale (Eggert et al.,
1993). Whereas aspect graphs had intuitive appeal, they lost favor
for a variety of reasons (Faugeras et al., 1992). These included
the fragility of the concept itself for facilitating object recogni-
tion (e.g., not all singularities of the visual mapping are visually
salient), and the difficulty of computing it for general 3D object
classes. The object recognition community in computer vision has
since shifted to appearance-based representations for category-
level recognition from natural images of objects; see, for example,
Ponce et al. (2006) and Dickinson (2009). Current approaches
typically combine robust feature detection, the modeling of local
geometric relations between derived “parts” and advanced sta-
tistical machine learning methods for classification (Lowe, 1999;
Fei-Fei et al., 2006; Ferrari et al., 2006; Fergus et al., 2007;Wu et al.,
2010). The underlying representations are viewpoint dependent,
and thus, careful training is required for them to handle arbi-
trary views of 3D objects. As these methods advance from both
computational efficiency and storage efficiency considerations,
judicious sampling of the view sphere resurges as a problem of
interest.

Oneway to approach this problem is to focus on the appearance
of 2D silhouette shape as the viewpoint changes. Promising steps
were taken in this direction by Cyr and Kimia (2004). In their
approach, the views on the view sphere are treated as nodes

of a graph, with the similarity between two views providing an
edge weight. Their similarity measure uses both an edit distance
between shock graphs and a distance based on curve matching.
Each node on the view sphere is initially a cluster (region), and
clusters get merged when they are geographical neighbors and
the average pairwise similarities between their centroids are below
a certain threshold. This process is iterated until it converges.
Once the regions have been obtained, at matching time, a query
view is matched against the centroid (characteristic view) of each
region for a particular model. Those regions whose centroids are
distant from the query are discarded. The model is then matched
exhaustively against all the views in each surviving region.

Motivated by the success of medial representations for comput-
ing part-based representations of silhouettes for matching (Sebas-
tian et al., 2004; Bai and Latecki, 2008; Siddiqi and Pizer, 2008)
and the promise of silhouette-based similarity for 3D recognition
in Cyr and Kimia (2004), we consider the problem of recognition
from sparse views using skeletal graphs. The specific question we
look at is that of generating view sphere partitions from which
to efficiently (and not necessarily exhaustively) sample model
views when faced with a new query. As such our goal is comple-
mentary to that of Cyr and Kimia (2004), but our methods are
different. Specifically, we employ an average outward flux-based
skeleton (Dimitrov et al., 2003) together with a novel measure
for simplification which leads to a directed flux graph. In our
work, we employ a hierarchical clustering algorithm to obtain a
view sphere partition where views in each partition are similar.
Unlike the region-growing approach of Cyr and Kimia (2004), our
partitions are based on a spectral decomposition strategy, which
lead to partitions whose nodes are not necessarily geographical
neighbors. More importantly, the context of our experiments is
different and somewhat complementary to that of Cyr and Kimia
(2004). Specifically, we evaluate the benefit of selecting model
views from the partitions when only a sparse number of model
view queries are allowed, whereas in Cyr and Kimia (2004), the
matching experiments use all the model views in each surviving
cluster. Our main contribution is to show that hierarchical view
sphere partitioning boosts 3D object recognition performance in
the scenario of matching against a sparse number of model views.
Our experiments also demonstrate the importance of selecting
centroids of the clusters during matching time for the four shape
matching algorithms we have evaluated: shape context-based
matching, inner distance-based matching, flux graph matching,
and shock graph matching.
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This article is organized as follows. We discuss flux graphs
for 2D shape representation in Section 2. We then develop the
view sphere partitioning strategy in Section 3, where a clustering
algorithm is employed on a graph whose nodes are views and
whose edge weights are pairwise similarities between flux graphs.
This leads to partitions within which the model silhouettes are
qualitatively similar.We demonstrate the utility of these partitions
for selecting model views in Section 4 by comparing this to the
alternatives of random or uniform sampling. We conclude with a
discussion in Section 5.

2. FLUX GRAPHS

DEFINITION 1. Assume an n-dimensional object denoted by Ω

with its boundary given by ∂Ω∈Rn. A closed disk D∈Rn is a
maximal inscribed disk in Ω if D⊆Ω but for any disk D′ such that
D⊂D′, the relationship D′⊆Ω does not hold.

DEFINITION 2. The Blummedial locus or skeleton, denoted by
Sk(Ω), is the locus of centers of all maximal inscribed disks in ∂Ω.

Topologically, Sk(Ω) consists of a set of branches that join to
each other at junction points to form the complete skeleton. A
skeletal branch denoted by χ is a set of contiguous regular points
from the skeleton that lie between a pair of junction points, a pair
of end points or an end point and a junction point. As shown
by Dimitrov et al. (2003), these three classes of points can be
analyzed by considering the behavior of the average outward flux
(AOF) of the gradient of the Euclidean distance function to the
boundary of a 2D object, given by

∫
∂R <q̇,N>ds∫

∂R ds , when shrunk to
a circular neighborhood, where q̇ = ∇D (Dimitrov et al., 2003),
with D the Euclidean distance function to the object’s boundary.
In particular:

1. p is a regular point if the maximal inscribed disk at
p touches the boundary at two corresponding bound-
ary points such that |ΠΩ(p)|= 2 (the projection ΠΩ(p)
is the set of closest points on the boundary ∂Ω to p,
i.e., ΠΩ(p), {q∈ ∂Ω:||p− q||=min{||p− q||∀q∈ ∂Ω}}. Let
Fϵ(p) represent the total outward flux through a shrinking
circular region around the neighborhood of P with radius ϵ.
The computed AOF at a regular point p is then given by
limϵ→0

Fϵ(p)
2πϵ = − 2

π sin θ.

2. p is an end point if there exists δ (0<δ< r) such that for any ϵ
(0<ϵ< δ) the circle centered atpwith radius ϵ intersects Sk(Ω)
just at a single point (r is the radius of the maximal inscribed
disk at p). The computed AOF at an end point p is given by
limϵ→0

Fϵ(P)
2πϵ = − 1

π (sin θP − θP).

3. p is a junction point if ΠΩ (p) has three or more correspond-
ing closest boundary points. Generically, a junction point has
degree 3. All other junction points are unstable. The com-
puted AOF at a junction point p is given by limϵ→0

Fϵ(P)
2πϵ =

− 1
π

∑n
i=1 sin θi.

We adopt the AOF approach of Dimitrov et al. (2003) to com-
pute the flux-based skeleton.We then consider the degree towhich
the area reconstructed by themaximal disk associatedwith a skele-
tal point is unique. Specifically, for each skeletal point, we compute
the fraction of area of its maximal disk that does not overlap with

the disk of a skeletal point on any other branch. This relative area
contribution measure is novel to the literature and is particularly
simple to compute while being effective. The measure decreases
monotonically as one approaches a junction point, as illustrated by
the three sample calculations in Figure 2 (left). Numerous other
salience measures for medial loci have been proposed (Siddiqi
and Pizer, 2008) but most combine a notion of boundary-to-axis
ratio, which can be delicate to compute, with the object angle,
and require choices of thresholds and parameters to be tuned. The
monotonic decrease in the relative areameasure as one approaches
a junction point suggests a more robust simplification procedure,
which is to move in the direction away from a junction point
and retain only those skeletal points with relative area measure
above a threshold. This process is illustrated for the dog shape in
Figure 2 (right). The threshold can be chosen adaptively to ensure
that a desired percentage of the original shape’s area is captured, as
illustrated in Figure 3 (left). For all the experiments and examples
in this article, we require at least 95% area coverage. The parts
reconstructed by each black skeletal segment are shown in distinct
colors, with skeletal segments which have been removed by the
simplification process shown in light pink.

Themonotonicity property ensures that for each original skele-
tal branch, at most one skeletal segment is retained. We can
therefore associate each retained skeletal segment with the node of
a graph. Then, using the topology of the original skeleton, for any
set of adjacent nodes, edges are placed in the direction from the
node having the largest average maximal inscribed disk radius to
the others. The resulting directed acyclic graph represents a hier-
archy of parts, as illustrated for the dog shape in Figure 3 (right),
which we dub the flux graph. As it turns out, this simplification
procedure, based on relative area alone, is more robust than the
strategy first proposed in Rezanejad and Siddiqi (2013).

2.1. Flux Graph Matching
In the present article, we use the established method for match-
ing directed acyclic graphs (DAGs) in Siddiqi et al. (1999) for
flux graph matching. Given two flux graphs a bipartite graph is
constructed between their nodes in a hierarchical manner. Each
edge of the bipartite graph is weighted based on the structural
similarity between the nodes. This weight is based on the normal-
ized difference between the topological signature vectors (TSVs)
introduced in (Siddiqi et al., 1999).Amaximumweighted bipartite
matching is then carried out such that the sum of the values of the
edges is maximized. In a DAG representation, the TSV is defined
as the vector of eigenvalue-sums derived from the corresponding
adjacency matrix for the sub-DAG of the considered node. The
matching algorithm used is a greedy algorithm by Macrini et al.
(2008), which has the benefit of finding a largest maximal match-
ing in polynomial time. The similarity is computed by matching a
querywith amodel node and thennormalizing that by the number
of matched nodes according to the cardinality of the model graph.

The above structural similarity measure (Γ) is combined with
a notion of the geometric similarity (∆) between the parts cor-
responding to two nodes, where for the latter we use the elastic
matching approach in Macrini et al. (2008). Here, line segments
are fit through the skeletal points of a given node and then, for
a given query and a given model, the algorithm tries to fit the
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FIGURE 2 | Left: for the three skeletal points, c1, c2, and c3, we calculate the fractional area of the maximal inscribed disk that does not overlap with that of a
skeletal point on any other branch. This relative area measure decreases monotonically as one approaches a junction point. Right: the skeletal points with fractional
maximal disk area above a threshold are shown in black, with other flux-based skeletal points shown in gray. The threshold is chosen so that the black skeletal
segments reconstruct at least 95% of the shape’s area [see Figure 3 (left)].

FIGURE 3 | Left: the nodes corresponding to the retained skeletal segments (black) are shown in different colors, each representing a union of medial disks.
Right: the corresponding flux graph. The dummy node # carries no geometrical information but serves as a parent to all the top level nodes.

query to the model by allowing line segments of the model to
shrink or grow to include the query data points. The data points
themselves encapsulate both positions along a skeletal branch and
the radius of the maximal inscribed disk. The main assumption
here is that the pattern of velocities and acceleration is invariant
to small changes in viewpoint, where velocity and acceleration
are defined as first and second derivatives of the radius along the
medial axis.

Putting these measures of similarity together, a DAG matcher
receives two DAGs G1 and G2 as input and computes a value
S(G1, G2) representing the similarity between them, as well as
a list of corresponding nodes. Both Γ and ∆ are in the inter-
val [0 1] and S(G1, G2) is given by a weighted combination:
ωΓ(G1, G2)+ (1−ω)∆(G1, G2). Here, ω is a tuning weight in the
interval [0 1].

3. VIEW SPHERE PARTITIONING

We use the flux graph to represent the silhouette seen from each
view on the view sphere of an object. We then create a dense view
sphere graph by associating each view with a node and placing
an edge between each pair of nodes. To each edge, we associate a
weight based on the similarity between the views using the DAG
matcher described above. The problem of view sphere clustering
can now be treated as a clustering problem on the view sphere

graph. Our goal is to find clusters of view sphere points with
high within cluster similarity. Such clusters should, in principle,
correspond to regions of the view sphere within which the sil-
houette shapes are similar. To this end, we employ a clustering
algorithm but in a hierarchical fashion. Intuitively, the idea is to
recursively partition clusters until a particular derived cluster has
a high enough within cluster similarity and is then treated as a
leaf node of a view sphere graph. The final set of clusters then
correspond to the set of leaf nodes.

Within cluster, similarity is of course maximized when the
clusters are very small, so we impose a minimum cluster size for
partitioning. Given a view sphere ν, we find a suitable number of
clusters for decomposition (Algorithm 2) and then the hierarchi-
cal clustering algorithm is applied recursively (Algorithm 1). A
stopping condition (Algorithm 3) is imposed whereby a cluster is
no longer divided if it is small (in practice, its size is already <10%
of the view sphere) or if the average of the pairwise similarities
within that cluster is above a threshold.

Using 128 equi-spaced viewing directions, Figure 4 (left) illus-
trates the view sphere clusters obtained for the dog using the
method above. Regions of the view sphere belonging to the same
cluster are shown in the same color, in separate panels (1–6). For
this example, there is an inherent symmetry to the clusters, such
that each is composed of two diametrically opposed regions on
the view sphere. To give a sense of the manner in which the views
within a particular cluster are similar with regard to part structure
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ALGORITHM 1 | Hierarchical view sphere clustering.

1: Declaration of variables

2: ν: View Sphere

3: Ci = {pi1, . . . , pik}: a cluster which includes a set of points on the view sphere

4: procedure PERFORM_HIERARCHICAL_CLUSTERING (Ci, n)

5: if SHOULD_CLUSTERING_BE_STOPPED (Ci)== false then

6: n← FIND_NUMBER_OF_CLUSTERS (Ci)

7: {C
′
1 , . . . , C

′
n}= CLUSTERINGALGORITHM (ν, n)

8: for 1:= 1 to n do

9: PERFORM_HIERARCHICAL_CLUSTERING (C
′
i , n)

10: end for

11: else

12: return Ci as a leaf

13: end if

14: end procedure

ALGORITHM 2 | Find the number of clusters for decomposition.

1: procedure FIND_NUMBER_OF_CLUSTERS (Ci)

2: M←maximum number of branches per level

3: µ← threshold on average similarity for branching

4: for t:= 2 to M

5: {C
′
1 , . . . , C

′
t }= CLUSTERINGALGORITHM (Ci, t)

6: m←weighted average of the average pairwise

7: similarities between all nodes in the C
′
j s.

8: if m>µ then

9: return t

10: end if

11: end for

12: return 0

13: end procedure

ALGORITHM 3 | Determine whether a cluster is a leaf node.

1: procedure SHOULD_CLUSTERING_BE_STOPPED (Ci)

2: τ← a threshold on the cluster size

3: ρ← a threshold on the average similarities

4: m← average similarity between all pairs of nodes in Ci

5: if size(Ci)<τ then

6: return true

7: else if m>ρ then

8: return true

9: end if

10: return false

11: end procedure

and part shape, Figure 4 (right) depicts sample silhouettes for
trajectories taken within each cluster. Cluster 1 contains views
from above or below such that the body is elongated and the tail
is visible but the limbs are occluded. In contrast, clusters 3 and 4
depict side views in which the limbs are visible and are extended.

4. EXPERIMENTS

We evaluate the efficacy of using our view sphere partitions
for recognition from sparse views. In our recognition experi-
ments, we consider a query view and compare matching it with

model views chosen from the view sphere clusters proportional
to their size versus matching it against model views chosen
randomly from a uniform distribution of views on the view
sphere. We have also conducted experiments where the model
views were chosen to spread across the view sphere evenly, by
using a particle repulsion method such that the distance between
all pairs of neighboring closest model views was approximately
the same. However, we found that in all cases, random sam-
pling from a uniform distribution out performs this particle
repulsion strategy. This is likely because spreading the views
across the view sphere leads to a higher probability of select-
ing model views that are ambiguous in that they are less repre-
sentative of a particular object. We compare four different sil-
houette matching approaches: flux graph matching, shock graph
matching, shape context-based matching, and inner distance-
based matching. The skeletal graph-based matching experiments
are carried out using Macrini’s publicly available directed acyclic
graph (DAG) matching package: http://www.cs.toronto.edu/
~dmac/download.html, which contains an implementation of the
approach in Siddiqi et al. (1999). For shape context-based match-
ing (Belongie and Malik, 2000), we use the original implementa-
tion by Belongie et al., available at https://www.eecs.berkeley.edu/
Research/Projects/CS/vision/shape/sc_digits.html, and for inner
distance-based matching (Ling and Jacobs, 2007), we used
Ling and Jacobs’ implementation, available at http://www.dabi.
temple.edu/∼hbling/code_data.htm.

Both shape context-based matching and inner distance-based
matching rely on finding correspondences between sample points
from the boundaries of the two silhouettes. In the former, the
shape context descriptor is based on a histogram of the contour
points present in a local polar neighborhood of each sample point,
considering both Euclidean distance and relative position. Two
silhouettes are then matched using the Hungarian algorithm for
finding the lowest cost matching between the two sets of his-
tograms. This approach is extended in Ling and Jacobs (2007) by
replacing the Euclidean distance by a notion of inner distance. The
inner distance is defined as the length of the shortest path within
the silhouette between two boundary points, and it provides some
robustness to part articulation. A silhouette is represented in the
same way as when using the shape context descriptor but with
the difference that the bins in the histogram are constructed using
inner distance in place of Euclidean distance. The tangential direc-
tion at the starting point of the shortest path between two points is
treated as the relative orientation between them, and is called the
inner angle. Two silhouettes arematched by finding the lowest cost
matching between the two histograms, but allowing for boundary
sample points to be skipped but with an associated penalty.

4.1. Recognition Performance
4.1.1. Exemplar Level Recognition
We begin with the exemplar level Toronto database of 19 models
(Figure 5 left) because of the available published experimental
results on skeletal graph-based recognition inMacrini et al. (2008)
as views are successively removed for these objects. In that work,
Macrini et al. remove up to 75% of the views on the view sphere
for a subset of 13 object models from this database, with 128 views
of each. They report a graceful degradation in performance with
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FIGURE 4 | Left: views of the dog on the view sphere belonging to the same cluster are shown as colored regions with distinct colors in panels (1–6).
Right: silhouettes are shown for views sampled from each of the clusters on the left. See the text for a discussion.

FIGURE 5 | Left: the 19 object models in the Toronto database which we use for our experiments in exemplar level recognition. Right: a selection of the 150 models
from the McGill 3D Shape Benchmark which we use for our experiments in category-level recognition. In total, we have 10 object classes with approximately 15
models in each.

occlusion, achieving 87% correct recognitionwith the shock graph
as the representation. We carry out similar experiments evaluat-
ing flux graph matching, shock graph matching, shape context-
based matching, and inner distance-based matching. Our goal is
to demonstrate that in a sparse model view selection scenario,
sampling these views from our view sphere partitions can boost
recognition performance in all cases.

The 19 Toronto database models are scaled to fit in a view
sphere having radius 1. On this sphere, we sample 128 views
using a particle repulsion based approach for node placement
(Saff and Kuijlaars, 1997). For each object, we construct a view
sphere tree with the following choices of parameters. First, the
minimum cluster size for partitioning is chosen to be 12 view
points. Thus, any cluster smaller than this size is not further
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partitioned. Second, the average within cluster pairwise similarity
threshold, where the pairwise similarities are obtained using the
DAG matcher, is set to 0.65 (on a scale from 0 to 1). Thus,
any cluster with an average pairwise similarity higher than this
threshold is not further subdivided. These view sphere partitions
are computed offline. In our experiments, we have evaluated both
the Normalized Cuts clustering algorithm of Shi andMalik (2000)
using the package at http://www.cis.upenn.edu/~jshi/software/
and the K-medoids algorithm based on the implementation at
http://www.mathworks.com/help/stats/kmedoids.html for clus-
tering. Both lead to very similar recognition performance for all
four shape matching methods; so both here and for category-
level recognition, we present results based on theNormalizedCuts
algorithm.

At recognition time, we match a query view against a sparse
set of 8 sample views for each model, representing about a 94%
reduction in view sphere nodes. These samples are chosen propor-
tional to cluster size, i.e., the number of samples taken from each
cluster depends on the area of that cluster relative to the entire
view sphere. The first sample from a cluster is chosen to be its
centroid, while the rest are picked randomly. The centroid of a
cluster is defined as that view whose average pairwise similarity
with all other views in the cluster is maximum. In what follows, we
refer to this geographical area-weighted view selection strategy as
partition sampling.

In the first set of experiments, wematch all 19× 128 views from
the database to the 19× 8 sample views, taking care not to ever
match a silhouette with itself. We find the best match and define it

to be correct if it corresponds to a view of the same object.We then
repeat this experiment and define the best match as the one with
the majority vote among n closest samples, with n varying from
1 to 30. In the second set of experiments, we match all 19× 128
views from the database to 8 views of each of the 19 objects
that are now chosen at random. The results of random sampling
(dashed lines) versus partition sampling (solid lines) are reported
in Figure 6 for shape context matching (green), inner distance
matching (purple), flux graph matching (blue), and shock graph
matching (red). It is striking that partition sampling consistently
boosts recognition performance over random sampling, i.e., the
solid lines are above the dashed counterparts. There is also strong
evidence that in a scenario of recognition from sparse model
views, skeletal (flux graph or shock graph) matching out perfor-
mances shape context-based matching and inner distance-based
matching. The results for shock graph matching are slightly better
than those for flux graph matching because the elastic matching
approach to geometric similarity between nodes inMacrini’s DAG
matcher is optimized for shock graphs.

4.1.2. Category-Level Recognition
Wenowcarry out amore ambitious set of recognition experiments
at the category level using a selection of 150 models from the
McGill 3D Shape Benchmark. The process is exactly the same as
that used for exemplar level recognition above, except that we
now have 150× 128 query views to match. A recognition trial
is assumed to be correct when the best match is with a model
within the same category. This task is inherently more challenging

FIGURE 6 | We compare view sphere partition sampling (solid lines) of model views against random sampling (dashed lines) of model views for four
shape matching methods applied to an exemplar level recognition task. See the text for a discussion.
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FIGURE 7 | We compare view sphere partition sampling of model views against random sampling of model views for four shape matching methods
applied to a category-level recognition task. See the text for a discussion.

than the exemplar level recognition task, due to the similarity in
shape between some of the object categories (e.g., four limbed and
dinosaur, as well as fish and dolphin) and also due to the signifi-
cant variation in shape within an object class (e.g., four limbed).
The results of random sampling (dashed lines) versus partition
sampling (solid lines) are reported in Figure 7 for shape context
matching (green), inner distance matching (purple), flux graph
matching (blue), and shock graph matching (red). Once again, it
is striking that partition sampling boosts recognition performance
over random sampling. Averaging over all the 150× 128 queries,
the improvement is from 59.60 to 71.70%, using shape context
matching, from 67.04 to 77.52% using inner distance matching,
from 85.52 to 89.18%, using flux graph matching and from 86.56
to 91.20%, using shock graph matching. The relative performance
of the four matching methods is similar to that for exemplar level
recognition, except that flux graphmatching is now almost on par
with shock graph matching.

4.1.3. Exploring Different Sampling Strategies
We now consider alternate model view sampling strategies for
both the exemplar and category level recognition experiments,
under the same sparse view scenario as before. We compare
four different approaches. In the first (VS1), the model views are
selected randomly fromauniformdistribution on the view sphere.
In the second (VS2), the model views are selected randomly from
our view sphere partitions, but with the number of views from
each partition being proportional to its size. The third approach
(VS3) is similar to the second, with the exception that the first view
from a partition is chosen to be its centroid. The fourth approach
(VS4) is similar to the third except that now additional views from
a partition, when required, are now selected in decreasing order of
average pairwise similarity to the other views in that partition. As

such the view sphere sampling strategies VS1 and VS3 are those
used in Sections 4.1.1 and 4.1.2, but VS2 and VS4 are new. The
results, averaged over all the objects, are presented in Figure 8 for
the four shape matching strategies at the exemplar level (left) and
the category level (right). These results demonstrate the impor-
tance of choosing the centroid as the first sample view. Notably,
as we move from random sampling (VS1) to random sampling
from partitions but with the number of views proportional to
partition size (VS2) the improvement is slight. However, when
moving toVS3, where the first view from a partition is its centroid,
we see a boost in performance of up to 10% in some cases. The
additional benefit of selecting subsequent views from a partition
in decreasing order of average pairwise similarity to the other
views in that partition (VS4) is only slight. This is likely because in
our sparsemodel view scenario notmany partitions end up having
more than one model view.

4.2. Flux Graphs Versus Shock Graphs
Whereas shock graphs outperform flux graphs for exemplar level
recognition, in part because of the optimization of the matcher
for them, the narrowing of this gap for category-level recogni-
tion combined with the simplicity of flux graphs offers certain
advantages. Using the 19 models in the Toronto database, but
now with 1000 views of each, and using a subset of 110 objects
of the 150 used for category-level recognition from the McGill
Shape Benchmark, but now with 1000 views of each, we compare
shock graphs using the publicly available code at http://www.
cs.toronto.edu/~dmac/download.html with flux graphs using a
number of complexitymeasures: the average number of nodes, the
average number of edges, the average depth, the average number of
skeletal points, and the average TSV (topological signature vector)
component values. The results, presented as fluxgraph

shockgraph ratios in
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FIGURE 8 | We compare recognition performance under different sampling strategies, with the results averaged over all the objects in the database
at the exemplar level (left) and the category level (right). See the text for a discussion.

FIGURE 9 | We plot the ratio of several complexity measures between flux graphs and shock graphs, as percentages, for the Toronto database of
19 models with 1000 views of each (19,000 silhouettes in total) and for 110 models from the McGill 3D Shape Benchmark with 1000 views of each
(110,000 silhouettes in total). See the text for a discussion.

Figure 9, show similar trends for both databases: flux graphs have
40% or fewer edges and nodes than shock graphs and 30% fewer
skeletal points.

4.3. Running Time Complexity
We now consider how the matching methods evaluated in this
paper stand against one another in terms of running time com-
plexity. The task of recognition is divided into two parts: repre-
sentation creation and matching a query representation against
another one. For both flux graphs and shock graphs, a skeletal
graph is constructed for each view and is stored in memory.
For shape context and inner distance, we extended the original
implementations to avoid repetition during the matching phase.
In particular, for each silhouette, we compute the representation
histograms first and store these in memory. Since each query
silhouette is matched against a very large database of views, this
preliminary step of precomputing and storing the histograms
speeds up the matching phase considerably.

To measure the running time of these algorithms, we consid-
ered the following set up: 3 different views were selected randomly

FIGURE 10 | Running time complexity for the four shape matching
algorithms. See the text for a discussion.

from each of the 150 models from the McGill 3D Shape Bench-
mark. One of these views was added to the query set and the other
two to the model set. Thus, we had a total of 450 silhouettes. For
each of the four methods, we then measured the time to (a) create
the representations and (b) match the query against the model
views. During the matching phase, we matched the 150 queries
views to each of the 300 model views. The total running time,
in seconds, is listed in Figure 10. All the experiments were per-
formed on a PC with a 2.4-GHz Intel(R) Core(TM) i7-4700MQ
CPU, 8GB RAM, an NVIDIA GeForce GT 750M graphics card,
and a 250-GB SSD disk. For these measurements, we used
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Windows 8.1 Pro. To generate a fair comparison, the input sil-
houettes were normalized to have the same resolution and initial
number of boundary points.

These results show that flux graphs and shock graphs are
slower to compute than representations based on shape context
or inner distance. However, flux graph and shock graph match-
ing, using Macrini’s DAG matcher, are significantly faster than
inner distance-based matching or shape context-based matching.
This may in part due to the actual complexity of the associated
algorithms in terms of number of operations but also in part
due to the fact that the DAG matcher package is implemented in
C/C++, while the others are designed to be user friendly and use
non-optimized code, e.g., based on Matlab.

5. DISCUSSION

In the present article, we have demonstrated the promise of view
sphere partitioning for 3D recognition from sparse views, by
the hierarchical application of a clustering algorithm on pairwise
similarities computed between flux graphs. Our experiments at
the exemplar level on the Toronto model database (19× 128
silhouettes) and at the category level on a selection of objects
from the McGill 3D Shape Benchmark (150× 128 silhouettes)
demonstrate the consistent improvement possible by partition
sampling of model views during the recognition phase, using the
generated view sphere partitions. This improvement applies to
each of the four shape matching algorithms we have evaluated:

shape context-based matching, inner distance-based matching,
flux graph matching, and shock graph matching.

Our work suggests a number of fruitful directions for further
research, having to do with the use of precomputed view sphere
partitions in online recognition scenarios. Clearly, there is rich
information contained in the silhouette of an object by which to
facilitate 3D recognition and with 3D point cloud data of real
3D objects now within reach of computer vision researchers via
Kinect type sensors, offline computation of view sphere partitions
is becoming feasible. We conjecture that as the object recognition
community seeks to advance view-based recognition strategies to
handle arbitrary but sparse views of objects, we will see a return to
the application of themany good ideas that were alive two decades
ago in the aspect graph literature.
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