
August 2016  |  Volume 3  |  Article 151

Technology Report
published: 24 August 2016

doi: 10.3389/fict.2016.00015

Frontiers in ICT  |  www.frontiersin.org

Edited by:
Florence Forbes,

INRIA, France

Reviewed by:
Suyash P. Awate,

Indian Institute of Technology
Bombay, India

Avan Suinesiaputra,
University of Auckland, New Zealand

*Correspondence:
Hakim C. Achterberg

h.achterberg@erasmusmc.nl

Specialty section:
This article was submitted to

Computer Image Analysis,
a section of the journal

Frontiers in ICT

Received: 15 April 2016
Accepted: 03 August 2016
Published: 24 August 2016

Citation:
Achterberg HC, Koek M and

Niessen WJ (2016) Fastr:
A Workflow Engine for

Advanced Data Flows in
Medical Image Analysis.

Front. ICT 3:15.
doi: 10.3389/fict.2016.00015

Fastr: A Workflow engine for Advanced
Data Flows in Medical Image Analysis
Hakim C. Achterberg1*, Marcel Koek1 and Wiro J. Niessen1,2

1 Biomedical Imaging Group Rotterdam, Departments of Medical Informatics and Radiology, Erasmus MC, Rotterdam,
Netherlands, 2 Imaging Science & Technology, Faculty of Applied Sciences, Delft University of Technology, Delft, Netherlands

With the increasing number of datasets encountered in imaging studies, the increasing
complexity of processing workflows, and a growing awareness for data stewardship,
there is a need for managed, automated workflows. In this paper, we introduce Fastr,
an automated workflow engine with support for advanced data flows. Fastr has built-in
data provenance for recording processing trails and ensuring reproducible results. The
extensible plugin-based design allows the system to interface with virtually any image
archive and processing infrastructure. This workflow engine is designed to consolidate
quantitative imaging biomarker pipelines in order to enable easy application to new data.

Keywords: workflow, pipeline, data processing, provenance, reproducible research, distributed computing, data
flow, Python

1. INTRODUCTION

In medical image analysis, most methods are no longer implemented as a single executable, but as a
workflow composed of multiple programs that are run in a specific order. Each program is executed
with inputs that are predetermined or resulting from the previous steps. With increasing complexity
of the methods, the workflows become more convoluted and encompass more steps. This makes
execution of such a method by hand tedious and error-prone, and makes reproducing the exact chain
of processing steps in subsequent studies challenging. Therefore, solutions have been created that are
based on scripts that perform all the steps in the correct order.

In population imaging, data collections are typically very large and are often acquired over
prolonged periods of time. As data collection is going on continuously, the concept of a “final”
dataset is either non-existent or defined after a very long follow up time. Commonly, analyses on
population imaging datasets, therefore, define intermediate cohorts or time points. To be able to
compare intermediate cohorts, all image analysis methods need to produce consistent results over
time and should be able to cope with the ever growing size of the population imaging. Therefore, the
process of running analysis pipelines on population imaging data needs to be automated to ensure
consistency and minimize errors.

When different population imaging cohorts are combined in multi-center imaging studies or
imaging biobanks (e.g., ADNI (Mueller et al., 2005), OASIS (Marcus et al., 2007b), The Heart-Brain
Connection (van Buchem et al., 2014) and BBMRI-NL2.01) where data are often acquired from
different scanners, the challenge of ensuring consistency and reliability of the processing results also
calls for automated processing workflows.

Traditionally, this is accomplished by writing scripts created specifically for one processing
workflow. This can work well, but generally the solutions are tailor-made for a specific study and
software environment. This makes it difficult to apply such a method to different data or on a

1 http://www.bbmri.nl

http://www.frontiersin.org/ICT/
http://crossmark.crossref.org/dialog/?doi=10.3389/fict.2016.00015&domain=pdf&date_stamp=2016-08-24
http://www.frontiersin.org/ICT/archive
http://www.frontiersin.org/ICT/editorialboard
http://www.frontiersin.org/ICT/editorialboard
http://dx.doi.org/10.3389/fict.2016.00015
http://www.frontiersin.org/ICT/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:h.achterberg@erasmusmc.nl
http://dx.doi.org/10.3389/fict.2016.00015
http://www.frontiersin.org/Journal/10.3389/fict.2016.00015/abstract
http://www.frontiersin.org/Journal/10.3389/fict.2016.00015/abstract
http://loop.frontiersin.org/people/338618/overview
http://loop.frontiersin.org/people/350483/overview
http://loop.frontiersin.org/people/174302/overview
http://www.bbmri.nl

TABLE 1 | A overview of workflow systems and the important features of each.

Workflow software

Name Open-source Language Data flow Tools Tool versioning Citation

CBrain Yes Ruby Simple Binaries Yes Sherif et al. (2015)
Fastr Yes Python Advanced Binaries Yes
Galaxy Yes Python Simple Binaries Yes Goecks et al. (2010)
KNIME Yes Java Advanced Wrappers for Java,

Python, Perl code
No Berthold et al. (2008, 2009)

LONI pipeline No Java Advanced Binaries Yes Rex et al. (2003), Dinov et al. (2010)
Nipype Yes Python Advanced Binaries No Gorgolewski et al. (2011)
Taverna Yes Java Advanced Webservices No Oinn et al. (2006)
XNAT pipeline engine Yes Java Simple Binaries No Marcus et al. (2007a)

The column Data Flow can have the value simple or advanced. Simple means the workflow system supports only sequential data flows whereas advanced indicates support for
more complex data flows (e.g., the data flows in Section 2.3).

2

Achterberg et al. Fastr Workflow Engine

Frontiers in ICT  |  www.frontiersin.org August 2016  |  Volume 3  |  Article 15

different infrastructure than originally intended. With evolving
computational resources, in practice this approach is, therefore,
not reproducible and difficult to maintain. Additionally, for trans-
parency and reproducibility of the results, it is very important to
know exactly how the data were processed. To accomplish this, a
comprehensive data provenance system is required.

Writing a script that takes care of all the aforementioned
issues is a challenging and time consuming task. However, many
of the components are generic for any type of workflow and do
not have to be created separately for each workflow. Workflow
management systems can be used to address these issues. These
systems help formalize the workflow and can provide features,
such as provenance as part of the framework, removing the need
to address these for every separate workflow.

For our use cases, we desire a workflow management system
that works with the tools found in the domain of image analy-
sis, can handle advanced data flows (explained more in detail
in section 2.3), has strong provenance handling, can handle
multiple version of tools, flexible execution backend, and can be
embedded in our infrastructure. There are already a number of
workflow systems available, but none of them fit all our criteria
(see Table 1).

The most notable open-source, domain-specific workflow
system that we are aware of is Nipype (Gorgolewski et al., 2011),
which is aimed at creating a common interface for a variety of
neuroimaging tools. It also features a system for creating work-
flows. The tool interfaces of Nipype are elaborate, but Nipype only
tracks the version of tools, but does not manage it. This means the
system is only aware of the currently installed version of the tool,
and cannot offer multiple versions simultaneously.

LONI pipeline (Rex et al., 2003; Dinov et al., 2010) and CBrain
(Sherif et al., 2015) also have been developed for the domain of
medical image analysis. They include workflow engines, but
these systems are part of larger environments that includes data
management and processing backends. This makes it difficult to
integrate in our infrastructure. Furthermore, LONI is closed-
source, which makes it even more difficult to integrate it.

The XNAT storage system also has a related workflow system
called XNAT pipeline engine (Marcus et al., 2007a). The pipe-
line engine is integrated nicely with the XNAT storage system
and works with simple data flows. However, it does not handle
advanced data flows and does not provide tool versioning.

Besides the workflow systems specific for the domain of medi-
cal image analysis, there are a number of other notable workflow
systems that are either domain-independent or have been
created for a different domain. Taverna (Oinn et al., 2006) and
KNIME (Berthold et al., 2008, 2009) are well-known and mature
workflow management systems. These systems are domain-
independent, but mostly used in the bioinformatics field. Their
support for local binary targets is limited and, therefore, not
suitable for using most medical imaging analysis tools. KNIME
needs tools to be created with their API and Taverna is mostly
focused on web services.

Finally, Galaxy (Goecks et al., 2010) is a web-based workflow
system for bioinformatics. It is mainly focused on next-generation
sequencing (NGS). It has a large repository of tools, web interface,
and large support in their domain. However, the system is not
designed for batch processing and it does not support complex
data-flows.

We developed an image processing workflow framework for
creating and managing processing pipelines: Fastr. The frame-
work is designed to build workflows that are agnostic to where the
input data are stored, where the resulting output data should be
stored, where the steps in the workflow will be executed, and what
information about the data and processing needs to be logged for
data provenance. To allow for flexible data handling, the input
and output of data are managed by a plugin-based system. The
execution of the workflow is managed by a pluggable system as
well. The provenance system is a built-in feature that ensures a
complete log of all processing steps that led to the final result.

In the following section, we discuss the design of Fastr.
In Section 3, we present the resulting software. Finally, we discuss
related work and future directions in section 4.

2. DESIGN

The Fastr workflow design follows similar principles as flow-
based programing (Morrison, 2010). This paradigm defines
applications as a network of black boxes, with predefined con-
nections between the black boxes that indicate the data flow. The
black boxes can be reordered and reconnected to create different
workflows. However, it should be noted that other aspects of the
paradigm are not met, so our design can at most be considered to
have flow-based programing aspects.

http://www.frontiersin.org/ICT/
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive

3

Achterberg et al. Fastr Workflow Engine

Frontiers in ICT  |  www.frontiersin.org August 2016  |  Volume 3  |  Article 15

In Fastr, the workflow is described as a Network, which is
a directional acyclic graph. The Nodes of this Network are
based on templates that we call Tools. These Nodes can be
interpreted as the black boxes from the flow-based programing
paradigm. In the next subsection, we will discuss the Tools
in more detail. After that, we will describe the Network and
its components in more detail using an example from medical
image analysis.

2.1. Tools
In Fastr, the Tools are the blueprints for the Nodes: they
describe the input, output, and behavior of the Node. The Tools
are composed of three main parts: general metadata, a target, and
an interface. The Tools are stored as XML or JSON files. An
example of a simple Tool that adds two list of integers element-
wise is given in Listing 1. The general metadata contains informa-
tion about the Tool, such as id, version, author, and license. The
target describes how to set the execution environment properly,
e.g., by setting the correct search path to use a specific version
of the software. The interface describes the inputs and outputs
of a Tool and how the Tool executes given a set of inputs and
outputs.

The tools are specified in a schema. This schema validates
the internal python data structures (after conversion from XML
or JSON) and is specified as a JSON schema. The schemas are
located in the source code. There is a schema for the general
Tool2 and a schema for the FastrInterface.3 Other types
of Interfaces can also defined by their own data schema
files.

Listing 1. The XML code that defines the AddInt Tool. Note
that though it might seem the two author entries are redundant
or conflicting, the first one states the author of the Tool descrip-
tion file, whereas the second states the author of the underlying
command (addint.py in this case).

<tool id="AddInt" name="Add two integers"
 ↪ version="1.0">
<description>Add two integers together.
</description>
<authors>
<author name="Hakim Achterberg"

↪ email="h.achterberg@erasmusmc.nl"
↪ url="http://www.bigr.nl/people/
HakimAchterberg"/>

</authors>
<command version="0.1" url="">
<targets>

<target os="*" arch="*"
↪ interpreter="python" paths="./"
↪ bin="addint.py"/>

</targets>

2 https://bitbucket.org/bigr_erasmusmc/fastr/src/default/fastr/resources/schemas/
Tool.schema.json
3 https://bitbucket.org/bigr_erasmusmc/fastr/src/default/fastr/resources/schemas/
FastrInterface.schema.json

<description>
addint.py value1 value2
output = value1 + value2

</description>
<authors>

<author name="Marcel Koek"
↪ email="m.koek@erasmusmc.nl"
↪ url="http://www.bigr.nl/people/
MarcelKoek"/>

</authors>
</command>
<repository/>
<interface>
<inputs>

<input id="left_hand" name="left hand
↪ value" datatype="Int" prefix="––
↪ in1" cardinality="1-*" repeat_
↪ prefix="false" required="true"/>

<input id="right_hand" name="right
↪ hand value" datatype="Int"
↪ prefix="––in2"
↪ cardinality="as:left_hand"
↪ repeat_prefix="false"
↪ required="true"/>

</inputs>
<outputs>

<output id="result"
↪ name="Resulting value"
↪ datatype="Int" automatic="True"
↪ cardinality="as:left_
↪ hand" method="json"
↪ location="∧RESULT=(.*)$">

<description>The summation of
↪ left_hand and right_hand.
</description>

</output>
</outputs>

</interface>
</tool>

The content of the interface tag depends on the class of
Interface used. The default Interface class in Fastr cre-
ates a call to a command-line program given the set of Inputs and
Outputs. In the example, there are two inputs and one output. In
Fastr, the minimal information required for an Interfaces
to function is the id, cardinality and data type for each Input and
Output. The cardinality is the number of values a sample contains
(e.g., an argument requiring a point in 3D space, represented by
three float values, would have a cardinality of 3).

In Fastr, there is a notion of datatypes: each input and output
has a (set of) data types it accepts or produces. The datatypes in
Fastr are plugins that, in the simplest form, only need to expose
their id, but can be extended to include functionality, such as
validators and handlers for multi-file data formats. Data types
can be simple values or point to files.

Fastr checks if the datatypes of a linked input and output are
(or at least can be) compatible. In addition, data types can be

http://www.frontiersin.org/ICT/
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive
http://www.bigr.nl/people/HakimAchterberg
http://www.bigr.nl/people/HakimAchterberg
https://bitbucket.org/bigr_erasmusmc/fastr/src/default/fastr/resources/schemas/Tool.schema.json
https://bitbucket.org/bigr_erasmusmc/fastr/src/default/fastr/resources/schemas/Tool.schema.json
https://bitbucket.org/bigr_erasmusmc/fastr/src/default/fastr/resources/schemas/FastrInterface.schema.json
https://bitbucket.org/bigr_erasmusmc/fastr/src/default/fastr/resources/schemas/FastrInterface.schema.json
mailto:m.koek@erasmusmc.nl
http://www.bigr.nl/people/MarcelKoek
http://www.bigr.nl/people/MarcelKoek

FIGURE 1 | Example Network representing a single atlas-based segmentation workflow implemented using the open source Elastix image
registration software. Green boxes are Source Nodes, purple Constant Nodes, gray normal Nodes, and blue Sink Nodes. Each Node contains two
columns: the left column represents the inputs, the right column represents the outputs of the Node. The arrows indicate links between the inputs and outputs. This
image was generated automatically from the source code.

4

Achterberg et al. Fastr Workflow Engine

Frontiers in ICT  |  www.frontiersin.org August 2016  |  Volume 3  |  Article 15

grouped, which is useful for groups of programs using a com-
mon (io) library (for example, programs created with The Insight
Segmentation and Registration Toolkit4 (Yoo et al., 2002) can
read/write a number of images formats that we grouped together
in a pseudo-datatype).

2.2. Networks
After Tools are defined, a workflow can be created by linking
a set of Tools that results in a Network. Once a Network is
defined, it can be executed. Figure 1 shows a graphic representa-
tion of an atlas-based segmentation workflow, using the image
registration software Elastix (Klein et al., 2010). Elastix can
register two images by optimizing the transformation applied to
a moving image to match it to a fixed reference image.

There are different classes of Nodes: normal Nodes (gray
blocks in Figure 1), Source Nodes (green), Constant Nodes
(purple), and Sink Nodes (blue). Data enter the Network
through a Source Node and leave the Network through a
Sink Node. A Constant Node is similar to the Source
Nodes, but has its data defined as part of the Network. When
a Network is executed, the data for the Source Nodes and
Sink Nodes has to be supplied. The specifics of the Source
Nodes and Sink Nodes will be discussed in section 2.4. The
normal Nodes process the data as specified by the Tool.

The data flow in the Network is defined by links (the arrows
in Figure 1). A link is a connection between the output of a Node
and the input of another Node. A link can manipulate the flow of
the data, which will be discussed in section 2.3.

The Nodes and links in the Network form a graph from
which the dependencies can be determined for the execution

4 www.itk.org

order. Since all Nodes are black-boxes that can operate inde-
pendently of each other, this allows for Nodes to be executed in
parallel as long as the input dependencies are met.

2.3. Data Flow
In Fastr, a sample is defined as the unit of data that are presented to
an input of a Node for a single job. It can be a simple scalar value, a
string, a file, or a list of the aforementioned types. For example, in the
addint Tool presented in Listing 1, the left_hand and right_hand
inputs of the Tool are required to be (lists of) integers. The result
output will generate a sample that contains a list of integers. As the
cardinality of right_hand and result are defined to be the same as
the left_hand, they will all have to same length.

Fastr can handle multiple samples on a specific input. Figure 2
shows examples of how Fastr handles inputs with multiple samples
and in which output samples this results. The inputs and output
names are abbreviated as lh for left_hand, rh for right_hand and
res for result. In Figure 2A, we present the simplest situation, in
which one sample with one value is offered to each input and one
sample with one value is generated. In Figure 2B, the left_hand
and right_hand inputs have one sample with two values. The
result is a sample with two values, as one result value is created
per input value.

To facilitate batch processing, a Node can be presented with
a collection of samples. These collections are multi-dimensional
arrays of samples. In Figure 2C, we depict a situation where
three additions are performed. Three samples are offered to the
left_hand input and one sample is offered to the right_hand input.
This results in three samples: each sample of the left_hand input
was used in turn, whereas the samples for the right_hand were
considered constant. In Figure 2D, there are three samples for the
left_hand and right_hand inputs. The result is again three samples,

http://www.frontiersin.org/ICT/
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive
www.itk.org

A B

DC

FIGURE 2 | Illustration of the data flows in a Node. Each rectangle is a sample, and a block of rectangles represents a sample collection. The value is printed in
each rectangle, where the commas separate multiple values. The samples lh are offered to the left_hand input, the sample rh to right_hand input. The sample res is
generated for the result output. The subscript of sample res indicates which input samples were used to generate the result.

5

Achterberg et al. Fastr Workflow Engine

Frontiers in ICT  |  www.frontiersin.org August 2016  |  Volume 3  |  Article 15

as now each pair of samples from left_hand and right_hand inputs
was taken.

This is useful for simple batch processing where a task should
be repeated a number of times for different input values. However,
in certain situation (e.g., multi-atlas segmentation), it is required
to register every fixed image to every moving image. To simplify
this procedure, Fastr can switch from pairwise behavior to cross
product behavior. In Figure 3, this is depicted graphically. Every
combination of left_hand and right_hand sample is used for
registration and the result is a two-dimensional array of transfor-
mation samples that in turn contain two transformations each.

Sometimes a Tool outputs a sample with a higher cardinality
that should be treated as separate samples for further processing,
or conversely a number of samples should be offered as a single
sample to an input (e.g., for taking an average). For this, Fastr
offers two flow directives in data links. The first directive is expand,
which indicates that the cardinality is to be transformed into a
new dimension. This is illustrated in the left side of Figure 4. The
second directive is collapse, which indicates one or more dimen-
sions in the sample array should be collapsed and combined
into the cardinality. This process is illustrated in the right side of
Figure 4. These flow directives allow for more complex dataflows
in a simple fashion and enable users to implement MapReduce
type of workflows.

2.4. Data Input and Output
The starting points of every workflow are Source Nodes, in
which the data are imported into the Networks. Similarly, the
endpoints of every workflow are the Sink Nodes, which export
the data to the desired location. When a Network is constructed
only the data type for the Source Nodes and Sink Nodes
needs to be defined. The actual definition of the data is done at
runtime using uniform resource identifiers (URI).

Based on the URI scheme, the retrieval and storage of the
data will be performed by a plugin. Consider the following two
example URIs:

vfs://mount/some/path/file1.txt
xnat://xnat.example.com/data/archive/

projects/sandbox/subj...

The schemes (in red) of these URI indicate by which plugin
the retrieval or storage of the data is handled. For the first

URI, vfs indicates that the URI will be handled by the Virtual
File System plugin. For the second URI, xnat indicates that
the URI will be handled by the XNAT storage plugin. These
plugins implement the methods to actually retrieve and store
the data. The remainder of the URI is handled by the plugin, so
the format of the schemes URI format is defined by the plugin
developer.

Plugins can also implement a method to expand a single URI
into multiple URIs based on wildcards or searches. In the follow-
ing example, URIs we use wildcards (shown in blue) to retrieve
multiple datasets in one go:

xnat://xnat.example.com/search?projects=test
&subjects=s[0-9]...

vfsregexp://tmp/network_dir/.*/.*/__fastr_
result__.pickle.gz

The XNAT storage plugin has a direct storage as well as search
URI scheme defined. The VFS regular expression plugin uses
the regexp filter to generate a list of matching vfs URIs. This
illustrates that a plugin can expand a url into urls of a differ-
ent type, and the newly generated urls will be handled by the
appropriate plugin.

The use of URIs makes the Network agnostic to the location
and storage method of the source and target data. Also, it allows
easy loading of large amounts of resources using wildcards, csv
files or search queries.

Currently, Fastr includes plugins for input/output from the
(virtual) file system, csv files and XNAT. New plugins can be cre-
ated easily as there are only a few methods that need overwriting.
It is also possible to make plugins that can only read data, only
write data, or only perform search queries. This allows users to
create plugins purely for reading or writing.

Fastr does not include a credential store or other solution for
authentication. For all Network based input/output plugins
(e.g., the XNAT plugin) a netrc file stored in the user’s home
directory is used for authentication. However, for running Fastr
on a grid without a shared network drive this might lead to
problems.

2.5. Execution
The Fastr framework is designed to offer flexible execution of
jobs. The framework analyzes the workflow and creates a list of

http://www.frontiersin.org/ICT/
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive

FIGURE 5 | An overview of the execution components in Fastr. The
Network controls the main execution, it sorts the Nodes required and
executes those, resulting in a list of jobs to be run. The jobs are dispatched
via an execution plugin. The job is then executed. On execution, all
arguments are translated to values and paths that the Tool can use. The
Tool then sets the environment and, finally, calls the Interface for the actual
running of the underlying task.

FIGURE 4 | Collapsing and expanding flows. The start situation on the left expands to the situation in the middle after which data collapses the first dimension.
Note that in the middle situation there is an empty place in the sample collection (top right). This is possible due to a sparse array representation of the sample
collections. This results in two samples with different cardinality in the right-most situation.

FIGURE 3 | Illustration of the data flows in a Node that has multiple input groups. The default operator creates a new sample for each combination of input
groups.

6

Achterberg et al. Fastr Workflow Engine

Frontiers in ICT  |  www.frontiersin.org August 2016  |  Volume 3  |  Article 15

jobs, including dependencies, that need to be executed. Then
it dispatches the jobs to an execution plugin. The plugins can
run jobs locally or dispatch them to an execution system, such
as a cluster, grid, or cloud. A different plugin can be selected
for each run allowing for easy switching of the execution
backend.

The Fastr execution system consists of a number of compo-
nents that work together in a layered fashion (see Figure 5). The
execution starts when the Network execute method is called.
We will call the machine on which the Network execution is
started the Submit Host.

Fastr analyzes the Network and divides it in chunks that
can be processed further. For each chunk, the Network
determines in what order the Nodes have to be processed
and then executes the Nodes in the correct order. When a
Node is executed, it analyzes the samples on each input and
creates a job for each combination input (as specified by the
data flow directives).

Jobs contain all information needed to run a single task (e.g.,
input/output arguments, Tool used, etc). The jobs are then
dispatched by an execution plugin. The plugin can run the job
remotely (e.g., on a compute cluster or cloud) or locally (in which
case the Submit Host and Execution Host are the same).

Jobs are executed on the Execution Host, and during this step
the arguments are translated from urls to actual paths/values.
Subsequently, the Tool sets the environment for execution
according to the target specification and invokes the interface.
The interface executes the actual Tool commands. Once the
interface returns its results, they are validated and the paths in
the results are translated back into urls.

Once the job execution is finished, the execution plugin will
trigger a callback on the Submit Host that reads the job result
and updates the Network accordingly. If a chunk is finished,
the Network will process the next chunk, using the updated
information. If all chunks are finished, the Network execution
is done.

Currently, Fastr supports functional plugins for processing
locally and on a cluster (using the DRMAAv1 API5). Future
plugins will focus on flexible middleware for grid/cluster/cloud,
like Dirac,6 that offer support for a wide range of systems. For
creating a new plugin, five methods need to be implemented: an

5 http://www.drmaa.org
6 http://diracgrid.org

http://www.frontiersin.org/ICT/
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive
http://www.drmaa.org
http://diracgrid.org

FIGURE 6 | The three base classes of the provenance data model with their relating properties. The agents are orange pentagons, the entities are yellow
ovals and the activities are depicted as blue squares. This image is copied from PROV-O: The PROV Ontology. Copyright © 2015 W3C® (MIT, ERCIM, Keio,
Beihang). http://www.w3.org/Consortium/Legal/2015/doc-license

7

Achterberg et al. Fastr Workflow Engine

Frontiers in ICT  |  www.frontiersin.org August 2016  |  Volume 3  |  Article 15

initialization and a cleanup method as well as methods for queu-
ing, releasing and canceling a job.

2.6. Provenance
Data provenance is a built-in feature of Fastr and is based on an
implementation of the W3C PROV-DM: Prov Data model recom-
mendation (Belhajjame et al., 2013). Fastr records all relevant
data during execution and ensures that for every resulting file a
complete data provenance document is included. The standard
format of a provenance document is PROV-N, which can be
serialized to PROV-JSON or PROV-XML.

In Figure 6, the three base classes and the properties of how
they relate to each other are illustrated. For Fastr, Networks,
Tools, and Nodes are modeled as agents, jobs as activi-
ties and data objects as entities. The relating properties are
naturally valid for our workflow application. The hierarchy
and topology of the Network follows automatically from
the relating properties between the classes, but in order to
make the provenance document usable for reproducibility,
extra information is stored as attributes on the classes and
properties. For every Tool, the version is stored. For every
data sample, the value or file path and a checksum is stored.
For every job, the start and end time of execution, the stdout
and stderr logs are stored, the end status (success, success
with warnings, failed, etc.), and an exhaustive description of
the execution environment.

2.7. Visualization
To give the user insight in the data flow through the Network,
it is possible to visualize the Network using graphviz (Gansner
and North, 2000). The figures in this paper that show examples
of Networks (Figures 1 and 7) are generated automatically by
Fastr. Fastr plots the Tool as a collection of inputs and outputs
and draws the links between them.

Because Fastr allows for more advanced data flows, there is a
few visualization options that can aid users in validating the data
flow. First, the color of a link changes if the flow in the Link is
different. Second, there is an option to draw the dimension sizes
in a Network. This shows the number of dimension and the
expected size (as symbols). A simple example of the visualization
of a more advanced dataflow is given in Figure 7.

3. EVALUATION

A functional version of Fastr is available from https://bitbucket.
org/bigr_erasmusmc/fastr. Fastr is open-source and free to use
(under the Apache license 2.0). The framework is written in
Python and easy to install using the python package index (pip
install)7 or using the included setuptools from the source dis-
tribution. Fastr is platform independent and runs on Linux, Mac,
and Windows environments. However, Linux support is much
more stable, since that is the platform used in most processing
environments.

Documentation is available at http://fastr.readthedocs.io; it
includes a quick start tutorial, a user manual and a developer
reference of the code. The documentation is built using Sphinx.

The Fastr software is composed of core modules and plugins.
The core modules implement the networking, data flow, and
interfacing with the plugins. The plugins provide the data input/
output, and execution functionality. Fastr is tested for code qual-
ity using both unit tests and functional tests. The unit tests are
limited to the core modules and ensure the integrity of the core on
a fine grained level. The functional testing covers the building and
execution of small Networks. The functional tests validate the
functional requirements of Fastr. Both the unit and the functional

7 https://pypi.python.org/pypi/fastr

http://www.w3.org/Consortium/Legal/2015/doc-license
http://www.frontiersin.org/ICT/
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive
https://bitbucket.org/bigr_erasmusmc/fastr
https://bitbucket.org/bigr_erasmusmc/fastr
http://fastr.readthedocs.io
https://pypi.python.org/pypi/fastr

FIGURE 7 | An example of flow visualization. The colored arrows indicate the flow directive in the link: red for expand, blue for collapse, and purple for a
combination of both. After each input and output, the dimensions are printed in square bracket. In this workflow, the dimensions N and O should match, but the
system can only validate this at runtime.

8

Achterberg et al. Fastr Workflow Engine

Frontiers in ICT  |  www.frontiersin.org August 2016  |  Volume 3  |  Article 15

tests are performed continuously using the continuous integra-
tion framework Jenkins.8

Currently, we are using Fastr for a number of workflows for
several single-center and multi-center studies. For example, the
Rotterdam Scan Study (Ikram et al., 2011), containing over 12.000
scan sessions, uses a analysis pipeline implemented in Fastr for
the preprocessing, tissue type segmentation, white matter lesion
segmentation and lobes segmentation of brain MR images (see
Figure 8). The data are fetched from the archive and is processed
in a cluster environment. The resulting data are stored in an image
archive.

Fastr has been used to run this workflow on new batches of
subjects since mid 2015. Its performance has proven to be very
stable as the workflow always succeeded. The overhead is limited
as the Fastr workflow engine uses only a fraction of the resource
compared the underlying Tools.

4. DISCUSSION

With Fastr we created a workflow system that allows users to
rapidly create workflows. The simple access to advanced features
makes Fastr suitable for both simple and complex workflows.
Workflows created with Fastr will automatically get data prove-
nance, support for execution on various computational resources,
and support for multiple storage systems. Therefore, Fastr speeds
up the development cycle for creating workflows and minimizes
the introduction of errors.

Fastr offers a workflow system that works with tools that can
really be black boxes, they do not need to implement a specific
API as long as their inputs and outputs can be defined. Fastr can
manage multiple versions of tools, as we believe it is important to
be able to keep an environment where all the old versions of tools
are available for future reproducibility of the results. Additionally,
it provides provenance records for every result for reproducibility
of the experiments. Batch processing and advanced data flows are
at the core of Fastrs design. Fastr communicates with processing
backends and data providers via plugins allowing interoperability
with other components of research infrastructures.

8 https://jenkins.io

4.1. Workflow Languages
Most workflows systems and languages are simpler with respect
to data flow. However, there are two languages that have features
similar to that of Fastr. Taverna, using the SCUFL2 language, has
a concept of a dot product or cross product for input ports. This is
equivalent to the use of input groups in Fastr. Also the MOTEUR
(Glatard et al., 2008) system, using the GWENDIA (Montagnat
et al., 2009) language, has the same cross product and dot product
concepts.

A main difference between Fastr and the other two languages
is that Fastr describes the data as N-D arrays, and a cross product
increases the number of dimensions, whereas GWENDIA and
SCUFL2 follow the list (of lists) principle. Of course, a list of lists
can be seen as a 2D array, but that is not used by the aforemen-
tioned languages.

There is also the recent effort of the Common Workflow
Language, CWL (Amstutz et al., 2016). The CWL includes a
specification for tools and workflows. The CWL has a support
for an optional scatter directive. This allows a cross product type
of behavior. However, this is not part of main specification, but
rather an optional feature.

4.2. Limitations
The Fastr workflow system has been created with some clear
goals, but there are also some limitations in the design. First of
all, our design is created with automated processing workflows in
mind and there is no support for interactive steps in the workflow.
This is a design choice and there are no plans to address this issue.

Maybe the largest drawback of Fastr is that as a new system
the amount of Tools available is limited. The Tool wrappers
and interfaces are very flexible, but compared to systems as LONI
pipeline and Nipype there is a lack of resources. This is a problem
any new system faces and we believe that in time this issue will
be resolved.

A similar issue is the limited number of execution backend
plugins. The system is plugin based and has the potential to
support almost any computational resource, but currently only
supports local execution and cluster environments. We will add
new plugins whenever a project requires one, but do not aim to
create many additional plugins on the short term. For grid execu-
tion, this could be more challenging due to the lack of credentials

http://www.frontiersin.org/ICT/
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive
https://jenkins.io

FIGURE 8 | The graphical overview of the processing pipeline used for the Rotterdam Scan Study. It performs brain masking, bias field correction,
segments the brain tissues, white matter lesions, and different lobels of brain.

9

Achterberg et al. Fastr Workflow Engine

Frontiers in ICT  |  www.frontiersin.org August 2016  |  Volume 3  |  Article 15

management in Fastr. Currently, we do not facilitate advanced
credential storage, which is often an important requirement in
grid computing.

The system is currently completely command-line based and
offers no graphical user interface (GUI). Since the focus of Fastr
is batch processing, the target environments are mostly headless.
It is good practice to completely decouple core functionality from
the user interface, especially when running in headless environ-
ments. Therefore, we decided to spend our time on creating a
solid workflow engine before creating a GUI. We believe that the
tooling can always be added and improved later, but that the core
design limitations are generally harder to solve in the future. We
plan on adding more (graphical) tools that provide more conveni-
ent user interaction in the future.

And finally, we are not satisfied with our current test code
coverage. We have test for some core functionally, but the code
coverage of the unit tests on the low side. This is partially offset
by the functional testing, but we feel we should improve the test
code coverage to avoid technical debt.

4.3. Future Directions
Because of the differences in design philosophy, Fastr and
Nipype are complementary in focus: Fastr is created for managed
workflows and has tools and interfaces as a necessity, whereas the
interfaces are the primary focus of Nipype. Considering that there
are many interfaces available for Nipype, we created a prototype
NipypeInterface in Fastr, which allows Tools in Fastr to use
Nipype for the interface. This is still experimental and there are
still some limitations because Nipype and Fastr have incompat-
ible data type systems.

Another option to increase the amount of tools available is to
start supporting Boutiques.9 Boutiques are an application reposi-
tory with a standard packaging of tools, so that they can be used
on multiple platforms. The boutiques applications are somewhat
similar to Fastr Tools, as they describe the inputs and output

9 http://boutiques.github.io/

in a JSON file. Additionally, the underlying binaries, scripts, and
data are all packaged, versioned, and distributed using Docker10
containers. It would require to either rewrite the boutique inputs/
outputs into a Fastr interface or to create a new interface class for
Boutiques.

Although the CWL at the moment is as far as we know not
used in the medical imaging domain, we think that support for
the CWL is an important future feature for Fastr as we fully sup-
port the idea to have a common standard language. Support for
CWL tools in Fastr could possible using a new interface class,
but the support for workflows would probably need to be an
import/export that transcribes workflows from CWL to Fastr
and back.

For reproducibility, it is important to be able to re-run analyses
in exactly the same conditions. Currently, Fastr supports environ-
ment modules to keep multiple versions of software available at
the same time. However, the same version of the software can
still be different based on underlying libraries, compiler used, and
the OS. Virtual Machines or Linux Containers offer a solution
to this problem. Linux containers, such as Docker and LXC, are
often seen as a light-weight alternative to Virtual Machines. They
ensure that the binaries and underlying libraries are all managed,
but they use the kernel of the host OS. We plan to add support
for Docker containers to make it easier to share tools and improve
reproducibility further.

For continuous integration, we have a Jenkins (see text foot-
note 8) continuous integration server that runs our tests nightly.
Additionally, we use SonarQube11 for inspecting code quality,
technical debt, and code coverage. We are aiming for each release
to increase the code coverage and to decrease the technical debt.

Finally, we are working on more (web-based) tooling
around Fastr to make it easier to visualize, develop, and debug
Networks and to inspect the results of a run (including prov-
enance information).

10 https://www.docker.com
11 http://www.sonarqube.org/

http://www.frontiersin.org/ICT/
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive
http://boutiques.github.io/
https://www.docker.com
http://www.sonarqube.org/

10

Achterberg et al. Fastr Workflow Engine

Frontiers in ICT  |  www.frontiersin.org August 2016  |  Volume 3  |  Article 15

GLOSSARY

API – An application programing interface, a set of functions and
protocols that allow the creation of applications that access the
features another application or service.

Cardinality – The number of elements in a grouping. For
Fastr specifically, this is the number of elements contained in
a sample.

Code coverage – A measure indicating what part of the code
is covered by a test suite. This is often expressed as a percentage
of the total lines of code.

JSON – JavaScript Object Notation is an open data format that
is used often in client-server communication and uses human
readable text to present data in key-value pairs.

Linux Containers – Virtualization for running multiple iso-
lated linux systems on one Linux kernel on the operating system
level.

MapReduce – A programing model for processing large
datasets. Typically, it consists of a Map operation on the elements
and a Reduce operation that aggregates the elements into a final
result.

Population imaging – Population imaging is the large-scale
acquisition and analysis of medical images in controlled popula-
tion cohorts. Population imaging aims to find imaging biomark-
ers that allow prediction and early diagnosis of diseases and
preventive therapy.

Provenance – Report of the origin and operations that has
been done on an object.

technical debt – A concept in programing that reflects the
extra work that is the results of using quick solutions instead of
the proper solution.

XML – eXtensible Markup Language is a human readable
markup language for encoding documents.

AUTHOR CONTRIBUTIONS

The Fastr workflow engine described in the article was designed
and implemented primarily by HA and MK under supervision
of WN. The manuscript was written primarily by HA and MK,
and was revised by WN. All of the authors approved this work
for publication.

ACKNOWLEDGMENTS

We would like thank Coert Metz and Fedde van der Lijn for help-
ing us with the creating the very first prototype of the system.
We are grateful to the people from the BIGR group who were
the first to test the system, give valuable feedback, and enough
patience to allow us to improve to Fastr further. We would like
to thank Esther Bron for proofreading the paper and giving us
valuable feedback. Finally, we would like to thank all people who
have contributed in any way to Fastr.

FUNDING

This work was supported by the following projects: The Heart
Brain Connection Consortium, supported by the Netherlands
Cardiovascular Research Initiative (CVON2012-06); Population
Imaging Infrastructuur in Medical Delta, supported by European
Regional Development Fund (Kansen voor West) and co-financed
by the province of South-Holland; and BBMRI-NL2.0 (see text
footnote 1).

REFERENCES

Amstutz, P., Andeer, R., Chapman, B., Chilton, J., Crusoe, M. R., Guimer, R. V., et al.
(2016). Common Workflow Language, Draft 3. doi:10.6084/m9.figshare.3115156.v2

Belhajjame, K., B’Far, R., Cheney, J., Coppens, S., Cresswell, S., Gil, Y., et al. (2013).
PROV-DM: The PROV Data Model. Recommendation, W3C. Available at: http://
www.w3.org/TR/2013/REC-prov-dm-20130430/

Berthold, M. R., Cebron, N., Dill, F., Gabriel, T. R., Kötter, T., Meinl, T., et al. (2008).
KNIME: The Konstanz Information Miner. Springer.

Berthold, M. R., Cebron, N., Dill, F., Gabriel, T. R., Kötter, T., Meinl, T., et al.
(2009). Knime-the konstanz information miner: version 2.0 and beyond. ACM
SIGKDD Explor. Newslett. 11, 26–31. doi:10.1145/1656274.1656280

Dinov, I., Lozev, K., Petrosyan, P., Liu, Z., Eggert, P., Pierce, J., et al. (2010).
Neuroimaging study designs, computational analyses and data provenance
using the loni pipeline. PLoS ONE 5:e13070. doi:10.1371/journal.pone.
0013070

Gansner, E. R., and North, S. C. (2000). An open graph visualization system and
its applications to software engineering. Softw. Pract. Exper. 30, 1203–1233.
doi:10.1002/1097-024X(200009)30:11<1203::AID-SPE338>3.3.CO;2-E

Glatard, T., Montagnat, J., Lingrand, D., and Pennec, X. (2008). Flexible
and efficient workflow deployment of data-intensive applications on
grids with moteur. Int. J. High Perform. Comput. Appl. 22, 347–360.
doi:10.1177/1094342008096067

Goecks, J., Nekrutenko, A., Taylor, J., and The Galaxy Team. (2010). Galaxy: a com-
prehensive approach for supporting accessible, reproducible, and transparent
computational research in the life sciences. Genome Biol. 11, R86. doi:10.1186/
gb-2010-11-8-r86

Gorgolewski, K., Burns, C. D., Madison, C., Clark, D., Halchenko, Y. O.,
Waskom, M. L., et al. (2011). Nipype: a flexible, lightweight and extensible

neuroimaging data processing framework in python. Front. Neuroinform. 5:13.
doi:10.3389/fninf.2011.00013

Ikram, M. A., van der Lugt, A., Niessen, W. J., Krestin, G. P., Koudstaal, P. J.,
Hofman, A., et al. (2011). The rotterdam scan study: design and update up to
2012. Eur. J. Epidemiol. 26, 811–824. doi:10.1007/s10654-011-9624-z

Klein, S., Staring, M., Murphy, K., Viergever, M. A., and Pluim, J. P. (2010). elastix:
a toolbox for intensity-based medical image registration. IEEE Trans. Med.
Imaging 29, 196–205. doi:10.1109/TMI.2009.2035616

Marcus, D. S., Olsen, T. R., Ramaratnam, M., and Buckner, R. L. (2007a). The extensible
neuroimaging archive toolkit. Neuroinformatics 5, 11–33. doi:10.1385/NI:5:1:11

Marcus, D. S., Wang, T. H., Parker, J., Csernansky, J. G., Morris, J. C., and
Buckner, R. L. (2007b). Open Access Series of Imaging Studies (OASIS):
cross-sectional MRI data in young, middle aged, nondemented, and demented
older adults. J. Cogn. Neurosci. 19, 1498–1507. doi:10.1162/jocn.2007.19.9.1498

Montagnat, J., Isnard, B., Glatard, T., Maheshwari, K., and Fornarino, M. B. (2009).
“A data-driven workflow language for grids based on array programming
principles,” in Proceedings of the 4th Workshop on Workflows in Support of
Large-Scale Science, WORKS ’09 (New York, NY: ACM), 7:1–7:10.

Morrison, J. P. (2010). Flow-Based Programming, 2nd Edition: A New Approach to
Application Development. Paramount, CA: CreateSpace.

Mueller, S. G., Weiner, M. W., Thal, L. J., Petersen, R. C., Jack, C. R., Jagust, W., et al.
(2005). Ways toward an early diagnosis in Alzheimers disease: the Alzheimers
Disease Neuroimaging Initiative (ADNI). Alzheimers Dement. 1, 55–66.
doi:10.1016/j.jalz.2005.06.003

Oinn, T., Greenwood, M., Addis, M., Alpdemir, M. N., Ferris, J., Glover, K., et al.
(2006). Taverna: lessons in creating a workflow environment for the life sci-
ences. Concurr. Comput. 18, 1067–1100. doi:10.1002/cpe.993

Rex, D. E., Ma, J. Q., and Toga, A. W. (2003). The loni pipeline processing environ-
ment. Neuroimage 19, 1033–1048. doi:10.1016/S1053-8119(03)00185-X

http://www.frontiersin.org/ICT/
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive
http://dx.doi.org/10.6084/m9.figshare.3115156.v2
http://www.w3.org/TR/2013/REC-prov-dm-20130430/
http://www.w3.org/TR/2013/REC-prov-dm-20130430/
http://dx.doi.org/10.1145/1656274.1656280
http://dx.doi.org/10.1371/journal.pone.0013070
http://dx.doi.org/10.1371/journal.pone.0013070
http://onlinelibrary.wiley.com/doi/10.1002/1097-024X(200009)30:11%3C1203::AID-SPE338%3E3.0.CO;2-N/abstract;jsessionid=24311D7D89839A6643DC311B20ECE071.f03t03
http://dx.doi.org/10.1177/1094342008096067
http://dx.doi.org/10.1186/gb-2010-11-8-r86
http://dx.doi.org/10.1186/gb-2010-11-8-r86
http://dx.doi.org/10.3389/fninf.2011.00013
http://dx.doi.org/10.1007/s10654-011-9624-z
http://dx.doi.org/10.1109/TMI.2009.2035616
http://dx.doi.org/10.1385/NI:5:1:11
http://dx.doi.org/10.1162/jocn.2007.19.9.1498
http://dx.doi.org/10.1016/j.jalz.2005.06.003
http://dx.doi.org/10.1002/cpe.993
http://dx.doi.org/10.1016/S1053-8119(03)00185-X

11

Achterberg et al. Fastr Workflow Engine

Frontiers in ICT  |  www.frontiersin.org August 2016  |  Volume 3  |  Article 15

Sherif, T., Rioux, P., Rousseau, M.-E., Kassis, N., Beck, N., Adalat, R., et al. (2014).
CBRAIN: a web-based, distributed computing platform for collaborative neu-
roimaging research. Front. Neuroinform. 8:54. doi:10.3389/fninf.2014.00054

van Buchem, M. A., Biessels, G. J., Brunner la Rocca, H. P., de Craen, A. J., van
der Flier, W. M., Ikram, M. A., et al. (2014). The Heart-Brain Connection: a
multidisciplinary approach targeting a missing link in the pathophysiology of
vascular cognitive impairment. J. Alzheimers Dis. 42, S443–S451. doi:10.3233/
JAD-141542

Yoo, T. S., Ackerman, M. J., Lorensen, W. E., Schroeder, W., Chalana, V., Aylward, S.,
et al. (2002). Engineering and algorithm design for an image processing Api:
a technical report on ITK-the insight toolkit. Stud. Health Technol. Inform. 85,
586–592. doi:10.3233/978-1-60750-929-5-586

Conflict of Interest Statement: WN is cofounder, part-time Chief Scientific
Officer, and stockholder of Quantib BV. The remaining authors declare that the
research was conducted in the absence of any commercial or financial relationships
that could be construed as a potential conflict of interest.

Copyright © 2016 Achterberg, Koek and Niessen. This is an open-access article
distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) or licensor are credited and that the original
publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

http://www.frontiersin.org/ICT/
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive
http://dx.doi.org/10.3389/fninf.2014.00054
http://dx.doi.org/10.3233/JAD-141542
http://dx.doi.org/10.3233/JAD-141542
http://dx.doi.org/10.3233/978-1-60750-929-5-586
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Fastr: A Workflow Engine for Advanced Data Flows in Medical Image Analysis
	1. Introduction
	2. Design
	2.1. Tools
	2.2. Networks
	2.3. Data Flow
	2.4. Data Input and Output
	2.5. Execution
	2.6. Provenance
	2.7. Visualization

	3. Evaluation
	4. Discussion
	4.1. Workflow Languages
	4.2. Limitations
	4.3. Future Directions

	Glossary
	Author Contributions
	Acknowledgments
	Funding
	References

