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Variational joint recovery of scene flow and depth from a single image sequence, rather
than from a stereo sequence as others required, was investigated in Mitiche et al. (2015)
using an integral functional with a term of conformity of scene flow and depth to the
image sequence spatiotemporal variations, and L2 regularization terms for smooth depth
field and scene flow. The resulting scheme was analogous to the Horn and Schunck
optical flow estimation method, except that the unknowns were depth and scene flow
rather than optical flow. Several examples were given to show the basic potency of
the method: it was able to recover good depth and motion, except at their boundaries
because L2 regularization is blind to discontinuities which it smooths indiscriminately.
The method that we study in this paper generalizes to L1 regularization the formulation
of Mitiche et al. (2015) so that it computes boundary-preserving estimates of both
depth and scene flow. The image derivatives, which appear as data in the functional,
are computed from the recorded image sequence also by a variational method, which
uses L1 regularization to preserve their discontinuities. Although L1 regularization yields
non-linear Euler–Lagrange equations for the minimization of the objective functional,
these can be solved efficiently. The advantages of the generalization, namely, sharper
computed depth and three-dimensional motion, are put in evidence in experimentation
with real and synthetic images, which shows the results of L1 versus L2 regularization of
depth and motion, as well as the results using L1 rather than L2 regularization of image
derivatives.

Keywords: scene flow, image sequence analysis, 3D motion, depth, L1 regularization, image derivatives

1. INTRODUCTION

Scene flow is the three-dimensional (3D)motion field of the visible environmental surfaces projected
on the image domain: at each image point, scene flow is the 3D velocity of the corresponding
environmental surface point. It is the time derivative of 3D position. As such, it is a function of both
depth and optical flow (Longuet-Higgins and Prazdny, 1981). Scene flow computation has been the
focus of several recent studies (Vedula et al., 2005; Huguet and Devernay, 2007; Pons et al., 2007;
Wedel et al., 2008; Mitiche and Aggarwal, 2013; Vogel et al., 2013). It is a typical inverse problem
best stated by variational formulations (Mitiche and Aggarwal, 2013). Basic variational statements
use L2 (Tikhonov) regularization. This regularization, which imposes smoothness on the solution,
yields linear terms in the Euler–Lagrange equations. This is the case with the scheme described in
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Mitiche et al. (2015) and of which we describe a generalization in
this paper. The scheme improved significantly on others because
it needed a single image sequence rather than a stereo stream
like other methods. Also, it formulated the problem using an
integral functional of two terms: a data fidelity term to constrain
the computed scene flow to conform to the image sequence spa-
tiotemporal derivatives and L2 regularization terms to constrain
the computed scene flow and depth to be smooth, which led
to linear Euler–Lagrange equations for the minimization of the
objective functional, much like in the Horn and Schunck opti-
cal flow formulation (Horn and Schunk, 1981), except that it
involved depth and scene flow rather than optical flow. How-
ever, L2 regularization blurs the computed scene flow and depth
boundaries because it imposes their smoothness everywhere. In
general, some form of boundary-preserving regularization is nec-
essary. This is particularly true when environmental objects move
independently relative to the viewing system. The variation of
motion and structure in such a case can be sharp and signifi-
cant at these objects occluding boundaries, and therefore, accu-
racy would require that they be preserved by the regularization
operator.

Boundary-preserving recovery of scene flow and depth can be
specified in variousways (Mitiche andAggarwal, 2013). For exam-
ple, instead of the L2 norm, one can use the Aubert et al. function
(Aubert et al., 1999; Aubert andKornprobst, 2002) or the L1 norm.
We can also inhibit smoothing across boundaries by joint 3D
motion estimation and segmentation (Mitiche and Sekkati, 2006).
In this follow-up study of our previous investigation (Mitiche
et al., 2015), we apply the L1 regularization. There are three basic
reasons for this choice: (1) the ability of the L1 constraint to
preserve sharp boundaries while penalizing oscillations. This is
well suited for “blocky images” which tend to be smooth inside
regions, which have sharp significant boundaries, as is, in general,
typical of motion fields; (2) in practice, it can be implemented
by computationally efficient approximations without affecting the
accuracy of results in a noticeableway; and (3) there is a significant
body of literature in its support, particularly in image restoration
(Vogel, 2002).

Recovery of scene flow and depth uses the image sequence
spatiotemporal derivatives. The study in Mitiche et al. (2015)
computed derivatives by a variational formulation, which used
an anti-differentiation data fidelity term, and L2 regularization.
The anti-differentiation term expressed the fact that an image
derivative is a function which when integrated gives the image.
The present study uses the same anti-differentiation data fidelity
term but substitutes L1 regularization for L2 in order, first, to be
consistentwith the use ofL1 regularization of scene flow anddepth
and, second, to have the evaluation of the derivatives account for
their discontinuities.

We conducted several experiments with real and synthetic data
to verify the validity and efficiency of the scheme. We show
comparative results that put in evidence the improvements one
can obtain by using L1 rather than L2 regularization of depth and
motion, as well as by evaluating the image derivatives with L1
rather than L2 regularization.

The remainder of this paper is organized as follows: Section
2 develops the objective functional, and Section 3 describes its

minimization. Section 4 shows how the image derivatives are
computed. The validation experiments, using synthetic and real
image sequences, are described in Section 5. Section 6 contains a
conclusion.

2. FORMULATION

Let I: (x,y,t)→ I(x,y,t) be an image sequence, where (x,y) are the
spatial coordinates on the bounded image domain Ω, and t∈R+

designates time. Let (X,Y,Z) be the coordinates of a point P in
space and (x,y) the coordinates of its projection. The coordinate
system and the imaging geometry are shown in Figure 1. Let U,
V, andW be the scene flow coordinate functions. The scene flow
and depth linear gradient constraint (Mitiche et al., 2015), which
relates the scene flow coordinatesU, V, andW and depth Z to the
spatiotemporal image is

fIxU + fIyV − (xIx + yIy)W + ItZ = 0, (1)

where Ix, Iy, and It are the image spatiotemporal derivatives, Z
designates depth (Figure 1), and (U,V,W) = ( dX

dt ,
dY
dt ,

dZ
dt ) is the

scene flow vector at P. This is a homogeneous linear equation in
the variables of scene flow and depth. The homogeneity results
from the aperture problem. Multiplication of motion and depth
(and structure thereof) by a constant (scale) maintains the equa-
tion integrity. One can remove this uncertainty of scale by choos-
ing the depth to be relative to the frontoparallel plane Z=Z0, for
some positive depth Z0 (Mitiche et al., 2015). Therefore, equation
(1) becomes:

fIxU + fIyV − (xIx + yIy)W + It(Z − Z0) + ItZ0 = 0 (2)

For notational convenience and economy, we will reuse the
symbol Z for depth relative to the frontoparallel pane Z=Z0, in
which case we can write equation (2) as

fIxU + fIyV − (xIx + yIy)W + ItZ + ItZ0 = 0 (3)

FIGURE 1 | The viewing system is represented by a Cartesian
coordinate system (O; X,Y,Z) and central projection through the origin.
The Z-axis is the depth axis. The image plane π is orthogonal to the Z-axis at
distance f, the focal length, from O.
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In the formulation of Mitiche et al. (2015), scene flow and
relative depth resulted from the minimization of the following L2
smoothness regularization functional:

E(U,V,W,Z|I) =
1
2

∫
Ω
(fIxU + fIyV − (xIx + yIy)W

+ ItZ + ItZ0)2dxdy

+
α

2

∫
Ω

(∥ ∇U∥2+ ∥ ∇V∥2+ ∥ ∇W∥2)dxdy

+
β

2

∫
Ω

∥ ∇Z∥2dxdy, (4)

where α and β scale the relative contribution of the terms
of the functional. For boundary preservation, we replace the
L2 norm regularization term of each variable by an L1 norm

term, namely:
∫
Ω ∥ ∇Q ∥ dxdy =

∫
Ω

(
Q2

x + Q2
y
) 1
2 dxdy, where

Q∈ {U, V, W, Z}. Therefore, the objective functional is

E(U,V,W,Z|I) =
1
2

∫
Ω
(fIxU + fIyV − (xIx + yIy)W

+ ItZ + ItZ0)2dxdy

+
α

2

∫
Ω

((U2
x + U2

y)
1
2 + (V2

x + V2
y)

1
2

+ (W2
x + W2

y)
1
2 )dxdy

+
β

2

∫
Ω

(Z2
x + Z2

y)
1
2 dxdy, (5)

3. OPTIMIZATION

The Euler–Lagrange equations corresponding to functional equa-
tion (5) are

fIx(fIxU + fIyV + (−xIx − yIy)W + ItZ + ItZ0)

− α
∂

∂x
Ux(

U2x + U2y
) 1

2
− α

∂

∂y
Uy(

U2x + U2y
) 1

2
= 0

fIy(fIxU + fIyV + (−xIx − yIy)W + ItZ + ItZ0)

− α
∂

∂x
Vx(

V2x + V2y
) 1

2
− α

∂

∂y
Vy(

V2x + V2y
) 1

2
= 0

(xIx + yIy)(fIxU + fIyV − (xIx + yIy)W + ItZ + ItZ0)

+ α
∂

∂x
Wx(

W2x + W2y
) 1

2
− α

∂

∂y
Wy(

W2x + W2y
) 1

2
= 0

It(fIxU + fIyV + (−xIx − yIy)W + ItZ + ItZ0)

− β
∂

∂x
Zx(

Z2x + Z2y
) 1

2
− β

∂

∂y
Zy(

Z2x + Z2y
) 1

2
= 0, (6)

with the Neumann boundary conditions:

∂U
∂n

= 0, ∂V
∂n

= 0, ∂W
∂n

= 0, ∂Z
∂n

= 0, (7)

where ∂
∂n is the differentiation operator in the direction of the

normal n of the boundary ∂Ω of Ω.

Were it not for the denominator of the regularization terms
in equation (6), the equations would be linear. It is common in
numerical analysis to solve such systems of equations using an
iterative method where the non-linear terms are evaluated at the
preceding iteration, in which case they are treated as data at the
current iteration, and the equations to solve are linear. In our case,
we alternate the following two steps at the current k-th iteration.

Step 1: this step accounts of the non-linearity of the obtained
Euler–Lagrange equations and consists of updating the denom-
inators of the regularization terms in equation (6) at each grid
point:

g(Qk) =
1(

(Qk−1
x )

2
+ (Qk−1

y )
2
+ ε

) 1
2
,Q ∈ {U,V,W,Z} (8)

where ε is a small positive value whose purpose is to remedy the
non-differentiability of the Euclidean norm at the origin, without
affecting the computational outcome in a noticeable way. Notice
that the pointwise updates in equation (8) have a computational
complexity that grows linearly with respect to N (the image size):
the complexity isNmultiplied by the fixed complexity of 4 updates
of the form in equation (8).

Step 2: with pointwise coefficients g(Qk)(Q∈ {U, V, W, Z})
fixed, this step is an update (iteration k) of variables {U, V, W, Z}
for solving the following linear system:

fIx(fIxU + fIyV + (−xIx − yIy)W + ItZ + ItZ0)

− αg(Uk)∇2U = 0
fIy(fIxU + fIyV + (−xIx − yIy)W + ItZ + ItZ0)

− αg(Vk)∇2V = 0
(xIx + yIy)(fIxU + fIyV − (xIx + yIy)W + ItZ + ItZ0)

− αg(Wk)∇2W = 0
It(fIxU + fIyV + (−xIx − yIy)W + ItZ + ItZ0)

− βg(Zk)∇2Z = 0,

(9)

The four equations of equation (9) are written for each point
of image domain Ω. Let Ω be discretized via a unit-spacing grid,
and let the grid points be indexed by the integers {1, 2, . . .,N}. The
pixel numbering is according to the lexicographical order, i.e., by
scanning the image top-down and left to right. If the image is of
size n× n, then N = n2. Let a= fIx, b= fIy, c=−(xIx + yIy), and
d= It.

For all grid point indices i∈ {1, 2, . . .,N}, a discrete approxima-
tion of the linear system (equation (9)) is

(S)



(a2i + αgi(Uk)ni)Ui + aibiVi + aiciWi + aidiZi

−αgi(Uk)
∑
j∈Ni

Uj = −aidiZ0

biaiUi + (b2i + αgi(Vk)ni)Vi + biciWi + bidiZi

−αgi(Vk)
∑
j∈Ni

Vj = −bidiZ0

ciaiUi + cibiVi + (c2i − αgi(Wk)ni)Wi + cidiZi

−αgi(Wk)
∑
j∈Ni

Wj = −cidiZ0

diaiUi + dibiVi + diciWi + (d2i + βgi(Zk)ni)Zi

−βgi(Zk)
∑
j∈Ni

Zj = −d2i Z0,
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where (Ui, Vi, Wi, Zi)= (U, V, W, Z)i is the scene flow vector at
grid point i; ai, bi, ci, and di are the values at i of a, b, c, and d,
respectively, gi(Qk), Q∈ {U, V, W, Z}, are the pointwise updates of
equation (8) evaluated at i, andNi is the set of indices of the neigh-
bors of i. For the 4-neighborhood, ni = card(Ni)= 4 for points
interior to the discrete image domain, and ni < 4 for boundary
image points. Laplacian ▽2Q in the Euler–Lagrange equations
(Q∈ {U, V, W, Z}) has been discretized as 1

4
∑

j∈Ni
(Qj − Qi),

with α (respectively β) absorbing the factor 1/4.
Let q= (q1, . . ., q4N)t ∈R4N be the vector with coordinates

q4i−3 =Ui, q4i−2 =Vi, q4i−1 =Wi, q4i =Zi, i∈ {1, . . .,N},
and r= (r1, . . ., r4N)t ∈R4N the vector with coordinates
r4i−3 =−aidiZ0, r4i−2 =−bidiZ0, r4i−1 =−cidiZ0, and
r4i =−d2i Z0, i∈ {1, . . .,N}. System (S) of linear equations
can be written in a matrix form as

Aq = r (10)

where A is the 4N × 4N matrix with elements A4i−3,4i−3 = a2i +
αgi(Uk)ni; A4i−2,4i−2 = b2i + αgi(Vk)ni; A4i−1,4i−1 = c2i +
αgi(Wk)ni; A4i,4i = d2i + βgi(Zk)ni; A4i−3,4i−2 = A4i−2,4i−3 =
aibi; A4i−3,4i−1 = A4i−1,4i−3 = aici; A4i−3,4i = A4i ,4i−3 =
aidi; A4i−2,4i−1 = A4i−1,4i−2 = bici; A4i−2,4i =A4i ,4i−2 = bidi;
A4i−1,4i =A4i ,4i−1 = cidi; for all i∈ {1, . . .,N}, and A4i−3,4j−3 =
−αgi(UK); A4i−2,4j−2 =−αgi(Vk); A4i−1,4j−1 =−αgi(Wk); and
A4i ,4j =−βgi(Zk), for all i,j∈ {1, . . .,N} such that j∈Ni, all other
elements being equal to zero. This is a large-scale sparse system
of linear equations, which can be solved by iterative updates for
sparse matrices (Ciarlet, 1994; Stoer and Bulirsch, 2002). It is easy
to prove that symmetric matrix A is positive definite (PD). This
means that a fast solution of equation (10) can be obtained by
convergent 4× 4 block-wise Gauss–Seidel updates. To show that
A is PD, it suffices to perform some algebraic manipulations to
write qtAq for all q∈R4N, q ̸= 0, as follows:

qtAq =
N∑
i=1

(aiUi + biVi + ciWi + diZi)2

+ α
N∑
i=1

∑
j∈Ni;j>i

gi(Uk)(Ui − Uj)2 + gi(Vk)(Vi − Vj)2

+ gi(Wk)(Wi − Wj)2

+ β
N∑
i=1

∑
j∈Ni;j>i

gi(Zk)(Zi − Zj)2 > 0 (11)

The positive definiteness of A implies that iterative pointwise
and block-wise Gauss–Seidel and relaxation updates for system
(equation (10)) converge (Ciarlet, 1994; Stoer and Bulirsch, 2002).
For a 4× 4 block division of A, the Gauss–Seidel update (iteration
k) for each grid point i∈ {1, . . .,N} is

(a2i + αgi(Uk)ni)Uk+1
i + aibiVk+1

i + aiciWk+1
i + aidiZk+1

i

= −aidiZ0 + αgi(Uk)

 ∑
j∈Ni;j<i

Uk+1
j +

∑
j∈Ni;j>i

Uk
j



biaiUk+1
i + (b2i + αgi(Vk)ni)Vk+1

i + biciWk+1
i + bidiZk+1

i

= −bidiZ0 + αgi(Vk)

 ∑
j∈Ni;j<i

Vk+1
j +

∑
j∈Ni;j>i

Vk
j


ciaiUk+1

i + cibiVk+1
i + (c2i + αgi(Wk)ni)Wk+1

i + cidiZk+1
i

= −cidiZ0 + αgi(Wk)

 ∑
j∈Ni;j<i

Wk+1
j +

∑
j∈Ni;j>i

Wk
j


diaiUk+1

i + dibiVk+1
i + diciWk+1

i + (d2i + βgi(Zk)ni)Zk+1
i

= −d2i Z0 + βgi(Zk)

 ∑
j∈Ni;j<i

Zk+1
j +

∑
j∈Ni;j>i

Zk
j

 , (12)

For each point I ∈ {1, . . .,N}, we solve a 4× 4 linear system
of equations, which can be done efficiently by a singular value
decomposition (SVD) (Forsythe et al., 1977). The computational
complexity of this step grows linearly with respect to N: the
complexity isNmultiplied by the fixed complexity of a 4× 4 SVD.

3.1. Computational Load: L1 vs. L2

Although L1 regularization yields non-linear Euler–Lagrange
equations for the minimization of our objective functional, these
can be solved efficiently via the two-step scheme that we proposed
above. The pointwise updates in equation (8) account for the
non-linearity of the L1 model (Step 1) and are an additional
computational load in comparison to L2 regularization. However,
these updates have a complexity that grows linearly with respect
to N (image size). Therefore, they do not increase the computa-
tional time substantially; see the computational times in Table 1.
Step 2 has a computational complexity that is similar to the L2
regularization of Mitiche et al. (2015): in both cases, we have
block-wise (4× 4) and relaxation updates for a large-scale sparse
system of linear equations, with a symmetric positive definite
matrix A. The complexity of each iteration is N multiplied by
the fixed complexity of a 4× 4 singular value decomposition, and
the positive definiteness of A implies that the block-wise updates
converge.

Table 1 reports the computation (CPU) times for both L1 and
L2 regularizations, in the case of four different test images of
different sizes. Columns 2 and 3 contain the overall CPU times.
The third column gives the CPU time for the block-wise SVD

TABLE 1 | Computation times per iteration (in seconds).

Sequences
(dimensions
in pixels)

L2 (overall) L1 (overall) Step 2 (L2/L1) Step 1 (L1)

Berber
(240×360)

1.86 2.21 1.86 0.35

Pharaohs
(240×320)

1.65 1.96 1.65 0.31

Cylinder
(384×500)

4.13 4.90 4.13 0.77

Marbled-block
(384×512)

4.23 5.02 4.23 0.79
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updates solving a large-scale sparse system. These SVD com-
putations occur in both L2 and L1 formulations (Step 2). The
last column reports the CPU times for the pointwise updates
in equation (8). These updates appear only in the L1 formula-
tion (Step 1). The simulations were run on an Intel i7-4500U
Processor (4M Cache, up to 3.00GHz), using MATLAB (2014b
version).

4. PARTIAL DERIVATIVES

In computer vision, image derivatives are often approximated by
locally averaged finite differences to lessen the impact of noise
(Horn and Schunk, 1981; Marshall, 2005; Periaswamy and Farid,
2006; Sun et al., 2010; Heinrich et al., 2012; Mitiche et al., 2015).
However, such fixed-support low-pass filtering does not generally
fit the noise profile and can, therefore, be ineffective. A more
effective way is to state differentiation as a spatially regularized
variational problem, as was done in Mitiche et al. (2015). The
process advocated in Mitiche et al. (2015) looked at the derivative
of an image as a function which, when integrated, gives the image
function. Consequently, the objective functional contained an
anti-differentiation data term, which evaluates the conformity of
a derivative to the image by constraining the integration of this
derivative to produce the image. The functional also contained
an L2 regularization term. In this paper, we investigate a gener-
alization, which accounts for derivative discontinuities using an
L1 regularization term because L2 regularization constrains the
image derivatives to be smooth everywhere and, as a result, would
adversely blur their boundaries.

4.1. L1 Regularized Differentiation
The partial derivatives Ix and Iy of an image will be estimated
using an anti-differentiation characterization. The method for Ix
will be explained in this section. The derivative Iy is computed by
the same scheme applied to the transposed image. Since only two
images are available along the time axis, the temporal derivative
will be estimated using the Horn and Schunck definition of the
temporal derivative (Horn and Schunk, 1981). Let f designate
an approximation of the derivative. Recall that in Mitiche et al.
(2015), the derivative was computed by minimizing the following
functional with respect to f :

E(f) =
1
2

∫
Ω

(
∥ Df − I∥2 + γ ∥ ∇f∥2

)
dxdy, (13)

where D is the anti-differentiation operator, γ is a positive con-
stant, and ▽f is the spatial gradient of f. The integral operator of
anti-differentiation D is defined by

Df(x, y) =
∫ x

0
f(z, y)dz (14)

To generalize this formulation to preserve boundaries, we will
replace the L2 regularization term in equation (13) by an L1 term:∫
Ω

(
f 2x + f 2y

) 1
2 dxdy. The objective functional becomes

E(f) =
1
2

∫
Ω

(
∥ Df − I∥2 + γ

∫
Ω

(f 2x + f 2y )
1
2
)
dxdy, (15)

The corresponding Euler–Lagrange equations are

D∗(Df − I) − γ
∂

∂x
fx(

f 2x + f 2y
) 1
2

− γ
∂

∂y
fy(

f 2x + f 2y
) 1
2

= 0, (16)

where D* is the adjoint operator of D given by, assuming
Ω= [0,l]× [0,l], D∗f(x, y) =

∫ l
x f(z, y)dz.

Non-linearity occurs in the regularization terms of
equation (23). As done in the previous section, we can, in
practice, and without affecting in any significant way subsequent
processing, extend differentiability to the origin by replacing the

denominators by
(
f2x + f2y + ε

) 1
2 , for some small positive ε. Also,

and as we have done in the previous section, solve equation (16)
iteratively, by evaluating, at each iteration k, the non-linear terms
at the preceding iteration k− 1. More precisely, we have, after
initialization, the following equation at iteration k:

D∗(Df k − I) − γ(
(f k−1
x )

2
+ (f k−1

y )
2
+ ε

) 1
2
∇2f k = 0 (17)

As inMitiche et al. (2015), discretization of equation (17) yields
a large-scale sparse system of linear equations which can be solved
by the Gauss–Seidel method.

4.2. Example
We apply the scheme to compute the derivatives of the noisy
(Gaussian white noise, SNR= 1) synthetic chessboard image of
Figure 2, which illustrates that L1 regularized differentiation out-
performs both the local finite-difference definition and L2 regu-
larized differentiation. A quantitative evaluation can be done by
computing the MSE (mean squared error) and the SDE (standard
deviation of error). Table 2 lists the results. Derivatives are in gray
level (0–255 range) per pixel. The top part of the table gives the
measurements as obtained from thewhole image. The values listed
in the bottom part of the table come from the vicinity of the image
boundaries, using a 5× 5 window centered on these. The results
confirm visual inspection, i.e., that L1 regularization outperforms
both L2 regularization and local finite differences.

5. EXPERIMENTAL RESULTS

In this section, we expose various experiments showing the appli-
cation of the described method to synthetic and real image
sequences. In addition to displaying various experimental exam-
ples, we present a comparative and quantitative analysis that
highlights the positive effects of L1 regularization over the whole
image domain, and particularly within motion boundaries. In our
experiments, all formulation parameters are determined empir-
ically and distances are measured in pixels. In all the examples,
regularized differentiation’s coefficient γ has been fixed equal to
1. As approximated in Sekkati andMitiche (2007), the focal length
of the camera is 600 pixels. The position of the frontoparallel plane
Z0 is fixed to 6× 104 pixels. The initial values of scene flow and
depth at each point are set to, respectively, 0 andZ0. Coefficientsα
andβ vary from a sequence to another and are given in the caption
of each example.
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FIGURE 2 | Noised chessboard. First row, chessboard image on the left
and noised chessboard image on the right (SNR=1). Second row, ground
truth of partial derivatives: Ix on the left and Iy on the right. Third row,
estimated partial derivatives using TV regularized differentiation with γ = 1: Ix
on the left and Iy on the right. Fourth row, estimated partial derivative using L2

regularized differentiation with γ = 1: Ix on the left Iy on the right. Fifth row,
estimated partial derivative using forward difference of Horn and Schunck: Ix
on the left and Iy on the right.

TABLE 2 | Differentiation: L1 regularization, L2 regularization, and local
finite differences (LFD) applied to noised chessboard image (SNR= 1) and
evaluated using mean squared error (MSE) and standard deviation error
(SDE).

Methods L1 L2 LFD

Noised chessboard image MSE= 0.06 MSE= 0.14 MSE= 0.41
SDE= 0.09 SDE= 0.13 SDE= 0.31

Noised chessboard boundaries MSE= 0.02 MSE= 0.03 MSE= 0.06
SDE= 0.07 SDE= 0.09 SDE= 0.16

Top: measurements from the whole image. Bottom: values from 5× 5 windows centered
on the boundaries. Regularization coefficient γ =1.
Bold font indicates the best values.

5.1. Examples
Four image sequences with different characteristics served as
samples to test the validity of our scheme and its implementation.
Our displays include

• Anaglyphs, which provide a convenient way for subjective
appraisal of the recovered object depth. When viewed with
chromatic (red–cyan) glasses on good-quality photographic
paper or on standard screens, anaglyphs give viewers a strong
sense of depth. They are produced from one of the two input
images and the computed depth map and are generally better
perceived with full color resolution;

• Standard displays using color-coded depth so as to highlight
image-depth variations;

• 3D reconstructed objects;
• 3D scene flow vector fields; and
• 2D optical flow fields corresponding to our recovered scene

flow. This can serve as an indirect validation of our implemen-
tation when the 2D outputs are compared to standard opti-
cal flow methods (e.g., the well tested/researched benchmark
algorithm of Horn and Schunck).

We provide several figures, each corresponding to an example
and organized as follows. The first row includes (from left to
right): (a) an anaglyph of the scene structure reconstructed from
our method’s output and the first frame of the sequence; (b) a
color-coded display of the recovered depth and the used color
palette, with depth increasing from bottom (red) to top (purple);
and (c) novel viewpoint images of themoving objects in the scene.
The second row depicts (from left to right): (a) a view of the
obtained scene flow; (b) a projected optical flow corresponding to
our estimated scene flow; and (c) optical flow computed directly
by the Horn and Schunck algorithm.

The following describes the four image sequences that we used:

• TheMarbled-block synthetic image sequence (Figure 3) is taken
from the database of KOGS/IAKS Laboratory, Germany. This
sequence shows three blocks, two of them are moving. The
rightmost block is moving backward to the left, whereas the
front-most (smallest) block moves forward to the left. Some
aspects of this sequencemake its 3D interpretation challenging:
the blocks and the floor have a similar macrotexture with weak
spatiotemporal intensity variations within the textons. This
makes the occluding boundaries of the blocks ill defined at
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FIGURE 3 |Marbled blocks sequence results (better perceived when figures are enlarged on screen). Parameters: α= 6×107 and β = 103. First row
from left to right: an anaglyph of the structure reconstructed from the method’s output and the first frame of the sequence; a color-coded display of the recovered
depth along with the used color palette, with depth increasing from bottom (red) to top (purple); novel viewpoint images of the two moving blocks. Second row: a
view of the scene flow vectors; optical flow corresponding to the estimated scene flow; optical flow computed directly by the Horn and Schunck algorithm.

FIGURE 4 | Cylinder and box sequence results (better perceived when figures are enlarged on screen). Parameters: α= 6×107 and β = 105. First row
from left to right: an anaglyph of the structure reconstructed from the method’s output and the first frame of the sequence; a color-coded display of the recovered
depth along with the used color palette, with depth increasing from bottom (red) to top (purple); novel viewpoint images of the cylindrical surface and the box.
Second row: a view of the scene flow vectors; optical flow corresponding to the estimated scene flow; optical flow computed by the Horn and Schunck algorithm.

some places. Also, the source of light position with respect to
the blocks causes shadows, which move with the blocks.

• The Cylinder and box real sequence (Figure 4), provided in
Debrunner and Ahuja (1998), depicts two moving objects,

along with a moving background: a cylindrical surface rotating
at a velocity of 1° per frame about the vertical axis and moving
laterally at an image rate of about 0.15 pixel per frame toward
the right, as well as a box translating at approximately 0.30 pixel
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per frame toward the right. Also, the background is translating
to the right (parallel to the box motion) at a rate of about 0.15
pixel per frame. Those motions make 3D interpretation and
recovery challenging in this example.

• The Berber real sequence (Figure 5) exhibits a sculpture rotat-
ing about the vertical axis and translating forward to the left in
a static environment.

• The Pharaohs sequence (Figure 6) shows two moving sculp-
tures in a static environment. The first (leftmost) figurine
translates left and forward, whereas the second rotates about a
nearly vertical axis to the right.

The examples above support the validity of our scheme and
its implementation. The obtained anaglyphs, color-coded depths,

FIGURE 5 | Berber figurine sequence results (better perceived when figures are enlarged on the screen). Parameters: α= 6×108; β = 5×105. First row
from left to right: an anaglyph of the structure reconstructed from the method’s output and the first frame of the input image sequence; a color-coded display of the
recovered depth along with the used color palette, with depth increasing from bottom (red) to top (purple); novel viewpoint images of the figurine. Second row: a view
of the scene flow vectors; optical flow corresponding to the estimated scene flow; optical flow computed by the Horn and Schunck algorithm.

FIGURE 6 | Pharaohs figurines sequence (better perceived when figures are enlarged on screen). Parameters: α= 6×108; β =×102. First row from left
to right: an anaglyph of the structure reconstructed from the method’s output and the first frame of the input image sequence; a color-coded display of the recovered
depth along with the used color palette, with depth increasing from bottom (red) to top (purple); novel viewpoint images of the figurines. Second row: a view of the
scene flow vectors; optical flow corresponding to the estimated scene flow; optical flow computed by the Horn and Schunck algorithm.
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and 3D object reconstructions are consistent with the actual struc-
tures of the scenes. The displays of the estimated 3D scene flow
and the corresponding 2D optical flow are consistent with the real
motion of the objects in scenes. Also, the optical flow derived
from our scene flow estimation is in line with a direct optical
flow computation by the standard Horn and Schunck algorithm.
We notice that the obtained fields are more regular and present
less noise than those computed directly with Horn and Schunck
algorithm. This is mainly due to the use of 3D information and
regularized differentiation.

5.2. Comparative Analysis
We report a comprehensive comparative analysis, which demon-
strates the benefits of our L1 formulations. In particular, we focus
our evaluations on the boundaries of motions and objects, so as to
illustrate the boundary-preserving effect of our L1 methods.

We began our comparative analysis by the simple synthetic
sequence Squares, which includes two images with known
motions. This sequence depicts two overlapping squares in oppo-
site motions, along with a moving background. The motions for
these three elements are known: a translation of the rightmost
square by (−1, −1) pixels in the downward-left direction, a
translation of the leftmost square by (1, 1) pixels in the top-right
direction, and downward translation of the background by (0,−1)
pixels. To better test the performance of evaluated schemes, we
added noise independently to the first and second image. Noise
values are from a discretized, shifted, and truncated Gaussian
in the interval between 0 and 100 gray levels, within an overall
range of [0, 255]. The first row of Figure 7 displays the first
(noised) image (left) and the vector-coded ground truth (right).
The second row depicts the optical flows, the first (left) obtained
from a projection of the L2 regularized scene flow (Mitiche et al.,

FIGURE 7 | Squares synthetic sequence results. First row: the first (noised) image of the sequence (left) and the vector-coded ground truth (right). Second row:
the optical flow corresponding to L2HS (left) and L1HS (right). Third row: the optical flow corresponding to L2L2 (left) and L1L1 (right).
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2015) and the second from our L1 regularized scene flow. In
both cases, we estimated image derivatives with a finite-difference
regularization based on the standardHorn and Schunck definition
(Horn and Schunk, 1981). We refer to these methods as L2HS
(left) and L1HS (right). In the third row, we repeated the same
experiment using regularized image differentiation instead of the
finite differences. On the left, we depict the result using L2 reg-
ularization for both scene flow and image-derivative estimations
(L2L2) whereas on the right, we show the result for L1 (L1L1).
The optical flows resulting from the four methods are consistent
with their expected overall appearance. However, we see clearly a
difference between the performances of those algorithms.

Visually, the L1L1 scheme yielded the closest match to the
vector-coded ground truth. To support this quantitatively, we
added an evaluation based on two standard error measures for
optical flow (Baker et al., 2011): average angular error (aae) and

endpoint error (epe); see Table 3. The (L1L1) scheme performed
better than the other methods.

Figure 8 depicts another example for our comparative anal-
ysis. It uses the Hydrangea sequence of a real scene from the
Middlebury data set (Baker et al., 2011). The sequence shows
a rotating flower bouquet within a translating background, and

TABLE 3 | Performance of L2HS, L1HS, L2L2, and L1L1 algorithms on the
noised squares image (SNR=1.12).

L2HS L1HS L2L2 L1L1

aae=15.94 aae= 12.57 aae= 15 aae= 11.95
epe= 0.44 epe= 0.41 epe= 0.4 epe= 0.36

Bold font indicates the best values.

FIGURE 8 | Hydrangea real sequence results. First row: the first image of the sequence (left) and the vector-coded ground truth (right). Second row: the optical
flow corresponding to L2HS (left) and L1HS (right). Third row: the optical flow corresponding to L2L2 (left) and L1L1 (right).
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the ground-truth flow of the sequence is given.1 The first row of
the figure displays the first of the two input images (left) and the
vector-coded ground truth (right). The second row depicts the
optical flows, the first (left) obtained from a projection of the L2
regularized scene flow (Mitiche et al., 2015) and the second from
our L1 regularized scene flow. In both cases, we estimated image
derivatives with a finite-difference regularization based on the
standard Horn and Schunck definition (Horn and Schunk, 1981).
We refer to these methods as L2HS (left) and L1HS (right). In
the third row, we repeated the same experiment using regularized
image differentiation instead of the finite differences. On the left,

1http://vision.middlebury.edu/flow/

we depict the result using L2 regularization for both scene flow
and image-derivative estimations (L2L2) whereas on the right, we
show the result for L1 (L1L1). Visually, the L1L1 scheme yielded the
closest match to the vector-coded ground truth. Table 4 supports

TABLE 4 | Performance of L2HS, L1HS, L2L2, and L1L1 algorithms on the
Hydrangea real sequence.

L2HS L1HS L2L2 L1L1

aae=21.18 aae= 16.72 aae=17.04 aae= 15.96
epe= 2.17 epe= 1.78 epe= 1.92 epe= 1.54

Bold font indicates the best values.

FIGURE 9 | Visual inspection of the results of the proposed L1L1 method (first column) and the L2L2 method in Mitiche et al. (2015) (second column).
The first row shows anaglyphs, the second color-coded depth, and the third 3D object reconstructions. The last two rows depict 3D scene flow and projected 2D
optical flow fields.
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quantitatively these results. It reports two standard optical flow
errors (aae and epe) (Baker et al., 2011), showing that the L1L1
scheme performed better than the other methods.

Figure 9 compares visually the results of L1L1 (proposed
method) and L2L2 (Mitiche et al., 2015) using the different exam-
ples in Section 1. The first column depicts the results of the
proposed L1L1 method, whereas the second shows the results
of Mitiche et al. (2015) (L2L2). The first row shows anaglyphs,
the second color-coded depth, and the third 3D object recon-
structions. The last two rows displayed both 3D scene flow and
projected 2D optical flow fields. We can see that the results are
better with L1L1 than with L2L2: the 3D parameters are better
defined, clearer, and sharper, especially on the boundaries; flow
fields are more regular and smooth.

Tables 5 and 6 report quantitative comparisons of the four
algorithms (L2HS and L1HS in Table 5; L2L2 and L1L1 in Table 6)
using three standard error measures (Baker et al., 2011): average
angular error (aae), standard angular error (stae), and endpoint
error (epe). Errors are computed between the motion result-
ing from scene flow and the optical flow ground truth. As we
do not have scene flow ground truth for these real examples,
evaluations of the resulting (projected) optical flow are a good
indirect way to assess scene flow results. We constructed an
optical flow ground truth using SURF-based (Bay et al., 2008)
detection and correspondences of the key points in the two
images. Then, the velocity coordinates of these key points are
computed, yielding an optical flow ground truth. Tables 5 and
6 confirm that the use of our L1 regularization improves the
results and that the L1L1 formulation outperforms the other
methods.

In the following part of our comparative analysis, we will focus
on the assessment (both qualitative and quantitative) of motion
within objects boundaries, as preserving these is an important
feature of our L1 formulation.

Let us start with a qualitative visual inspection by displaying
the images of the gradient of motion for each of the four methods
(L2HS, L1HS, L2L2, and L1L1); seeFigure 10.We note that with our
L1 regularization, points on the boundaries of motion are brighter
(sharper). This is due to the fact that our L1 formulation preserves
sharp boundaries.

To support these results, we added quantitative evaluations
based on aae, stae, and epe errors: Table 7 reports the results
for L2HS and L1HS; Table 8 reports the results for L2L2 and
L1L1. Errors are computed between themotion projected from the
obtained scene flow and the optical flow ground truthwithin 7× 7
windows centered at a set of key points on motion boundaries
(the key points are those for which we havemotion ground truth).
Tables 7 and 8 report the results, which clearly indicate that our
L1L1 formulation outperforms all the other methods.

6. CONCLUSION

This study investigated a boundary-preserving method for joint
recovery of scene flow and relative depth from a monocular
sequence of images. The scheme built upon the basic formulation
of Mitiche et al. (2015). It minimized a functional composed of
the data conformity term of Mitiche et al. (2015), which relates

TABLE 5 | Errors for the L2HS and L1HS formulations.

Sequences Errors L2HS L1HS

Berber aae 38.51 22.01
stae 43.84 24.18
epe 1.11 0.68

Pharaohs aae 59.17 43.99
stae 41.38 30.37
epe 1.12 1.54

Cylinder aae 59.26 57.7
stae 48.53 46.82
epe 2.03 2.03

Marbled-block aae 8.89 7.63
stae 22.79 17.55
epe 0.2 0.15

Bold font indicates the best values.

TABLE 6 | Errors for the L2L2 and L1L1 formulations.

Sequences Errors L2L2 L1L1

Berber aae 23.27 11.61
stae 14.77 10.16
epe 0.9 0.41

Pharaohs aae 20.01 14.02
stae 19.21 12.04
epe 0.62 0.36

Cylinder aae 18.68 10.05
stae 18.91 9.55
epe 0.78 0.2

Marbled-block aae 4.14 4.2
stae 8.56 8.33
epe 0.1 0.09

Bold font indicates the best values.

the image sequence spatiotemporal variations to scene flow and
depth, and an L1 regularization term, rather than L2 as in Mitiche
et al. (2015). Therefore, this afforded a boundary-preserving
version of the basic formulation. The corresponding non-linear
Euler–Lagrange equations were discretized and solved iteratively
by a scheme,which solved at each iteration a large-scale sparse sys-
tem of linear equations in the unknowns of scene flow and depth.
The image derivatives were estimated by a variational method
with L1 regularization. This also led to an iterative method of res-
olution, which consisted of solving a large sparse system of linear
equations at each iteration. Experiments show that the scheme
is sound and efficient. The examples demonstrated the need to
regularize scene flow and depth so as to take into account their
boundaries, i.e., sharp spatial transitions of scene flow or depth.
The results justify extensive further investigations, particularly
concerning quantitative, i.e., ground truth controlled evaluation,
motion of large extent, and image noise and resolution in common
practical settings.

The choice of a continuous alternating optimization scheme for
our problem can be motivated by two important facts. First, we
are dealing with continuous variables, and therefore, a continuous
(not discrete) Euler–Lagrange regularization approach is a natural
choice. Furthermore, our alternating scheme for solving the ensu-
ing non-linear Euler–Lagrange equations has a computational
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FIGURE 10 | Gradients of optical flow for the Marbled blocks sequence. First row: L2 HS (left) and L1HS (right). Second row: L2L2 (left) and L1L1 (right).

TABLE 7 | Quantitative evaluations on the boundaries of motion (L2HS and
L1HS).

Sequences Errors L2HS L1HS

Berber (Pt= 14) aae 51.4 47.24
stae 23.47 21.72
epe 1.53 1.43

Pharaohs (Pt= 29) aae 45.49 32.23
stae 28.73 18.21
epe 0.97 0.69

Cylinder (Pt= 15) aae 24.78 23.45
stae 13.75 13.36
epe 0.46 0.44

Marbled-block (Pt= 9) aae 94.35 78.81
stae 15.33 7.07
epe 2.32 1.82

Bold font indicates the best values.

complexity that behaves linearly w.r.t the number of grid points
(N). This is important in practice, particularly when dealing with
large image sequences. Of course, it would be very interesting to
investigate other regularization options for estimating scene flow
and depth from a single image sequence, for instance:

• Discrete Markov Random Fields (MRFs): MRFs were previ-
ously investigated for optical flow using sub-modular pairwise
potentials (Lempitsky et al., 2008). MRF models can benefit
from powerful combinatorial optimization techniques such as
graph cuts (Boykov et al., 2001). It is worth noting, however,
that adapting discrete MRFs to our continuous setting requires
some technical care and is not straightforward.

TABLE 8 | Quantitative evaluations on the boundaries of motion (L2L2 and
L1L1).

Sequences Errors L2L2 L1L1

Berber (Pt= 14) aae 26.02 23.27
stae 20.54 14.77
epe 1.01 0.9

Pharaohs (Pt=29) aae 15.45 14.02
stae 11 12.04
epe 0.36 0.36

Cylinder (Pt= 15) aae 11.99 10.05
stae 9.66 9.55
epe 0.23 0.2

Marbled-block (Pt= 9) aae 20.44 11.53
stae 11.84 6.24
epe 0.98 0.62

Bold font indicates the best values.

• Regularization based on non-local means filtering (Favaro,
2010). Non-local means can preserve edges and textures. They
were applied successfully to thin structures in depth-from-
defocus problems (Favaro, 2010).

• State-of-the-art solvers for non-smooth problems such as the
primal-dual algorithm of Chambolle and Pock (2011).
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