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With the increasing number of datasets encountered in imaging studies, the increasing 
complexity of processing workflows, and a growing awareness for data stewardship, 
there is a need for managed, automated workflows. In this paper, we introduce Fastr, 
an automated workflow engine with support for advanced data flows. Fastr has built-in 
data provenance for recording processing trails and ensuring reproducible results. The 
extensible plugin-based design allows the system to interface with virtually any image 
archive and processing infrastructure. This workflow engine is designed to consolidate 
quantitative imaging biomarker pipelines in order to enable easy application to new data.

Keywords: workflow, pipeline, data processing, provenance, reproducible research, distributed computing, data 
flow, Python

1. INTRODUCTION

In medical image analysis, most methods are no longer implemented as a single executable, but as a 
workflow composed of multiple programs that are run in a specific order. Each program is executed 
with inputs that are predetermined or resulting from the previous steps. With increasing complexity 
of the methods, the workflows become more convoluted and encompass more steps. This makes 
execution of such a method by hand tedious and error-prone, and makes reproducing the exact chain 
of processing steps in subsequent studies challenging. Therefore, solutions have been created that are 
based on scripts that perform all the steps in the correct order.

In population imaging, data collections are typically very large and are often acquired over 
prolonged periods of time. As data collection is going on continuously, the concept of a “final” 
dataset is either non-existent or defined after a very long follow up time. Commonly, analyses on 
population imaging datasets, therefore, define intermediate cohorts or time points. To be able to 
compare intermediate cohorts, all image analysis methods need to produce consistent results over 
time and should be able to cope with the ever growing size of the population imaging. Therefore, the 
process of running analysis pipelines on population imaging data needs to be automated to ensure 
consistency and minimize errors.

When different population imaging cohorts are combined in multi-center imaging studies or 
imaging biobanks (e.g., ADNI (Mueller et al., 2005), OASIS (Marcus et al., 2007b), The Heart-Brain 
Connection (van Buchem et  al., 2014) and BBMRI-NL2.01) where data are often acquired from 
different scanners, the challenge of ensuring consistency and reliability of the processing results also 
calls for automated processing workflows.

Traditionally, this is accomplished by writing scripts created specifically for one processing 
workflow. This can work well, but generally the solutions are tailor-made for a specific study and 
software environment. This makes it difficult to apply such a method to different data or on a 

1 http://www.bbmri.nl
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TABLE 1 | A overview of workflow systems and the important features of each.

Workflow software 

Name Open-source Language Data flow Tools Tool versioning Citation 

CBrain Yes Ruby Simple Binaries Yes Sherif et al. (2015)
Fastr Yes Python Advanced Binaries Yes
Galaxy Yes Python Simple Binaries Yes Goecks et al. (2010)
KNIME Yes Java Advanced Wrappers for Java,  

Python, Perl code
No Berthold et al. (2008, 2009)

LONI pipeline No Java Advanced Binaries Yes Rex et al. (2003), Dinov et al. (2010)
Nipype Yes Python Advanced Binaries No Gorgolewski et al. (2011)
Taverna Yes Java Advanced Webservices No Oinn et al. (2006)
XNAT pipeline engine Yes Java Simple Binaries No Marcus et al. (2007a)

The column Data Flow can have the value simple or advanced. Simple means the workflow system supports only sequential data flows whereas advanced indicates support for 
more complex data flows (e.g., the data flows in Section 2.3).
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different infrastructure than originally intended. With evolving 
computational resources, in practice this approach is, therefore, 
not reproducible and difficult to maintain. Additionally, for trans-
parency and reproducibility of the results, it is very important to 
know exactly how the data were processed. To accomplish this, a 
comprehensive data provenance system is required.

Writing a script that takes care of all the aforementioned 
issues is a challenging and time consuming task. However, many 
of the components are generic for any type of workflow and do 
not have to be created separately for each workflow. Workflow 
management systems can be used to address these issues. These 
systems help formalize the workflow and can provide features, 
such as provenance as part of the framework, removing the need 
to address these for every separate workflow.

For our use cases, we desire a workflow management system 
that works with the tools found in the domain of image analy-
sis, can handle advanced data flows (explained more in detail 
in section 2.3), has strong provenance handling, can handle 
multiple version of tools, flexible execution backend, and can be 
embedded in our infrastructure. There are already a number of 
workflow systems available, but none of them fit all our criteria 
(see Table 1).

The most notable open-source, domain-specific workflow 
system that we are aware of is Nipype (Gorgolewski et al., 2011), 
which is aimed at creating a common interface for a variety of 
neuroimaging tools. It also features a system for creating work-
flows. The tool interfaces of Nipype are elaborate, but Nipype only 
tracks the version of tools, but does not manage it. This means the 
system is only aware of the currently installed version of the tool, 
and cannot offer multiple versions simultaneously.

LONI pipeline (Rex et al., 2003; Dinov et al., 2010) and CBrain 
(Sherif et al., 2015) also have been developed for the domain of 
medical image analysis. They include workflow engines, but 
these systems are part of larger environments that includes data 
management and processing backends. This makes it difficult to 
integrate in our infrastructure. Furthermore, LONI is closed-
source, which makes it even more difficult to integrate it.

The XNAT storage system also has a related workflow system 
called XNAT pipeline engine (Marcus et  al., 2007a). The pipe-
line engine is integrated nicely with the XNAT storage system 
and works with simple data flows. However, it does not handle 
advanced data flows and does not provide tool versioning.

Besides the workflow systems specific for the domain of medi-
cal image analysis, there are a number of other notable workflow 
systems that are either domain-independent or have been 
created for a different domain. Taverna (Oinn et al., 2006) and 
KNIME (Berthold et al., 2008, 2009) are well-known and mature 
workflow management systems. These systems are domain-
independent, but mostly used in the bioinformatics field. Their 
support for local binary targets is limited and, therefore, not 
suitable for using most medical imaging analysis tools. KNIME 
needs tools to be created with their API and Taverna is mostly 
focused on web services.

Finally, Galaxy (Goecks et al., 2010) is a web-based workflow 
system for bioinformatics. It is mainly focused on next-generation 
sequencing (NGS). It has a large repository of tools, web interface, 
and large support in their domain. However, the system is not 
designed for batch processing and it does not support complex 
data-flows.

We developed an image processing workflow framework for 
creating and managing processing pipelines: Fastr. The frame-
work is designed to build workflows that are agnostic to where the 
input data are stored, where the resulting output data should be 
stored, where the steps in the workflow will be executed, and what 
information about the data and processing needs to be logged for 
data provenance. To allow for flexible data handling, the input 
and output of data are managed by a plugin-based system. The 
execution of the workflow is managed by a pluggable system as 
well. The provenance system is a built-in feature that ensures a 
complete log of all processing steps that led to the final result.

In the following section, we discuss the design of Fastr. 
In Section 3, we present the resulting software. Finally, we discuss 
related work and future directions in section 4.

2. DESIGN

The Fastr workflow design follows similar principles as flow-
based programing (Morrison, 2010). This paradigm defines 
applications as a network of black boxes, with predefined con-
nections between the black boxes that indicate the data flow. The 
black boxes can be reordered and reconnected to create different 
workflows. However, it should be noted that other aspects of the 
paradigm are not met, so our design can at most be considered to 
have flow-based programing aspects.

http://www.frontiersin.org/ICT/
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive
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In Fastr, the workflow is described as a Network, which is 
a directional acyclic graph. The Nodes of this Network are 
based on templates that we call Tools. These Nodes can be 
interpreted as the black boxes from the flow-based programing 
paradigm. In the next subsection, we will discuss the Tools 
in more detail. After that, we will describe the Network and 
its components in more detail using an example from medical 
image analysis.

2.1. Tools
In Fastr, the Tools are the blueprints for the Nodes: they 
describe the input, output, and behavior of the Node. The Tools 
are composed of three main parts: general metadata, a target, and 
an interface. The Tools are stored as XML or JSON files. An 
example of a simple Tool that adds two list of integers element-
wise is given in Listing 1. The general metadata contains informa-
tion about the Tool, such as id, version, author, and license. The 
target describes how to set the execution environment properly, 
e.g., by setting the correct search path to use a specific version 
of the software. The interface describes the inputs and outputs 
of a Tool and how the Tool executes given a set of inputs and 
outputs.

The tools are specified in a schema. This schema validates 
the internal python data structures (after conversion from XML 
or JSON) and is specified as a JSON schema. The schemas are 
located in the source code. There is a schema for the general 
Tool2 and a schema for the FastrInterface.3 Other types 
of Interfaces can also defined by their own data schema 
files.

Listing 1. The XML code that defines the AddInt Tool. Note 
that though it might seem the two author entries are redundant 
or conflicting, the first one states the author of the Tool descrip-
tion file, whereas the second states the author of the underlying 
command (addint.py in this case).

<tool id="AddInt" name="Add two integers" 
 ↪ version="1.0">
<description>Add two integers together. 
</description>
<authors>
<author name="Hakim Achterberg"  

↪ email="h.achterberg@erasmusmc.nl"  
↪ url="http://www.bigr.nl/people/
HakimAchterberg"/>

</authors>
<command version="0.1" url="">
<targets>

<target os="*" arch="*" 
↪ interpreter="python" paths="./" 
↪ bin="addint.py"/>

</targets>

2 https://bitbucket.org/bigr_erasmusmc/fastr/src/default/fastr/resources/schemas/
Tool.schema.json
3 https://bitbucket.org/bigr_erasmusmc/fastr/src/default/fastr/resources/schemas/
FastrInterface.schema.json

<description>
addint.py value1 value2
output = value1 + value2

</description>
<authors>

<author name="Marcel Koek"  
↪ email="m.koek@erasmusmc.nl"  
↪ url="http://www.bigr.nl/people/
MarcelKoek"/>

</authors>
</command>
<repository/>
<interface>
<inputs>

<input id="left_hand" name="left hand 
↪ value" datatype="Int" prefix="–– 
↪ in1" cardinality="1-*" repeat_ 
↪ prefix="false" required="true"/>

<input id="right_hand" name="right 
↪ hand value" datatype="Int"  
↪ prefix="––in2" 
↪ cardinality="as:left_hand" 
↪ repeat_prefix="false" 
↪ required="true"/>

</inputs>
<outputs>

<output id="result" 
↪ name="Resulting value" 
↪ datatype="Int" automatic="True" 
↪ cardinality="as:left_ 
↪ hand" method="json" 
↪ location="∧RESULT=(.*)$">

<description>The summation of 
↪ left_hand and right_hand. 
</description>

</output>
</outputs>

</interface>
</tool>

The content of the interface tag depends on the class of 
Interface used. The default Interface class in Fastr cre-
ates a call to a command-line program given the set of Inputs and 
Outputs. In the example, there are two inputs and one output. In 
Fastr, the minimal information required for an Interfaces 
to function is the id, cardinality and data type for each Input and 
Output. The cardinality is the number of values a sample contains 
(e.g., an argument requiring a point in 3D space, represented by 
three float values, would have a cardinality of 3).

In Fastr, there is a notion of datatypes: each input and output 
has a (set of) data types it accepts or produces. The datatypes in 
Fastr are plugins that, in the simplest form, only need to expose 
their id, but can be extended to include functionality, such as 
validators and handlers for multi-file data formats. Data types 
can be simple values or point to files.

Fastr checks if the datatypes of a linked input and output are 
(or at least can be) compatible. In addition, data types can be 
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FIGURE 1 | Example Network representing a single atlas-based segmentation workflow implemented using the open source Elastix image 
registration software. Green boxes are Source Nodes, purple Constant Nodes, gray normal Nodes, and blue Sink Nodes. Each Node contains two 
columns: the left column represents the inputs, the right column represents the outputs of the Node. The arrows indicate links between the inputs and outputs. This 
image was generated automatically from the source code.
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grouped, which is useful for groups of programs using a com-
mon (io) library (for example, programs created with The Insight 
Segmentation and Registration Toolkit4 (Yoo et  al., 2002) can 
read/write a number of images formats that we grouped together 
in a pseudo-datatype).

2.2. Networks
After Tools are defined, a workflow can be created by linking 
a set of Tools that results in a Network. Once a Network is 
defined, it can be executed. Figure 1 shows a graphic representa-
tion of an atlas-based segmentation workflow, using the image 
registration software Elastix (Klein et  al., 2010). Elastix can 
register two images by optimizing the transformation applied to 
a moving image to match it to a fixed reference image.

There are different classes of Nodes: normal Nodes (gray 
blocks in Figure 1), Source Nodes (green), Constant Nodes 
(purple), and Sink Nodes (blue). Data enter the Network 
through a Source Node and leave the Network through a 
Sink Node. A Constant Node is similar to the Source 
Nodes, but has its data defined as part of the Network. When 
a Network is executed, the data for the Source Nodes and 
Sink Nodes has to be supplied. The specifics of the Source 
Nodes and Sink Nodes will be discussed in section 2.4. The 
normal Nodes process the data as specified by the Tool.

The data flow in the Network is defined by links (the arrows 
in Figure 1). A link is a connection between the output of a Node 
and the input of another Node. A link can manipulate the flow of 
the data, which will be discussed in section 2.3.

The Nodes and links in the Network form a graph from 
which the dependencies can be determined for the execution 

4 www.itk.org

order. Since all Nodes are black-boxes that can operate inde-
pendently of each other, this allows for Nodes to be executed in 
parallel as long as the input dependencies are met.

2.3. Data Flow
In Fastr, a sample is defined as the unit of data that are presented to 
an input of a Node for a single job. It can be a simple scalar value, a 
string, a file, or a list of the aforementioned types. For example, in the 
addint Tool presented in Listing 1, the left_hand and right_hand 
inputs of the Tool are required to be (lists of) integers. The result 
output will generate a sample that contains a list of integers. As the 
cardinality of right_hand and result are defined to be the same as 
the left_hand, they will all have to same length.

Fastr can handle multiple samples on a specific input. Figure 2 
shows examples of how Fastr handles inputs with multiple samples 
and in which output samples this results. The inputs and output 
names are abbreviated as lh for left_hand, rh for right_hand and 
res for result. In Figure 2A, we present the simplest situation, in 
which one sample with one value is offered to each input and one 
sample with one value is generated. In Figure 2B, the left_hand 
and right_hand inputs have one sample with two values. The 
result is a sample with two values, as one result value is created 
per input value.

To facilitate batch processing, a Node can be presented with 
a collection of samples. These collections are multi-dimensional 
arrays of samples. In Figure  2C, we depict a situation where 
three additions are performed. Three samples are offered to the 
left_hand input and one sample is offered to the right_hand input. 
This results in three samples: each sample of the left_hand input 
was used in turn, whereas the samples for the right_hand were 
considered constant. In Figure 2D, there are three samples for the 
left_hand and right_hand inputs. The result is again three samples, 

http://www.frontiersin.org/ICT/
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FIGURE 2 | Illustration of the data flows in a Node. Each rectangle is a sample, and a block of rectangles represents a sample collection. The value is printed in 
each rectangle, where the commas separate multiple values. The samples lh are offered to the left_hand input, the sample rh to right_hand input. The sample res is 
generated for the result output. The subscript of sample res indicates which input samples were used to generate the result.
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as now each pair of samples from left_hand and right_hand inputs 
was taken.

This is useful for simple batch processing where a task should 
be repeated a number of times for different input values. However, 
in certain situation (e.g., multi-atlas segmentation), it is required 
to register every fixed image to every moving image. To simplify 
this procedure, Fastr can switch from pairwise behavior to cross 
product behavior. In Figure 3, this is depicted graphically. Every 
combination of left_hand and right_hand sample is used for 
registration and the result is a two-dimensional array of transfor-
mation samples that in turn contain two transformations each.

Sometimes a Tool outputs a sample with a higher cardinality 
that should be treated as separate samples for further processing, 
or conversely a number of samples should be offered as a single 
sample to an input (e.g., for taking an average). For this, Fastr 
offers two flow directives in data links. The first directive is expand, 
which indicates that the cardinality is to be transformed into a 
new dimension. This is illustrated in the left side of Figure 4. The 
second directive is collapse, which indicates one or more dimen-
sions in the sample array should be collapsed and combined 
into the cardinality. This process is illustrated in the right side of 
Figure 4. These flow directives allow for more complex dataflows 
in a simple fashion and enable users to implement MapReduce 
type of workflows.

2.4. Data Input and Output
The starting points of every workflow are Source Nodes, in 
which the data are imported into the Networks. Similarly, the 
endpoints of every workflow are the Sink Nodes, which export 
the data to the desired location. When a Network is constructed 
only the data type for the Source Nodes and Sink Nodes 
needs to be defined. The actual definition of the data is done at 
runtime using uniform resource identifiers (URI).

Based on the URI scheme, the retrieval and storage of the 
data will be performed by a plugin. Consider the following two 
example URIs:

vfs://mount/some/path/file1.txt
xnat://xnat.example.com/data/archive/

projects/sandbox/subj...

The schemes (in red) of these URI indicate by which plugin 
the retrieval or storage of the data is handled. For the first 

URI, vfs indicates that the URI will be handled by the Virtual 
File System plugin. For the second URI, xnat indicates that 
the URI will be handled by the XNAT storage plugin. These 
plugins implement the methods to actually retrieve and store 
the data. The remainder of the URI is handled by the plugin, so 
the format of the schemes URI format is defined by the plugin 
developer.

Plugins can also implement a method to expand a single URI 
into multiple URIs based on wildcards or searches. In the follow-
ing example, URIs we use wildcards (shown in blue) to retrieve 
multiple datasets in one go:

xnat://xnat.example.com/search?projects=test
&subjects=s[0-9]...

vfsregexp://tmp/network_dir/.*/.*/__fastr_
result__.pickle.gz

The XNAT storage plugin has a direct storage as well as search 
URI scheme defined. The VFS regular expression plugin uses 
the regexp filter to generate a list of matching vfs URIs. This 
illustrates that a plugin can expand a url into urls of a differ-
ent type, and the newly generated urls will be handled by the 
appropriate plugin.

The use of URIs makes the Network agnostic to the location 
and storage method of the source and target data. Also, it allows 
easy loading of large amounts of resources using wildcards, csv 
files or search queries.

Currently, Fastr includes plugins for input/output from the 
(virtual) file system, csv files and XNAT. New plugins can be cre-
ated easily as there are only a few methods that need overwriting. 
It is also possible to make plugins that can only read data, only 
write data, or only perform search queries. This allows users to 
create plugins purely for reading or writing.

Fastr does not include a credential store or other solution for 
authentication. For all Network based input/output plugins 
(e.g., the XNAT plugin) a netrc file stored in the user’s home 
directory is used for authentication. However, for running Fastr 
on a grid without a shared network drive this might lead to 
problems.

2.5. Execution
The Fastr framework is designed to offer flexible execution of 
jobs. The framework analyzes the workflow and creates a list of 

http://www.frontiersin.org/ICT/
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FIGURE 5 | An overview of the execution components in Fastr. The 
Network controls the main execution, it sorts the Nodes required and 
executes those, resulting in a list of jobs to be run. The jobs are dispatched 
via an execution plugin. The job is then executed. On execution, all 
arguments are translated to values and paths that the Tool can use. The 
Tool then sets the environment and, finally, calls the Interface for the actual 
running of the underlying task.

FIGURE 4 | Collapsing and expanding flows. The start situation on the left expands to the situation in the middle after which data collapses the first dimension. 
Note that in the middle situation there is an empty place in the sample collection (top right). This is possible due to a sparse array representation of the sample 
collections. This results in two samples with different cardinality in the right-most situation.

FIGURE 3 | Illustration of the data flows in a Node that has multiple input groups. The default operator creates a new sample for each combination of input 
groups.
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jobs, including dependencies, that need to be executed. Then 
it dispatches the jobs to an execution plugin. The plugins can 
run jobs locally or dispatch them to an execution system, such 
as a cluster, grid, or cloud. A different plugin can be selected 
for each run allowing for easy switching of the execution 
backend.

The Fastr execution system consists of a number of compo-
nents that work together in a layered fashion (see Figure 5). The 
execution starts when the Network execute method is called. 
We will call the machine on which the Network execution is 
started the Submit Host.

Fastr analyzes the Network and divides it in chunks that 
can be processed further. For each chunk, the Network 
determines in what order the Nodes have to be processed 
and then executes the Nodes in the correct order. When a 
Node is executed, it analyzes the samples on each input and 
creates a job for each combination input (as specified by the 
data flow directives).

Jobs contain all information needed to run a single task (e.g., 
input/output arguments, Tool used, etc). The jobs are then 
dispatched by an execution plugin. The plugin can run the job 
remotely (e.g., on a compute cluster or cloud) or locally (in which 
case the Submit Host and Execution Host are the same).

Jobs are executed on the Execution Host, and during this step 
the arguments are translated from urls to actual paths/values. 
Subsequently, the Tool sets the environment for execution 
according to the target specification and invokes the interface. 
The interface executes the actual Tool commands. Once the 
interface returns its results, they are validated and the paths in 
the results are translated back into urls.

Once the job execution is finished, the execution plugin will 
trigger a callback on the Submit Host that reads the job result 
and updates the Network accordingly. If a chunk is finished, 
the Network will process the next chunk, using the updated 
information. If all chunks are finished, the Network execution 
is done.

Currently, Fastr supports functional plugins for processing 
locally and on a cluster (using the DRMAAv1 API5). Future 
plugins will focus on flexible middleware for grid/cluster/cloud, 
like Dirac,6 that offer support for a wide range of systems. For 
creating a new plugin, five methods need to be implemented: an 

5 http://www.drmaa.org
6 http://diracgrid.org
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FIGURE 6 | The three base classes of the provenance data model with their relating properties. The agents are orange pentagons, the entities are yellow 
ovals and the activities are depicted as blue squares. This image is copied from PROV-O: The PROV Ontology. Copyright © 2015 W3C® (MIT, ERCIM, Keio, 
Beihang). http://www.w3.org/Consortium/Legal/2015/doc-license
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initialization and a cleanup method as well as methods for queu-
ing, releasing and canceling a job.

2.6. Provenance
Data provenance is a built-in feature of Fastr and is based on an 
implementation of the W3C PROV-DM: Prov Data model recom-
mendation (Belhajjame et  al., 2013). Fastr records all relevant 
data during execution and ensures that for every resulting file a 
complete data provenance document is included. The standard 
format of a provenance document is PROV-N, which can be 
serialized to PROV-JSON or PROV-XML.

In Figure 6, the three base classes and the properties of how 
they relate to each other are illustrated. For Fastr, Networks, 
Tools, and Nodes are modeled as agents, jobs as activi-
ties and data objects as entities. The relating properties are 
naturally valid for our workflow application. The hierarchy 
and topology of the Network follows automatically from 
the relating properties between the classes, but in order to 
make the provenance document usable for reproducibility, 
extra information is stored as attributes on the classes and 
properties. For every Tool, the version is stored. For every 
data sample, the value or file path and a checksum is stored. 
For every job, the start and end time of execution, the stdout 
and stderr logs are stored, the end status (success, success 
with warnings, failed, etc.), and an exhaustive description of 
the execution environment.

2.7. Visualization
To give the user insight in the data flow through the Network, 
it is possible to visualize the Network using graphviz (Gansner 
and North, 2000). The figures in this paper that show examples 
of Networks (Figures 1 and 7) are generated automatically by 
Fastr. Fastr plots the Tool as a collection of inputs and outputs 
and draws the links between them.

Because Fastr allows for more advanced data flows, there is a 
few visualization options that can aid users in validating the data 
flow. First, the color of a link changes if the flow in the Link is 
different. Second, there is an option to draw the dimension sizes 
in a Network. This shows the number of dimension and the 
expected size (as symbols). A simple example of the visualization 
of a more advanced dataflow is given in Figure 7.

3. EVALUATION

A functional version of Fastr is available from https://bitbucket.
org/bigr_erasmusmc/fastr. Fastr is open-source and free to use 
(under the Apache license 2.0). The framework is written in 
Python and easy to install using the python package index (pip 
install)7 or using the included setuptools from the source dis-
tribution. Fastr is platform independent and runs on Linux, Mac, 
and Windows environments. However, Linux support is much 
more stable, since that is the platform used in most processing 
environments.

Documentation is available at http://fastr.readthedocs.io; it 
includes a quick start tutorial, a user manual and a developer 
reference of the code. The documentation is built using Sphinx.

The Fastr software is composed of core modules and plugins. 
The core modules implement the networking, data flow, and 
interfacing with the plugins. The plugins provide the data input/
output, and execution functionality. Fastr is tested for code qual-
ity using both unit tests and functional tests. The unit tests are 
limited to the core modules and ensure the integrity of the core on 
a fine grained level. The functional testing covers the building and 
execution of small Networks. The functional tests validate the 
functional requirements of Fastr. Both the unit and the functional 

7 https://pypi.python.org/pypi/fastr
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FIGURE 7 | An example of flow visualization. The colored arrows indicate the flow directive in the link: red for expand, blue for collapse, and purple for a 
combination of both. After each input and output, the dimensions are printed in square bracket. In this workflow, the dimensions N and O should match, but the 
system can only validate this at runtime.
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tests are performed continuously using the continuous integra-
tion framework Jenkins.8

Currently, we are using Fastr for a number of workflows for 
several single-center and multi-center studies. For example, the 
Rotterdam Scan Study (Ikram et al., 2011), containing over 12.000 
scan sessions, uses a analysis pipeline implemented in Fastr for 
the preprocessing, tissue type segmentation, white matter lesion 
segmentation and lobes segmentation of brain MR images (see 
Figure 8). The data are fetched from the archive and is processed 
in a cluster environment. The resulting data are stored in an image 
archive.

Fastr has been used to run this workflow on new batches of 
subjects since mid 2015. Its performance has proven to be very 
stable as the workflow always succeeded. The overhead is limited 
as the Fastr workflow engine uses only a fraction of the resource 
compared the underlying Tools.

4. DISCUSSION

With Fastr we created a workflow system that allows users to 
rapidly create workflows. The simple access to advanced features 
makes Fastr suitable for both simple and complex workflows. 
Workflows created with Fastr will automatically get data prove-
nance, support for execution on various computational resources, 
and support for multiple storage systems. Therefore, Fastr speeds 
up the development cycle for creating workflows and minimizes 
the introduction of errors.

Fastr offers a workflow system that works with tools that can 
really be black boxes, they do not need to implement a specific 
API as long as their inputs and outputs can be defined. Fastr can 
manage multiple versions of tools, as we believe it is important to 
be able to keep an environment where all the old versions of tools 
are available for future reproducibility of the results. Additionally, 
it provides provenance records for every result for reproducibility 
of the experiments. Batch processing and advanced data flows are 
at the core of Fastrs design. Fastr communicates with processing 
backends and data providers via plugins allowing interoperability 
with other components of research infrastructures.

8 https://jenkins.io

4.1. Workflow Languages
Most workflows systems and languages are simpler with respect 
to data flow. However, there are two languages that have features 
similar to that of Fastr. Taverna, using the SCUFL2 language, has 
a concept of a dot product or cross product for input ports. This is 
equivalent to the use of input groups in Fastr. Also the MOTEUR 
(Glatard et al., 2008) system, using the GWENDIA (Montagnat 
et al., 2009) language, has the same cross product and dot product 
concepts.

A main difference between Fastr and the other two languages 
is that Fastr describes the data as N-D arrays, and a cross product 
increases the number of dimensions, whereas GWENDIA and 
SCUFL2 follow the list (of lists) principle. Of course, a list of lists 
can be seen as a 2D array, but that is not used by the aforemen-
tioned languages.

There is also the recent effort of the Common Workflow 
Language, CWL (Amstutz et  al., 2016). The CWL includes a 
specification for tools and workflows. The CWL has a support 
for an optional scatter directive. This allows a cross product type 
of behavior. However, this is not part of main specification, but 
rather an optional feature.

4.2. Limitations
The Fastr workflow system has been created with some clear 
goals, but there are also some limitations in the design. First of 
all, our design is created with automated processing workflows in 
mind and there is no support for interactive steps in the workflow. 
This is a design choice and there are no plans to address this issue.

Maybe the largest drawback of Fastr is that as a new system 
the amount of Tools available is limited. The Tool wrappers 
and interfaces are very flexible, but compared to systems as LONI 
pipeline and Nipype there is a lack of resources. This is a problem 
any new system faces and we believe that in time this issue will 
be resolved.

A similar issue is the limited number of execution backend 
plugins. The system is plugin based and has the potential to 
support almost any computational resource, but currently only 
supports local execution and cluster environments. We will add 
new plugins whenever a project requires one, but do not aim to 
create many additional plugins on the short term. For grid execu-
tion, this could be more challenging due to the lack of credentials 

http://www.frontiersin.org/ICT/
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FIGURE 8 | The graphical overview of the processing pipeline used for the Rotterdam Scan Study. It performs brain masking, bias field correction, 
segments the brain tissues, white matter lesions, and different lobels of brain.
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management in Fastr. Currently, we do not facilitate advanced 
credential storage, which is often an important requirement in 
grid computing.

The system is currently completely command-line based and 
offers no graphical user interface (GUI). Since the focus of Fastr 
is batch processing, the target environments are mostly headless. 
It is good practice to completely decouple core functionality from 
the user interface, especially when running in headless environ-
ments. Therefore, we decided to spend our time on creating a 
solid workflow engine before creating a GUI. We believe that the 
tooling can always be added and improved later, but that the core 
design limitations are generally harder to solve in the future. We 
plan on adding more (graphical) tools that provide more conveni-
ent user interaction in the future.

And finally, we are not satisfied with our current test code 
coverage. We have test for some core functionally, but the code 
coverage of the unit tests on the low side. This is partially offset 
by the functional testing, but we feel we should improve the test 
code coverage to avoid technical debt.

4.3. Future Directions
Because of the differences in design philosophy, Fastr and 
Nipype are complementary in focus: Fastr is created for managed 
workflows and has tools and interfaces as a necessity, whereas the 
interfaces are the primary focus of Nipype. Considering that there 
are many interfaces available for Nipype, we created a prototype 
NipypeInterface in Fastr, which allows Tools in Fastr to use 
Nipype for the interface. This is still experimental and there are 
still some limitations because Nipype and Fastr have incompat-
ible data type systems.

Another option to increase the amount of tools available is to 
start supporting Boutiques.9 Boutiques are an application reposi-
tory with a standard packaging of tools, so that they can be used 
on multiple platforms. The boutiques applications are somewhat 
similar to Fastr Tools, as they describe the inputs and output 

9 http://boutiques.github.io/

in a JSON file. Additionally, the underlying binaries, scripts, and 
data are all packaged, versioned, and distributed using Docker10 
containers. It would require to either rewrite the boutique inputs/
outputs into a Fastr interface or to create a new interface class for 
Boutiques.

Although the CWL at the moment is as far as we know not 
used in the medical imaging domain, we think that support for 
the CWL is an important future feature for Fastr as we fully sup-
port the idea to have a common standard language. Support for 
CWL tools in Fastr could possible using a new interface class, 
but the support for workflows would probably need to be an 
import/export that transcribes workflows from CWL to Fastr 
and back.

For reproducibility, it is important to be able to re-run analyses 
in exactly the same conditions. Currently, Fastr supports environ-
ment modules to keep multiple versions of software available at 
the same time. However, the same version of the software can 
still be different based on underlying libraries, compiler used, and 
the OS. Virtual Machines or Linux Containers offer a solution 
to this problem. Linux containers, such as Docker and LXC, are 
often seen as a light-weight alternative to Virtual Machines. They 
ensure that the binaries and underlying libraries are all managed, 
but they use the kernel of the host OS. We plan to add support 
for Docker containers to make it easier to share tools and improve 
reproducibility further.

For continuous integration, we have a Jenkins (see text foot-
note 8) continuous integration server that runs our tests nightly. 
Additionally, we use SonarQube11 for inspecting code quality, 
technical debt, and code coverage. We are aiming for each release 
to increase the code coverage and to decrease the technical debt.

Finally, we are working on more (web-based) tooling 
around Fastr to make it easier to visualize, develop, and debug 
Networks and to inspect the results of a run (including prov-
enance information).

10 https://www.docker.com
11 http://www.sonarqube.org/

http://www.frontiersin.org/ICT/
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive
http://boutiques.github.io/
https://www.docker.com
http://www.sonarqube.org/


10

Achterberg et al. Fastr Workflow Engine

Frontiers in ICT  |  www.frontiersin.org August 2016  |  Volume 3  |  Article 15

GLOSSARY

API – An application programing interface, a set of functions and 
protocols that allow the creation of applications that access the 
features another application or service.

Cardinality – The number of elements in a grouping. For 
Fastr specifically, this is the number of elements contained in 
a sample.

Code coverage – A measure indicating what part of the code 
is covered by a test suite. This is often expressed as a percentage 
of the total lines of code.

JSON – JavaScript Object Notation is an open data format that 
is used often in client-server communication and uses human 
readable text to present data in key-value pairs.

Linux Containers – Virtualization for running multiple iso-
lated linux systems on one Linux kernel on the operating system 
level.

MapReduce – A programing model for processing large 
datasets. Typically, it consists of a Map operation on the elements 
and a Reduce operation that aggregates the elements into a final 
result.

Population imaging – Population imaging is the large-scale 
acquisition and analysis of medical images in controlled popula-
tion cohorts. Population imaging aims to find imaging biomark-
ers that allow prediction and early diagnosis of diseases and 
preventive therapy.

Provenance – Report of the origin and operations that has 
been done on an object.

technical debt – A concept in programing that reflects the 
extra work that is the results of using quick solutions instead of 
the proper solution.

XML – eXtensible Markup Language is a human readable 
markup language for encoding documents.
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