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The integration of emotions into human–computer interaction applications promises a
more natural dialog between the user and the technical system operators. In order
to construct such machinery, continuous measuring of the affective state of the user
becomes essential. While basic research that is aimed to capture and classify affective
signals has progressed, many issues are still prevailing that hinder easy integration
of affective signals into human–computer interaction. In this paper, we identify and
investigate pitfalls in three steps of the work-flow of affective classification studies. It starts
with the process of collecting affective data for the purpose of training suitable classifiers.
Emotional data have to be created in which the target emotions are present. Therefore,
human participants have to be stimulated suitably. We discuss the nature of these stimuli,
their relevance to human–computer interaction, and the repeatability of the data recording
setting. Second, aspects of annotation procedures are investigated, which include the
variances of individual raters, annotation delay, the impact of the used annotation
tool, and how individual ratings are combined to a unified label. Finally, the evaluation
protocol is examined, which includes, among others, the impact of the performance
measure on the accuracy of a classification model. We hereby focus especially on the
evaluation of classifier outputs against continuously annotated dimensions. Together with
the discussed problems and pitfalls and the ways how they affect the outcome, we
provide solutions and alternatives to overcome these issues. As the final part of the paper,
we sketch a recording scenario and a set of supporting technologies that can contribute
to solve many of the issues mentioned above.

Keywords: affective computing, affective labeling, human–computer interaction, performance measures, machine
guided labeling

1. INTRODUCTION

The integration of affective signals into human–computer interaction (HCI) is generally considered
beneficial to improve the interaction process (Picard, 2000). The analysis of affective data in HCI
can be considered both cumbersome and prone to errors. The main reason for this is that the
important steps in affective classification are particularly difficult. This includes difficulties that arise
in the recording of suitable data collections comprising episodes of affective HCI, in the uncertainty
and subjectivity of the annotations of these data, and finally in the evaluation protocol that should
account for the continuous nature of the application.
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There are a number of different papers that broadly review
and discuss the topic of affective computing (Zeng et al., 2009;
Calvo and D’Mello, 2010; Wu et al., 2014). This comprises notable
data collections and the state-of-the-art classification techniques
for affective states as well as promising classification results. A
major issue in this context is the multimodal fusion of different
sources of affective information (e.g., input fromdifferent sensors)
using a broad variety of classifier and feature fusion approaches.
There are, however, a number of open issues that are not yet
investigated in a systematic way in the literature of (continuous)
affect recognition in human–computer interaction, which are,
nonetheless, important to generate valid classification results and
essential to eventually advance the field.

These issues are situated in a number of technical details
that are easily neglected but nonetheless critical for a successful
outcome.

In this paper, we identify and examine a number of these issues
that occur in the work-flow centered on affective classification
studies, leaving aside the topics that are already extensively cov-
ered in the previously mentioned papers. As the first part, we
examine the recording procedures of corpora that are situated in
the area of affective HCI. We provide insights into the preparation
of emotional corpora and discuss different kinds of emotional
stimulation with respect to their targeted responses and their
practical relevance for HCI. Further important aspects are the
repeatability of an experiment with the same test subject and its
impact on the application, as well as plausibility of a scenario to
elicit the desired responses.

Furthermore, the annotation process is described and inves-
tigated. Annotation of emotional corpora, especially in continu-
ous time, is very challenging, and various difficulties have to be
accounted for. We analyze each step of the annotation pipeline
including the tools, postprocessing, and agglomeration proce-
dures not only to gather reliable ground truths but also to consider
the person behind the process (i.e., the annotator). More precisely,
we show how the labeling software influences the outcome of the
annotation process and highlight the differences in the outcomes
of different tools. Furthermore, we investigate the labeling delay
of the annotators and initial conditions and discuss methods to
resolve these issues. As the final issue, postprocessing techniques
to obtain a combined label from multiple raters are compared and
discussed. To support the findings, we conducted an annotation
study that shows the prevalence of the mentioned issues in real-
world data.

As the third point, we examine the evaluation process of sta-
tistical classifiers for continuous affective labels. We examine
commonly used protocols (such as cross-validation) for the appli-
cability for continuous emotion recognition and discuss how the
proper performance measure should look like and what problems
the practitioner should avoid. As a case study, we analyze the
datasets of the audio-visual emotion recognition (AVEC) series
with regard to the presented issues and discuss how the pro-
posed solutions (that are necessary for real-world problems and
especially challenges) perform.

In light of this, we want to offer a discussion about how
data recording and evaluation in the field of human–computer
interaction might evolve for true next-generation applications.

Note that the contribution of the paper is not a single method
that can easily be validated using quantitative experiments but
rather a discussion about the state of the art and the presentation
of a set of tools of the trade to overcome the mentioned issues. As
such, the paper discusses many different approaches and ideas.

The remainder of the paper is organized as follows: in Section
2, we briefly outline the relevant techniques and data sets from
the literature. This comprises computational modeling of crisp
and continuous class assignments and their relation to common
emotion theories. Subsequently, popular tools and techniques
for the annotation, important existing affective corpora for HCI,
and finally performance measures that are used for continuous
classification and regression tasks are introduced. The main part
of the paper is Section 3, which elaborates on the issues that
are described in the previous paragraph. A set of approaches
to the collection and annotation of affective corpora for HCI is
outlined in Section 4 thatmay be useful to circumvent the exposed
shortcomings. Finally, in Section 5, a summary of the presented
findings is offered, and the paper is closed with a conclusion.

2. RELATED WORK

In this section, the state-of-the-art technologies are outlined for
the construction and evaluation of affective corpora.

2.1. Computational Aspects of Affective
Modeling
A pattern recognition problem is defined by assigning categories
to objects. The simplest way to do so is to assign a distinct entry
ωi from a set of all possible classes

Ω = {ω1, ω2, ... ωC} (1)

to the object (Kuncheva, 2004). This means that an object is of
classωi and not of any other classωj, j ̸= i. This concept is reflected
in a vast body of research in affective computing. In earlier studies,
prototypic basic emotions (Ekman and Friesen, 1978) such as
“anger,” “fear,” “disgust,” and “happiness” are used as target labels
to build classifiers.

There are obviously shortcomings to the concept of crisp class
assignments when a class membership is either uncertain or only
partial. In order to model these circumstances, a variety of dif-
ferent formalisms are proposed. The most obvious choice is the
Probability Theory (Bishop, 1995). It is based on the observation
of the so-called random variables X that can take values x1 . . . xM
in a number of trials in random experiments. The probability
p(X= xi) of an event xi is then defined by the fraction of the
number of trials where the event ni occurs and the total number
of trials N:

p(X = xi) =
ni
N , (2)

with N going to infinity. If the events xi are mutually exclusive∑M
i=1 p(X = xi) = 1 holds.
A further formal concept that acknowledges uncertainty in the

modeling of class memberships is the fuzzy set (Zadeh, 1965;
Dubois and Prade, 1980). The fixed logic for an element to fully
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belong or to fully not belong to a set (i.e., a class) is altered in
this framework to model the concept of vagueness. Instead, a
continuous membership value that is ranging between 0 and 1 is
assigned to an element. Increased values for this variable signify
a greater membership of an element to this set. The membership
values can further be used to define vague concepts like “high” or
“small” by defining thresholds or distinct bands in their range. The
memberships for a set of distinct classes are hence summarized in
a vector that contains the continuous membership values for each
individual data point.

Using gradual class assignments for modeling human emotions
is an intuitive choice that reflects the inherent nature of the appli-
cation. This is reflected by continuous spaces in which emotions
can also be represented. They are spanned by affective dimensions
such as “arousal,” “dominance,” and “valence” (Russell andMehra-
bian, 1977). Using these representations, a value is assigned to the
emotional states of a subject for each of the respective dimensions.
The generated multidimensional emotional space can consist of a
variable number of dimensions, in the literature mostly ranging
from two (Ringeval et al., 2015) to five (McKeown et al., 2010).

2.2. Annotation
In this section, the manual annotation of affective data is dis-
cussed.

2.2.1. Tools for Continuous Annotation
Assigning labels of emotional activity to affective data that do
not rely on distinct stimuli is a non-trivial task that demands for
specialized software. This demand led to a variety of different
publicly available solutions that are designed to present the data
adequately, allow to navigate in the material and also to let a
human rater assign labels in a comfortable and intuitive way.

There are many solutions for this problem when considering
crisp, blocked label assignments (Kipp, 2001; Meudt et al., 2012).

There are also tools that overcome the block-wise nature of
the labeling as, e.g., the Feeltrace annotation tool (Cowie et al.,
2000). Feeltrace displays the complete video continuously and,
hence, allows the assignment of fully continuous labels for every
frame. A two-dimensional labeling area is provided, which allows
the concurrent annotation of two affective dimensions using a
computer mouse or other input devices. Thus, a quick labeling of
fully continuous label traces is possible.

Gtrace (Cowie et al., 2012) can be considered the successor of
Feeltrace. In contrast to Feeltrace, this tool is restricted to a single
dimension per iteration, which reduces the cognitive load. The
interface is designed such that the video can be seen on the left
side and the annotation cursor on the right side of it together with
custom dimension descriptions. In order to provide a label to a
snippet of the presented data, the mouse button has to be held
to indicate that the traces should be recorded. A unique feature
of this tool is that the label history is made visible by showing a
trajectory of the cursor’s past movements.

TheAnnemo tool (Ringeval et al., 2013) uses a one-dimensional
horizontal slider for continuous label assignment. A unique fea-
ture for annotation is that the mouse cursor is caught by the slider
after clicking on it the first time and everymovement of themouse
from that point on influences the given label.

The label tool Carma (Girard, 2014) provides an interface with
a vertical slider to assign values for one continuous dimension.
In order to use this tool, the labeler has to drag the indicator by
holding the mouse button and releasing the button lets the label
stay at this point. All the mentioned labeling tools use a starting
point for each labeling session of 0.

The ATLAS labeling tool is designed to assign blocked and
continuous labels to affective materials (Meudt et al., 2012). This
tool increases the amount of possible data sources to multiple
audio and video files with the possibility to add additional generic
data traces such as physiological signals, feature matrices, or
classification results. Additionally, semi-supervised classification
approaches are integrated to speed up the annotation process by
automatically suggesting labels that can be accepted or rejected
by the annotator. The annotation is not restricted to a predefined
emotion model; instead, it can be fully customized thus rendering
it useful for annotation beyond affective dimensions.

2.2.2. Combining Individual Ratings
As there are high individual variances of the raters, it is mandatory
to combine multiple ratings for the same sequence. There are a
number of approaches in the literature to create combined label
trajectories that set different focuses. The most straightforward
solution is simple averaging of all available trajectories (Valstar
et al., 2014a). It is based on the assumption that every rating is of
equal importance and is equally correct given that the annotation
happened under the same conditions.

The second possibility is to create an average from the individ-
ual traces weighted according to a criterion. The criterion can, for
example, be the averaged agreement with the other trajectories to
emphasize traces that are in close accordance with the others and
to penalize outliers. This procedure has been used to normalize
the annotation of the RECOLA corpus (Ringeval et al., 2013).

It may also be a feasible idea to identify and remove unreliable
raters. In Celiktutan et al. (2014), the correlation coefficients of
the ratings of all pairs of annotators are used to identify outliers in
the set of raters that deviate too much from the majority. It was,
however, asserted that at least 3 raters are selected to form the final
averaged label.

2.3. Data Recording for Affective HCI
The conception and recording of corpora that are eligible to study
affect in human–computer interaction can be categorized into
three main groups. These groups differ in the way the emotional
stimulation is conducted. In the following, the methods of emo-
tional stimulation are presented together with notable examples of
corpora that follow the respective design paradigm. All described
data sets are publicly available for research purposes.

2.3.1. Human–Human Interaction
The focus of this stimulation method is the interaction between
a subject and one or more other participants. Depending on the
given task, the additional participants are either experimenters
that act as interlocutor or other subjects that are part of the given
task or have to solve a similar task on their own. The interaction
is generally not restricted and mostly contains free speech. Emo-
tional ground truth is commonly created by subsequent manual
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annotation of the recordings as the free interaction is less suited for
blocked stimuli. Notable examples that leverage this stimulation
method are the Audio-visual Interest Corpus (TUM AVIC), the
PIT, and the RECOLA corpora.

The TUM AVIC (Schuller et al., 2009) contains human conver-
sational speech annotated for five different levels of interest of the
test subjects. A total number of 21 speakers, 11male and 10 female,
were recorded using cameras and microphones.

The PIT corpus (Strauss et al., 2008) conducts a more
exploratory approach to the subject of HCI by enabling a
computer-assisted multiparty dialog. The corpus was used to
develop a set of labels that are useful for HCI such as high level
categories (e.g., interest) and also actions on a lower abstraction
level (e.g., is the user looking at the computer screen). Audio and
several video streams from multiple perspectives are provided
with the data collection. Concretely, 5 different categories have
been annotated by three raters using a block-wise annotation
scheme.

The RECOLA corpus (Ringeval et al., 2013) pairs of French
speaking participants are collaborating to solve a survival task.
Mood manipulation in a Wizard-of-Oz setting introduces addi-
tional emotional reactions. In total, 27 participants were recorded
using audio, video, and bio-physiological measurements. Fully
continuous annotation has been added using the Annemo tool.
For each recording, 6 native speakers annotated the dimensions
arousal and valence.

2.3.2. Human–Computer Interaction
Emotional induction in the scenario of human–computer interac-
tion can itself be divided into three subgroups. One possibility is,
analogously to the examplesmentioned earlier for human–human
interaction, to give the participants a task and let them freely solve
it. Emotional annotation is again done as a postprocessing step
by manual annotation. The advantages of this method are that no
other personnel is required as interlocutor or to control a system
and that the experimental design can be simplified to stating a task
and giving the participants the means to solve it without further
interaction. Notable examples are the AVEC 2013 and AVEC 2014
(Valstar et al., 2014b) corpora, which can still be considered HCI
applications, however, in a clinical environment with test subjects
suffering from different levels of depression. The patients, who
were recorded using camera and microphones, were instructed
to conduct different, in parts therapeutic, tasks not only talking
about their childhood but also reading predefined texts. The
corpus is manually annotated by one to five human annotators in
continuous affective dimensions, namely, arousal and valence for
the 2013 edition and valence, arousal, and dominance for the 2014
edition of the challenge.

Another option for emotional stimulation is to pose a task,
which includes one or more hidden triggers. As the participants
solve the task using a computer system, more or less unexpected
events are designed to trigger emotional reactions. While it can
be considered a consequent advancement from static task solving,
the design phase is more complicated as the trigger events have
to be conceived and validated. Reactions that occur during the
experiment though are generally of higher intensity in comparison
to the previous example.

The LAST MINUTE Corpus (LMC) (Prylipko et al., 2014) is
designed using this paradigm. Subjects are asked to pack a suitcase
for a voyage to an unknown place using a voice controlled dialog
system. The unexpected trigger is that the destination has arctic
climate instead of a tropical one. It is designed to study affective
human–computer dialogs (Rösner et al., 2012) and consists of
audio and video recordings. Additional events are stimulated by
setting malfunctions of the dialog system using external manipu-
lations of the experimenter.

The last subgroup of emotion stimulation methods is the so-
called Wizard-of-Oz paradigm (Kelley, 1983). In this case, a task
is posed that should be solved using or with help of a seem-
ingly intelligent device. However, this device is controlled by an
invisible human operator, while the subjects think that there is
a fully operational system. The system can be directly used to
frustrate the user and provoke emotional reactions within an
interactive setting. The task can, for example, include playing a
game using a voice controlled system (controlled by the wizard),
as it is the case in the EmoRec II (Walter et al., 2013a; Rukavina
et al., 2015) corpus. Emotions in the Valence-Arousal-Dominance
(VAD) space were induced using different difficulties of the game
and negative or positive feedback from the system. Sequences of
similar stimuli were considered as blocks of the same label. The
recorded data include audio, video, and physiological channels.

Another example is the Belfast Sensitive Artificial Listener
database (SAL) (McKeown et al., 2010). Here, interactive char-
acters with different personalities are used to induce emotions
during an interaction sequence. Five different emotional dimen-
sions (Activation, Expectation, Intensity, Power, and Valence)
were annotated continuously using the tool Feeltrace. Parts of this
corpus have been used for the 2011 and 2012 editions of the AVEC
challenge (Schuller et al., 2011, 2012).

A comprehensive overview of all mentioned corpora is given in
Table 1.

2.4. Performance Measures
A central issue in the field of affective pattern recognition that is
highly important and fiercely intertwined with the whole process,
yet often neglected, is the selection of a suitable performance
measure. It determines the optimization criteria that should be
used for the construction of classifiers for prediction and allows
statements about the quality of estimation.

An obvious choice for this is to compute the error of the
classification by counting misclassified samples, as it is conducted
in most of the traditional classification applications:

CE =
1
n

n∑
i=1

f(xi)̸=yi (3)

where yi is the true label, f (xi) is the output of classifier f for sample
xi, and denotes the indicator function. Because of normalization,
the error ranges from 0 to 1. For the sake of completeness, it
is noteworthy that there are various formalisms to denote the
error or accuracy in the realm of classification with discrete
class labels. Popular instances are recall, precision, and combined
measures that reflect skewness of the class distribution as the F1
score and the receiver operating characteristic (Theodoridis and
Koutroumbas, 2009).
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TABLE 1 | Overview of selected emotional corpora.

Name Paradigm Emotions Annotation Modalities Participants Length (hh:mm)

AVIC Schuller et al. (2009) Naturalistic 5 levels of interest Perception test A/V 21 10:30
SAL McKeown et al. (2010) WoZ Continuous traces on VAD Stimulus based A/V 20 10:00
LMC Rösner et al. (2012) WoZ Four dialog barriers Stimulus based A/V/(B) 130 17:00
EmoRec II Walter et al. (2013a) WoZ 6 discrete locations in VAD Stimulus based A/V/B 50 30:00
PIT Strauß et al. (2006) Naturalistic Communicational dispositions Perception test A/V 74 05:40
AVEC 2013 Valstar et al. (2013) Naturalistic VA Perception test A/V 287 62:30
AVEC 2014 Valstar et al. (2014a) Naturalistic VAD Perception test A/V 84 20:00
RECOLA Ringeval et al. (2013) Naturalistic VA Perception test A/V/B 46 03:50

This is obviously not feasible if the categorization is not given
by discrete values (Schuller et al., 2012). For such kinds of appli-
cations, it is appealing to borrow performance measures from
the field of statistical regression for the evaluation of continuous
classification outputs.

2.4.1. Measures of Dissimilarity
Natural representatives for that are distance measures that are
computed between two signals xi and yi of length n such as the
root mean square error:

RMSE =

√√√√ 1
n

n∑
i=1

(xi − yi)2 (4)

or other variants of the same concept, e.g., themean absolute error

MAE =
1
n

n∑
i=1

|xi − yi|. (5)

The goodness of fit χ2 is defined by the squared deviation of
the prediction from the true value divided by the true value:

χ2 =
n∑

i=1

(xi − yi)2

yi
. (6)

A good fit is defined for values that are close to 0.

2.4.2. Measures of Similarity
A frequently used similaritymeasure is to compute the correlation
coefficient to check for linear relationships between the prediction
and the given label trajectory over a time sequence:

ρ =
∑n

i=1 (xi − x̄)(yi − ȳ)√∑n
i=1 (xi − x̄)2

∑n
i=1 (yi − ȳ)2

, (7)

where x̄ and ȳ are the means of x and y, respectively. The cor-
relation coefficient ranges from −1 to 1. This measure does
not take into account any additive constants in the two signals,
which could be considered an advantage over the distance-based
errors or a drawback, depending on the targeted concept of
optimality.

There are also measures that combine the error and the corre-
lation coefficient in order tomitigate the respective shortcomings.

A suggestion for that is the concordance correlation coefficient
(CCC) (Lin, 1989) that is defined in following form:

ρC =
2ρσxσy

σ2x + σ2y + (x̄ − ȳ)2
(8)

for two signals x and y, their variances σ2
x and σ2

y , and the Pearson
correlation coefficient ρ. The quantity ρC also takes values in
(−1, 1).

A further measure that is often used to asses the performance
of particularly linear regressionsmodels is the coefficient of deter-
mination R2. It is defined as follows

R2 = 1 −
∑n

i=1 (yi − xi)2∑n
i=1 (yi − ȳ)2

(9)

and should take values between 0 and 1. This measure, however,
can also assume values beyond these limit if, for example, the
estimated curve has not been obtained by linear regression.

There are also performance measures that are defined to
account for fuzzy memberships, such as the fuzzy S1 measure
described in Dubois and Prade (1980), which is defined as

S1(x, y) =
∑n

i=1 min(xi, yi)∑n
i=1 max(xi, yi)

. (10)

The S1 measure denotes the overlap of the support of the
estimated and true fuzzy class assignments.

3. SHORTCOMINGS

In this section, shortcomings with respect to experimental design
of the recording, the annotation, and the evaluation of experi-
ments of affective HCI are presented.

3.1. Shortcomings in the Recordings
In the following, several issues are presented that are related to
the recording of affective corpora which may inflict the validity of
classification studies.

3.1.1. Applications
An important issue in the course of creating affective corpora for
the investigation of human emotions in HCI is to define a believ-
able recording scenario. For example, when studying emotions in
psychology, it is convenient to use visual or auditory stimuli to

Frontiers in ICT | www.frontiersin.org November 2016 | Volume 3 | Article 275

http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive


Kächele et al. The Influence of Annotation

evoke distinct emotions like the well-known IAPS image data base
(Lang et al., 1999). But this is hardly eligible for the application
of HCI, as it is a purely passive scenario and the content of these
images are not likely to be reproducible in an interaction with
a computer. Other data collections which appear at first glance
more relevant use computer interfaces and interactions with them
to induce emotions (Schuller et al., 2011; Walter et al., 2013a)
or conduct other tasks that are given by the experimenter like
packing a virtual suitcase for a voyage (Rösner et al., 2012) or
a collaborative interaction task (Ringeval et al., 2013). For more
details, the reader is referred to Section 2.3.

Stimuli that look promising on paper such as a fictive story (for
example, about winning a voyage to an unknown place) and a
consequential task that relies on the believability of this story can
be met with indifference. One reason for this is that the affective
trigger is not as convincing as expected by the experimenter (in
this example, this could be the unknown climate of the destina-
tion, which turns out to be arctic instead of subtropical and the
subjects packed only bathing suits) (Rösner et al., 2012). The catch
is that the subjects know that everything is only fictional and that
in reality nothing is at stake (i.e., they will not travel anywhere).
Some of the stimuli that are used for the induction further use
non-functional user interfaces, e.g., the speech recognition is not
working properly or other user commands to the system are not
or wrongly recognized (Gnjatović and Rösner, 2008; Walter et al.,
2013a). A less restricted interaction with a humanoid avatar is
suggested in the SAL data collection (McKeown et al., 2010),
which results in a generally relaxed atmosphere that encourages
people to talk freely.

This scenario, however, has yet to transcend from the lab into
everyday life.

3.1.2. Intraindividual Experiments
Another beneficial property for the research in affective HCI is
the repeatability of an experiment with the same test subject as
human behavior is very heterogeneous over different individuals.
This is unfortunately not the case in the presented examples with
HCI: there seems to be a quick accustoming of the test subjects in
the different scenarios (Rösner et al., 2012; Walter et al., 2013a).
For example, playing a game twice in a row with the same types
of feedback without any impact on the personal life of the subject
will not render eligible results (Walter et al., 2011). It turns out
that different levels of engagement can play an important role
and stimuli that rely on surprise effects can justifiably be used
only once. Analogously, the interaction with the same virtual
avatar for the second or third time will hardly be as exciting and
interesting as the first time (Schuller et al., 2011). The collection
of data for statistical evaluations of person dependent effects is
hindered by this problem. A solution, however, is highly desirable
as the intersubject variances in such an application are naturally
very high and a personalization of machine classifiers is generally
beneficial for the prediction outcome (Stemmler, 1989).

3.1.3. Involvement of Test Subjects
The repeatability of the experiment is closely related to the
involvement of the subject in the task. As the emotional stimula-
tion has to occur in controllable settings, only relatively artificial

scenarios are feasible that can be worked off during one short
session of recording. This limits the narrative to very basic issues
(McKeown et al., 2010; Walter et al., 2011; Rösner et al., 2012).
In an experiment designed like that, the test subject has normally
no real intrinsic interest in the task, other than to acquit oneself
well in the experiment and to satisfy the experimenter. Hence,
there is a need for a convincing experimental setting for affective
recordings to studyHCI. A scenario that fits to these requirements
should be clearly related to computer interaction and be complex
enough to involve the subject into the task. Sometimes, monetary
rewards are offered to the subjects to motivate them to participate
in the experiments (Schüssel et al., 2014). This practice is often
successful as the amount of rewarded money might be dependent
on the performance of the subject. This way, the subject’s involve-
ment is increased as correct understanding and awareness of the
situation often leads to a larger reward. However, monetary com-
pensation may become expensive over time and its effectiveness
is debatable as is might skew the distribution of decisions of the
subject to maximize the reward. Another option that seems to
work to a certain extent is to include an additional dialog partner
who drives the experiment, with the HCI device being only the
means to an end (Strauß et al., 2006; Ringeval et al., 2013). The
downside is that another person (be it an experimenter or another
participant) is neededwhich further complicates the experimental
process.

3.1.4. Affective Categories in Human–Computer
Interaction
All these previous points aremore or less directly linked to finding
affective categories that are actually useful in HCI. Many experi-
ments that lead to recordings of affective content try to capture a
very broad spectrumof emotional categories, e.g., all defined basic
emotions or the whole 3 or 4 dimensional continuous emotional
space (Kanade et al., 2000; Burkhardt et al., 2005; Lang et al., 2005).
This presumably means that too many affective peculiarities are
coveredwheremost of themare practically irrelevant for the actual
application at hand. This includes basic emotions like “disgust” or
“fear” and their counterparts in dimensional spaces. To maximize
the predictive quality of an automatic affect recognition system,
the learning procedure should not be over-strained by artificially
complicating the task (e.g., by multi-class learning instead of
binary), rather the focus should be sharpened to the task at hand.
A further issue is that the intensities of the targeted phenomena
are typically low in HCI as the subjects are normally focusing
on solving the given task and exaggerated display of emotions is
rather unnatural in such situations (Valstar et al., 2013; Walter
et al., 2013a). This stands in contrast to the many databases
in which the emotional material is of very high expressiveness,
because it is acted and in some cases overacted (Kanade et al.,
2000; Burkhardt et al., 2005).

3.2. Shortcomings in the Annotation
3.2.1. Finding “True” Labels
An important issue is that it is generally not possible to determine
a true class assignment or a true value for dimensional categories
(Calvo and D’Mello, 2010) as it is the case for traditional pattern
recognition tasks such as optical character recognition or some
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measured quantity like the distance between two objects. As out-
lined in Section 2.2.1, an estimate for these values can be provided
using external annotation tools, by self assessment techniques or
combinations of them. Labeling the data obviously renders only
an outside perspective of what is really going on. Even though
empathy is a rather unique human trait and humans are trained
from birth to recognize even the most subtle cues, it is not eligible
in all cases and especially if no cues are displayed by the subject.
Self assessment is an alternative to capture the perspective of
the test subjects; however, it requires to interrupt the enclosing
experiment thus directly influencing the state of the participant,
which makes the assessment unreliable (Grimm and Kroschel,
2005). A further obstacle is that the self assessment techniques
may not be easy to understand for naive test subjects.

3.2.2. Combining Annotations
The question of how to properly combine annotations of different
raters into a ground truth that can be used for statistical evaluation
has been discussed in Section 2.2. In this section, the effects that
different normalization techniques have on the final label are
discussed.

In detail, we compare the normalization that has been used for
the AVEC 2013 (Valstar et al., 2013) andAVEC 2014 (Valstar et al.,
2014a) corpora with the technique presented for the RECOLA
corpus (Ringeval et al., 2013) to highlight their differences.

For the AVEC corpora, the arithmetical average is computed to
obtain a mean trajectory. In contrast, for the RECOLA corpus, a
more complex procedure is used to average the trajectories while
simultaneously increasing the interrater agreement in terms of
concordance correlation. The average agreement of each trace
with all the other traces is used as weight to construct the aver-
age. The individual traces are thus shifted toward the label that
has the highest weight as it best represents most of the labeled
information.

The result of both procedures can be seen in Figure 1 applied
to traces from one video of the AVEC 2014 corpus. Figures 1A,B
show the original labels and the shifted trajectories according to
Ringeval et al. (2013), respectively. Figure 1C shows the resulting
averaged traces for both approaches. It can be observed that the
normalization method used for the RECOLA corpus shifts the
trajectories to a closer match (Figure 1B). However, as the results
suggest, the shift also introduces a dramatic change of the final
annotation value. The averaged arousal trajectory shows a mean
value of about 0.25 using the RECOLA procedure, while standard
averaging yields a mean below 0.1. By inspecting the original
traces (Figure 1A), it can be seen that only a single trajectory has
a value comparable to the red trace in Figure 1C.

Hence, combining individual labels is necessary to obtain a
usable ground truth, but the process how to create the final label
comes with a great deal of variation.

3.2.3. Effects of the Human Rater
In order to investigate the annotator-dependent effects on the
final label, we use the annotation experiment that is described
in Kessler et al. (2015). Seven naive annotators were instructed
to annotate a 3-min video snippet, taken from the RECOLA
corpus. Their task was to annotate the general gaze direction of
the participant depicted in the video, who either looked down on a

A

B

C

FIGURE 1 | Normalization of label traces to increase the interrater
agreement. (A) The raw traces from the annotation procedure of a single
video of the AVEC 2014 corpus. (B) Normalized traces using the procedure
suggested in Ringeval et al. (2015). (C) Averaged traces. Simple averaging
leads to the blue trajectory, while the procedure in Ringeval et al. (2015) leads
to the red trace. Note that a shift toward the upper end of the label range
occurs.
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A

B

FIGURE 2 | (A) Label delays of the gaze subtask for the individual subjects
averaged over the three tools. There is some variance over the subjects but
also for individuals’ observable. (B) Delays of the three individual label tools for
the mood task [cf. Kessler et al. (2015)]. It can be seen that for this task the
largest delays are produced by the Carma software.

desk in front of her or to a hidden interlocutor in the vicinity of the
camera. The taskwas selected based on two factors. First, a reliable
ground truth is available by frame-wise annotation of the true
gaze direction, and second the task involves observing a human
while filtering out distracting elements, such as conversational
turn taking.

Annotation was done with the three tools Annemo, Carma,
and Gtrace that are described in Section 2.2.1. For each rater,
the observed delay for the gaze annotation task was manually
determined. The results in Figure 2A suggest that even for a
simple task such as the categorization of the gaze direction a
considerable delay exists for every annotator. It ranges from about
0.2 s to almost 2 s and, most interestingly, it is not constant over
time. This indicates that mechanisms to compensate annotation
delays have to be able to deal with varying delays or the inabil-
ity to compensate should be factored into further steps of the
experimentation procedure.

3.2.4. Effects of the Tool
Further investigations based on the annotation study suggest that
not only the annotator has impact on the outcome but also the

choice which tool to use. The annotation delay is pictured in
Figure 2B, however, this time grouped into the tools that were
utilized. As can be seen, Carma leads to the biggest delays with a
difference of more than a half second to the other tools.

3.3. Shortcomings in the Evaluations
In this part of the section, more technical questions about the
evaluation of classifiers are addressed that are related to the
interpretability of the obtained results.

3.3.1. Performance Measures
Taking the binary accuracy of correctly versus incorrectly classi-
fied samples would render an easy to compute and very intuitive
performance measure. However, this binary notion can arguably
not reflect the complexity of the application of emotion recogni-
tion, which is characterized by different intensities of categories
and also of high uncertainties between the true label and the
statistical classification result (Schuller et al., 2012).

However, these obvious choices raise not so obvious technical
questions that jeopardize the interpretability of the results and
the notion of when a prediction can be considered correct (Calvo
and D’Mello, 2010). An impressive example for this is depicted in
Figure 3 for a continuous trace of the label “Arousal” (blue) from
the AVEC 2014 data collection and two simulated attempts for
prediction (red). While the prediction that is shown in Figure 3A
is correct with a Euclidean error of zero in most of the time
steps, the correlation coefficient of the two signals is relatively
low. On the contrary, the prediction is only correct at 3 time steps
in Figure 3B, but the RMSE is approximately the same and the
correlation coefficient is by far higher.

A further issue that can be easily overlooked is how to compute
an averaged performance of the predictions for multiple interac-
tion sequences. As measures like the correlation coefficient can
take negative values is has to be prevented that terms cancel each
other. For example, one can take the absolute value for every indi-
vidual sequence and then compute an average over the different
sequences (Valstar et al., 2013). This acknowledges that negative
correlation coefficients also denote a linear relation and should
be treated just as positive values. However, it can also be argued
that a negative correlation coefficient close to absolute value 1 is
actually quite the opposite of a good match for the true label trace
(Schuller et al., 2012). These, only slightly different, approaches
render rather different numbers for the same predictions.

One solution that is used as a work-around for all these issues
is to still use the traditional accuracy as a measure and hence
conduct a discretization of the continuous label signal (Schuller
et al., 2011). Thus, the continuous nature of the application may
still be exploited in the collection of the data but is lost in the
classification phase.

In order to assess the differences of the various possibilities to
evaluate continuous class assignments, we show a hypothetical
predication for some true label in Figure 4. Figure 4A shows the
two curves that are the basis for this example. In the beginning,
the prediction is wrong and even diametrically opposed to the true
label. This is followed by an episode of general concordance of the
signals and, in the last section, the prediction does not change any
more while the true label oscillates.
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A

B

FIGURE 3 | Example of estimations (blue) and true labels (red), where
performance measures are counter-intuitive. Adapted from Kächele et al.
(2014). (A) Highly overlapping trajectories. (B) Coarsely matching trajectories.

The four dissimilarity measures are shown in Figure 4B for
this setting. Every entry in the graph represents the value of the
measure in a 50 frames window to account for the temporal struc-
ture. It can be observed that they render very different notions of
correctness, not only by introducing a vertical shift but also by the
rating of particular situations. For example, the value of the CCC
drops around frame 50 finally to theminimal valuewhile S1 andR2

stay at their respective minimums all the time until approximately
frame 150. An exception to that is the CC, which also returns
relatively high values occasionally. Also, the CC deviates from the
other measures in the last 3rd of the figure by returning high vales
in parts where the divergence of the two curves is maximal.

The three similarity measures are examined in Figure 4C.
While the two distance measures MAE and RMSE are quite
similar in this setting (with small differences nonetheless), the
performance assessment using χ2 is very different. The most

interesting part can be seen at around frame 200, where the tra-
jectories are relatively close and consequently the different error
measures yield small values. The χ2 measure, however, returns
comparably large values in this case.

3.3.2. Time-Dependent Effects
A further important issue that should be paid attention to in both,
the collection of a corpus and subsequent classification studies is
the nature of time-dependent effects. These can unintentionally
create artifacts in the data that jeopardize the validity of the
experiments and thus the scientific outcome. One possible source
of such artifacts is inherent in the annotation of continuous data
as it is conducted with tools that use sliding controllers to define a
label while a video or audio recording is played (Cowie et al., 2000;
Schuller et al., 2012; Valstar et al., 2013). Thus, clear technical
constraints are imposed on the annotation, of which the most
prominent is that a starting point has to be defined. One could
argue that this is not necessary as the different subjects are arriving
in a, in a sense, “neutral” affective state at the experiment which
is subsequently altered in the course of the recording. There is,
however, little evidence for this assumption and also the costs that
come with this approach are notable: it tends to result in very
characteristic label traces that exhibit a transient phase (Glodek
et al., 2012; Kächele et al., 2014). An example for such traces can be
seen in Figure 5where the continuous average labels of the AVEC
2012 and 2014 data sets are denoted together with the frame-wise
variances over all sequences.

To shed further light on the transient phase and how it can be
avoided, a small annotation experiment has been conducted. For
this, a video from the RECOLA corpus (Ringeval et al., 2013) was
annotated by 5 naive annotators. However, the videowasmodified
to include a short buffer video in the beginning. About 12 s of the
video were copied and reversed in time with additional correction
of the audio channel, so that the annotators do not notice it.
They were not told about this modification (which fits seamless
to the actual RECOLA video) and annotated the whole sequence.
The result of this can be seen in Figure 6. The figure clearly
shows that the label position after the initial mirror sequence is
far from the absolute mean label that can be seen in the official
annotations.

Similar effects occur when the problem of finding a ground
truth is addressed by defining blocks of similar feedback from the
system or the experimenter, grouped by the desired (and induced)
user state (Walter et al., 2011, 2013a; Rösner et al., 2012). This
is often accompanied by a fixed order of the individual blocks
as it may be infeasible to direct user states arbitrarily. Thus, it is
apparent that the most dominant “feature” for the classification of
these blocks is actually the elapsed time. Sometimes, such effects
are present in recording channels and hence extracted features
where it is not directly perceivable, e.g., as it is the case in physio-
logical measurements (Walter et al., 2013a). These kinds of signals
commonly show a distinct piecewise trend that can be used to
discriminate the blocks against each other, rather than taking into
account the actual signal, e.g., in case of frequency variations of
electromyography (EMG). Using linear detrending can account
for this problem to some extent. However, it cannot be ensured

Frontiers in ICT | www.frontiersin.org November 2016 | Volume 3 | Article 279

http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive


Kächele et al. The Influence of Annotation

A

B

C

FIGURE 4 | Evaluation of a hypothetical ground truth and prediction for 500 time frames using a sliding window approach with window sizes of 50
frames. χ2 and R2 are clamped to fit in [−1, 1]. (A) Hypothetical ground truth and prediction for a continuous class assignment. (B) Performance in terms of
different similarity measures. (C) Performance in terms of dissimilarity measures.

A

B

FIGURE 5 | Average absolute labels and variances over all videos of
the AVEC 2012 and 2014 corpora. Adapted from Kächele et al. (2014). (A)
Absolute mean of label traces with variances of AVEC 2012. (B) Absolute
mean of label traces with variances of AVEC 2014.

FIGURE 6 | Comparison between normal annotation (red) and
annotation with an additional buffer sequence (blue) in the beginning.
As can be seen the absolute labels differ by a large amount at the red line
which indicates the starting point of the actual video.

that further artifacts, for example, in higher order derivatives of
the frequency spectrum do not exist.

3.3.3. Subject Dependencies and Evaluation of
Classification Experiments
Most of the aforementioned data collections are unfortunately
afflicted with at least one of these issues. In order to still be able
to conduct scientifically relevant experiments based on this data,
it is mandatory to invest more time into numerical evaluation
procedures. One of the major issues that separate this application
from related ones like, e.g., face recognition or speaker verification
is that of subject-dependent variances. These variances are present
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in all channels but most prominently in physiological data and
they diminish the classification performance especially when con-
ducting leave-one-subject-out experiments (Schels et al., 2014).

Performing subject-dependent classification experiments, on
the other hand, however, yields comparably high accuracies, often
fueled by multiple of the shortcomings in the recording (Walter
et al., 2013a; Williamson et al., 2013; Kächele et al., 2014). For
example, for subject-dependent classification using physiological
signals in an experimental setting with blocked stimuli, classi-
fication can work exceptionally well because artifacts from the
different blocks might dominate the outcome. Hence, it would
be intriguing to have multiple episodes of interaction from the
same subject in the same experiment to train the models on
different subsets of episodes than the ones that are used for
evaluation. However, this is generally not possible with existing
corpora as the experiments are not designed to be passed multiple
times.

3.4. Example: AVEC 2014
The points that were outlined in this section hinder scientific con-
clusiveness of statistical classification studies without researchers
even taking notice. They are commonly not familiar to practi-
tioners and engineers that have a traditional pattern recognition
background and are used to work in more technical applica-
tions. Hence, a more critical view on the data collection and data
annotation process has to be taken.

An illustration of a culmination of the introduced issues has
been given in the course of the affect sub-challenges of the AVEC
challenge: we show the official result diagrams of the 2014 edition
of the event in Figure 7B. The performance measure that was
used to rate the submissions of the participants was the correlation
coefficient and it can be seen that the highest correlation has been
rendered by the team “ulm” where several of the authors of this
paper were members of. The results were achieved by submitting
a characteristic curve for each of the affective categories without
looking at the actual underlying video or audio data (Kächele
et al., 2014), for which the term proto-label was coined. They are
basically a mapping of the frame number to a label value that is
either constructed using ϵ-SVR or EVD [see Kächele et al. (2014)
for details on the implementation].

One example for each of the approaches is shown in Figure 7A,
which shows a quasi-logarithmic shape of the proto-label for the
“Freeform” subtask and the affective dimension “arousal.” This
accurately reflects the shape of the mean absolute labels as they
are seen in Figure 5B. This originates from the fact that there is a
transient phase inflicted by the tool that is large compared to the
variation in the annotation. A further reason for the success of the
proto-labels is the usage of the CC as performance measure and
its unique features as seen in Figure 4B.

Thus, it was possible to outperform all other submitted
approaches that used elaborate learning techniques such as
deep neural networks (Chao et al., 2014) and support vector
machines (Gupta et al., 2014) on complex audio and video
features.

This highlights that there is a need for a new way to approach
affective HCI to incorporate the issues that have been raised
above.

A

B

FIGURE 7 | Task-dependent proto-label and average correlation
coefficient and RMSE of the affect sub-challenge of the 2014 edition
of the AVEC challenge. Source: http://sspnet.eu/avec2014/. (A)
Task-dependent proto-label for one subtask. (B) Challenge results of AVEC
2014.

4. TOWARD MORE NATURAL DATA
COLLECTIONS

In Section 4.1, it will be described how finding a relevant applica-
tion for affective HCI determines the respective categories that are
useful in the course of the interaction. Furthermore, in Section 4.2,
it is motivated how state-of-the-art machine learning techniques
may help in the course of the collection of data and during the
annotation of the material.

4.1. Applications and Categories
The goal is to define affective categories inHCI that actually occur
in practical scenarios and which are relevant for the task at hand.
Finding traditional applications that fulfill these requirements is
not easy. Writing a book on a computer, for example, is certainly
some form of HCI and affective states that are in some relation
to this process may also occur. However, there is hardly anything
conceivable that the computer or any technical system could do to
make that task easier apart from providing a functional interface.

One possible application in which a computer can alter the
course of an interaction with a user is when it plays the role of
a trainer or a teacher (D’Mello et al., 2007; Arroyo et al., 2009;
Palm and Glodek, 2013). A user might want to acquire distinct
skills, possibly both physical and intellectual, and the computer
is monitoring the progress as well as the emotional reactions.
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Examples for that may be learning a foreign language using a
vocabulary trainer or rehabilitative training after surgeries.

As argued earlier, detection of positive affective states will not
be beneficial for the system or the user to fulfill the goals of the
user as the interaction seems to go well and no intervention seems
to be necessary. It can be argued that negative affective states are
more useful to be detected in order to improve the interaction and
its outcome (D’Mello and Calvo, 2013; Palm and Glodek, 2013;
Walter et al., 2013b). For example, if a student in this scenario is
bored, a system that is acting as a teacher may, e.g., change the
way information is presented to the student or adapts to search
different sources of information. Another example could be that
if the subject is frustrated with the task or with the interaction
the respective task could be made easier for the subject or further
explanations could be given to him.

An advantage of this approach is that the dialog model of the
interaction can thus be used to find emotional patterns that are
useful for the interaction. For example, if some form of input from
the user is required but not provided or a wrong answer is given
(in a teacher role) emotional cues can be incorporated.

4.2. Supporting Technologies
To render the task of creation and annotation of affective corpora
feasible, a number of supporting technologies from the realm of
machine learning and statistical pattern recognition can be used.

A major issue that renders the creation of corpora difficult is
the assignment of complex labels to large amounts of data (see
Section 3.2.1). It is therefore desirable to reduce the workload of
labelers by preselecting “interesting” parts of the interaction for
subsequent manual inspection using appropriate label tools. Such
a pre-selection should be done automatically, either as given by
the dialog structure or by using machine learning techniques.

Using the dialog structure of the experiment demands that it
has been designed in a suitable way. An example for this scenario
is the dataset presented in Thiam et al. (2014). It was designed to
study the interaction history of participants with an interactive
system by playing a puzzle game. Audio-visual recordings are
available as well as the result of each timed puzzle. Each puzzle
is accompanied by a search phase and the uttering of a potential
solution, which is then indicated to be correct or false by the
system. This situation is illustrated in Figure 8. The wrongly
solved puzzles and the accompanying indication thereby elicit the
most vivid reactions as indicated as yellow event in Figure 8.
By inspecting the recordings around those events, most of the
interesting parts can be found with relative little effort, while the
searching phase and correctly solved puzzles hardly evoke any
notable reactions. Subsequent manual annotation based on the
events yields the desired information as indicated in the lower
most trace in Figure 8.

Another possibility to solve this problem is to use statisti-
cal novelty detection. Different approaches to extract outliers
and interesting points from the majority of the data have been
proposed in the literature. A popular choice is one-class SVM
(Schölkopf et al., 2000) or support vector data description (SVDD)
(Tax and Duin, 1999). Other approaches include generative mod-
els such as Gaussian mixture models. These methods, however,
require that the data can be decomposed into a normal and an
outlier class. For the interaction experiment, this is obviously

possible because the events (i.e., the outlier class) are relatively
rare, and the rest can be considered normal. There are unfor-
tunately a number of issues that existing approaches to novelty
detection have to account for. The data that are assigned to the
normal class have to be homogeneously distributed which may
not be the case, especially when considering data of multiple
subjects due to individual differences. Furthermore, there are the
issues of trading-off missing out outliers and generating many
false alarms in the optimization of such models and how to deal
with actual (technical) outliers in the data (i.e., sensor errors or
false face detections) that should not belong to the event class.
Finally, traditional approaches to novelty detection are bound to
applications that are not dependent on time. For the applications
targeted in this paper, an extension to sequences is desirable as
a sample could be an outlier or not depending on the previous
samples.

A promising approach to reduce cognitive load for annota-
tors includes the use of partially- and semi-supervised learning
(Schwenker and Trentin, 2014). In these methods, information
from unlabeled and commonly much fewer labeled samples is
combined to infer labels for all the samples in an automated
manner. Popular instances include self- or co-training (Yarowski,
1995; Blum and Mitchell, 1998) but more significant for the appli-
cation at hand is the so-called active learning (McCallum and
Nigam, 1998) as the former require already reliable classifiers.
In active learning, unlabeled samples are ranked by a machine
learning algorithm according to an uncertainty-based criterion.
The highest scoring samples are selected and given to an expert
for annotation or inspection of a proposed label. The idea is to
select samples whose labels offer the biggest gain in information
for the system and to reduce the total number of samples that
have to be manually annotated. While active learning has been
successfully applied to annotation (Thiam et al., 2014) and can
significantly reduce the amount of samples to annotate, there are
still a hand full of open issues. For example, how can one iden-
tify an individual “sample” for active learning in an interaction
history? Furthermore, how can uncertainty be measured for time
continuous episodes with also continuous classifier outputs? If
a given sample is passed to an expert what does accepting or
rejecting of a respective label trace mean given the high rater
variances?

Another problem that has been discussed in Section 3.2.1 is the
annotation delay that differs between annotators but more impor-
tantly is not constant with respect to a single annotator over time.
While solutions that rely on subtraction of themeasured delay can
only achieve a certain quality level due to the non-constant shifts,
machine learning can help to remedy this problem. In Ringeval
et al. (2015), bidirectional long- and short-termmemory (BLSTM)
recurrent neural networks (Graves and Schmidhuber, 2005) have
been applied to deal with the delay in a non-linear, time invariant
manner. The internal state is a function of the states at earlier time
steps and thus the required information to compensate the delay is
readily available within the network. The downside of thismethod
is that training of recurrent neural networks is a difficult task and
to fine-tune such architectures and reliably achieve convergence
demands a considerable amount of time and expert knowledge.

The concentration on interesting sequences clears resources for
human annotation that would otherwise be occupied by labeling
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FIGURE 8 | Illustration of the event based hybrid labeling strategy of interesting sub-sequences.

long, uneventful interaction sequences that are exhausting for
labelers and might render uncertain labels (Calvo and D’Mello,
2010). These resources should hence be spent on inspecting the
interesting sequences multiple times by the same person and
optimally as well by multiple (e.g., >10) subjects. Thus, a better
probabilistic estimate of the true user state can be inquired by
averaging over many individually uncertain ratings. Furthermore,
it is possible to computemeaningful variances for the class assign-
ments that could be used to judge the respective reliability (Bishop,
2006). For example, when assigning amean class probability of 0.5
with a low variance of the individual ratings even small deviations
of an assumed automatic classification should be punished more
severely than an assignment of 1.0 that comes with a high variance
of the individual ratings.

In this context, it may be beneficial to evaluate an application
not so much using the recognition of the respective affective user
states but using an evaluation of thewhole system. There is already
a whole body of research and standardized questionnaires that
address these questions. Popular choices are the AttrakDiff ques-
tionnaire (Hassenzahl et al., 2003) that queries the feelings about
the system from the user, theNASATLX (Hart, 2006) that assesses
the workload of the user and measuring the human–computer
trust (Madsen and Gregor, 2000). Such results could be used
to improve the affective HCI, for example, using techniques of
reinforcement learning, where the scores of questionnaire are used
as part of reward functions.

5. SUMMARY AND CONCLUSION

In this paper, we presented a critical view of the steps included in
the creation of affective data collections. This includes the exper-
imental design, the actual recording, annotation, and statistical
evaluation.We revealed common pitfalls in each of these steps and
presented ideas to solve them.

In detail, we discussed the recording scenarios that are used
to compile corpora to study affective HCI and further connected
issues such as the repeatability of an experiment. Furthermore, we
analyzed the annotation process. Here, we outlined the effects the
human annotation and the utilized tool have on the outcome of the
annotation. Beyond that, we showed that choosing a suitable per-
formancemeasure is essential for statistical evaluation of classifier
predictions and stress that this issue is commonly overlooked. We

demonstrated these shortcomings using the example of the well-
known AVEC benchmark datasets, which implies that the raised
issues are of far reaching relevance for the affective computing
community. We furthermore presented some points at which
machine learning algorithms can tie in to help remedy some of
the presented issues.

We believe that the presented issues have to be tackled in
order to take the research in affective HCI further. The solutions
for the individual points are yet up to debate in the scientific
community. We attempt in to introduce in this paper a concept
for the annotation of continuous affective data sets that is aware of
time-dependent artifact. The main concept for this is to segment
the data such that the time-dependent parts of the label can
be separated. The details of this approach depend unfortunately
heavily on the application and the specifics of the individual test
subject. For example, the time difference of a starting point of a
data sample and the reaction to a situation. Basically, all of the
presented issues are strongly application and subject dependent
and in our opinion important to consider. The respective choices
should be justified based on the task at hand when compiling a
new affective data set.
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