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For computerized analysis of textures in interstitial lung disease, manual annotations 
of lung tissue are necessary. Since making these annotations is labor intensive, we 
previously proposed an interactive annotation framework. In this framework, observers 
iteratively trained a classifier to distinguish the different texture types by correcting its 
classification errors. In this work, we investigated three ways to extend this approach, in 
order to decrease the amount of user interaction required to annotate all lung tissue in a 
computed tomography scan. First, we conducted automatic classification experiments 
to test how data from previously annotated scans can be used for classification of the 
scan under consideration. We compared the performance of a classifier trained on data 
from one observer, a classifier trained on data from multiple observers, a classifier trained 
on consensus training data, and an ensemble of classifiers, each trained on data from 
different sources. Experiments were conducted without and with texture selection (ts). 
In the former case, training data from all eight textures was used. In the latter, only 
training data from the texture types present in the scan were used, and the observer 
would have to indicate textures contained in the scan to be analyzed. Second, we 
simulated interactive annotation to test the effects of (1) asking observers to perform ts 
before the start of annotation, (2) the use of a classifier trained on data from previously 
annotated scans at the start of annotation, when the interactive classifier is untrained, 
and (3) allowing observers to choose which interactive or automatic classification results 
they wanted to correct. Finally, various strategies for selecting the classification results 
that were presented to the observer were considered. Classification accuracies for all 
possible interactive annotation scenarios were compared. Using the best-performing 
protocol, in which observers select the textures that should be distinguished in the scan 
and in which they can choose which classification results to use for correction, a median 
accuracy of 88% was reached. The results obtained using this protocol were significantly 
better than results obtained with other interactive or automatic classification protocols.
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inTrODUcTiOn

In medical image analysis, obtaining reliable ground truth 
annotations is of pivotal importance for the training, testing, 
and comparison of algorithms. Several factors may hamper the 
construction of such a ground truth dataset. To start, making 
annotations is expensive, as it requires a substantial amount of 
human observer effort. But before observers can start annotat-
ing, a selection of scans needs to be made. This selection process 
has a large influence on the quality and usability of the resulting 
dataset. When choosing images from a single institution, with 
similar acquisition and reconstruction parameters, training and 
testing are done on a homogeneous dataset. Good performance 
of an algorithm on such a dataset is by no means a guarantee of 
comparable results on other datasets. However, when choosing to 
collect a set of images with varying acquisition parameters, train-
ing becomes more complicated (van Opbroek et al., 2015). In this 
case, probably more training data are needed to obtain results 
similar to the ones that can be obtained using a homogeneous 
dataset. Finally, another complication arises when the ground 
truth is difficult to establish. The presence or absence of a bone 
fracture will in most cases not give rise to much debate, inasmuch 
as most bone fractures can be established objectively. For more 
subtle lesions, matters readily become more complicated, since 
different observers may have different opinions on the interpreta-
tion of these lesions [e.g., Watadani et  al. (2013) and van Riel 
et al. (2015)].

In this work, we consider interstitial lung disease (ILD), a 
group of around 200 inflammatory and fibrotic lung diseases that 
mainly affect the tissue and space around the air sacs of the lungs. 
These diseases have distinct and also considerably overlapping 
imaging features. Since the individual diseases have substantially 
different treatment options and prognosis, it is important to make 
the correct diagnosis. Computed tomography (CT) scans play a 
pivotal role in the interdisciplinary process of making a diagnosis 
of ILD (Aziz et al., 2006). Automatic classification of normal and 
abnormal lung tissue in CT scans of ILD patients has been studied 
extensively, focusing on finding optimal feature sets and classi-
fiers (Uppaluri et al., 1999; Xu et al., 2006; Zavaletta et al., 2007; 
Park et  al., 2009; Depeursinge et  al., 2010, 2012; Huber et  al., 
2011, 2012; Vasconcelos et  al., 2015). Recently, deep-learning 
techniques have been applied to the problem (Anthimopoulos 
et al., 2016; Gao et al., 2016).

This study focuses on the process of obtaining annotations 
that can be used in ILD texture analysis. For scans from patients 
with ILD, all complicating aspects mentioned above may occur 
when compiling an annotated dataset. First, manual delineation 
of all lung textures present in a volumetric CT scan is a labor-
intensive task, especially when the disease affected a large part 
of the lungs. Second, thoracic CT scans of ILD patients may be 
made using various CT protocols (Prosch et al., 2013). Finally, 
analysis of imaging features and therefore also annotations vary 
substantially even among experienced radiologists. Therefore, 
obtaining ground truth annotations is not trivial.

Since automatic ILD annotation systems may not be able 
to adapt to various CT acquisition protocols, let  alone to dif-
ferent annotation preferences, we have developed a system for 

interactive annotation of 3D volumes of interest (VOIs), which we 
applied to scans of ILD patients (Kockelkorn et al., 2010, 2016). 
This method allows observers to quickly annotate ILD textures in 
CT scans. A human observer trains the system continuously by 
correcting classification results in a slice-by-slice manner. In this 
way, the algorithm becomes increasingly better in annotating 
textures. The smaller the amount of user input required to obtain 
completely annotated lungs, the easier it becomes to obtain a 
large number of annotated datasets, which can then be used to 
study effects of varying acquisition parameters on the one hand 
and different annotation preferences on the other hand.

In this work, we aim to optimize the interactive annotation 
procedure, in order to decrease the numbers of VOIs for which 
the observer has to correct the computer-generated label. We 
investigate how annotations of VOIs in other previously anno-
tated ILD scans can be used for classification of unseen VOIs in 
the scan under consideration. In addition, we evaluate various 
ways in which users transfer their knowledge to the interactive 
annotation environment. Finally, we compared different strate-
gies for selection of the VOIs that are shown to the observer for 
correction.

This paper is structured as follows: Section “Materials” describes 
the CT scans used for the experiments. Section “Methods” details 
the processes of automatic and interactive classification, followed 
by an outline of the experiments that were performed in Section 
“Manual Annotation of VOIs.” Section “Results” contains the 
results of the experiments. In Section “Discussion,” the main 
insights resulting from this work are summarized and their 
relevance is discussed.

MaTerials anD MeThODs

Materials
For this project, 23 clinically indicated, standard-dose thoracic 
CT scans of ILD patients were collected retrospectively. Scans 
were acquired between 2004 and 2010 at the St. Antonius 
Ziekenhuis Nieuwegein, the Netherlands, on a Philips Mx8000 
IDT or a Philips Brilliance iCT scanner (Philips Medical Systems, 
Best, the Netherlands). Scans were taken at full inspiration with 
patients in supine position, without contrast material. Data 
were acquired in spiral mode and reconstructed to 512 × 512 or 
768 × 768 matrices. Patient and scanning protocol parameters are 
summarized in Table 1.

Methods
Preprocessing
Interactive annotation of VOIs in the lungs has been described 
previously (Kockelkorn et al., 2016). To summarize, lungs in the 
CT scans were segmented (van Rikxoort et al., 2009) and subdi-
vided into roughly spherical VOIs, containing only one type of 
texture, using the algorithm described in Kockelkorn et al. (2016). 
On average, lungs contained 2,114 VOIs (range: 1,148–3,313).

Features and Classifier
For all VOIs, 72 rotationally invariant features were calcu-
lated. Scans were filtered using Gaussian, Laplacian, gradient 
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Table 1 | Patient and scan characteristics.

scan  
number

Patient  
age

Patient  
sex

number of volumes  
of interest

in-plane  
resolution (mm)

slice spacing  
(mm)

Peak  
voltage (kV)

Tube  
current (ma)

1 67 Female 2,021 0.605 0.8 120 120
2 20 Female 2,786 0.574 0.8 120 217
3 33 Male 3,084 0.688 0.8 120 144
4 45 Male 1,647 0.873 0.8 120 144
5 42 Female 2,040 0.658 0.8 120 144
6 61 Male 1,234 0.781 1.0 120 192
7 24 Male 2,818 0.645 0.7 120 206
8 32 Male 1,459 0.758 0.8 120 144
9 62 Female 1,368 0.688 0.5 120 188

10 38 Female 2,386 0.586 1.0 120 270
11 57 Female 1,148 0.660 0.8 120 90
12 71 Male 1,761 0.707 0.8 120 144
13 51 Male 2,017 0.652 0.8 120 144
14 57 Male 1,692 0.750 0.8 120 90
15 33 Male 1,701 0.666 0.8 120 90
16 52 Male 1,810 0.676 0.5 120 188
17 30 Male 3,177 0.658 0.8 120 90
18 39 Female 3,313 0.627 0.5 120 188
19 58 Male 1,687 0.688 0.8 120 90
20 49 Female 2,233 0.580 0.8 120 150
21 54 Female 1,681 0.672 0.8 120 90
22 53 Female 2,540 0.411 4.0 120 125
23 32 Female 2,579 0.652 0.8 120 90
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magnitude, and three Hessian Eigenvalue-based filters. Each of 
these six filters was applied at three scales (σ = 1, 2, and 4 voxels). 
This resulted in 18 filtered images. In each filtered image, mean, 
SD, kurtosis, and skew of the VOI histogram were calculated 
and used as features. Because training of the classifier is done 
while the observer is annotating a scan, we used an Extra-Trees 
classifier [99 trees, 10 features per node, a minimum number of 
samples after each split of 1; parameters based on the recom-
mendations of Geurts et al. (2006)]. This classifier can be trained 
relatively fast, since the training process can be divided over 
multiple cores.

Manual Annotation of VOIs
Three radiologists independently performed manual labeling of 
all VOIs in a subset of the set of 23 scans. Two radiologists labeled 
6 scans and one radiologist labeled 21 scans. In total, 17 scans 
were annotated by one observer, 2 were annotated by 2 observers, 
and 4 were annotated by 3 observers.

Observers were instructed annotate to the following textures 
(see Figure 1. Examples of the eight texture classes.):

Normal tissue: lung tissue without any abnormalities;
Ground glass: increased lung density, in which underlying struc-

tures are still visible;
Consolidation: increased lung density, in which underlying struc-

tures are no longer visible;
Honeycombing: cystic destruction of subpleural lung parenchyma: 

there are cysts of varying diameter (0.3–1.0 cm) in several lay-
ers and cysts share relatively thick walls;

Decreased density: decreased density compared with normal lung 
parenchyma, with or without surrounding walls;

Crazy paving: regular pattern of ground glass with a reticular 
pattern;

NSIP pattern: ground glass with architectural distortion, traction 
bronchiectasis, or irregular lines; and

Nodular pattern: sharply defined nodular densities (1–4 mm) in 
a random or paralymphatic (paraseptal) distribution. Nodules 
can also have branching structures (tree-in-bud).

Thus, in this work an 8-class classification problem is studied. 
Table 2 shows the percentages of VOIs assigned to each of the 
eight classes in the resulting dataset.

Simulated Interactive Annotation
We used simulation software to investigate the effect of design 
choices in interactive annotation protocols on the percentage 
of VOIs that were correctly classified. Interactive annotation 
is schematically depicted in Figure  2. Initially, an axial slice 
was chosen at random, and VOIs intersecting with this slice 
were labeled automatically. Automatically generated labels 
were compared to the manual labels that were provided by the 
human observers and incorrect labels were changed. All labeled 
VOIs were used to train an Extra-Trees classifier. The second 
axial slice was chosen, and all VOIs intersecting with the slice 
were classified by the classifier. Also in this slice, automatic clas-
sifications were compared to manual annotations, and incorrect 
labels were changed. The VOIs in this second slice were added 
to the training dataset, on which the Extra-Trees classifier was 
retrained. The cycle of correction, retraining, and classification 
was repeated until at least 50% of all VOIs were annotated. The 
remainder of the scan was then classified automatically and 
subsequently checked against the manual annotations. The 
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Table 2 | Percentages of volumes of interest assigned to the 8 texture classes.

normal  
tissue (%)

Decreased  
density (%)

consolidation  
(%)

honeycombing  
(%)

ground  
glass (%)

crazy  
paving (%)

nsiP pattern  
(%)

nodular  
pattern (%)

55 15 1 2 8 6 1 11

FigUre 1 | examples of the eight texture classes. (a) Normal tissue, (b) decreased density, (c) consolidation, (D) honeycombing, (e) ground glass, (F) crazy 
paving, (g) NSIP pattern, and (h) nodular pattern.
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number of correctly classified VOIs was used as a performance 
indicator.

experiments
To determine an optimal protocol for interactive annotation, 
three types of experiments were conducted. First, automatic 
classification experiments were done to evaluate which type of 
previous training data yielded the best classification results in 
unseen scans. Second, we evaluated different interactive anno-
tation scenarios. We investigated several ways to exploit prior 
knowledge about the annotation task. Finally, experiments 
were conducted to compare four strategies for slice selection. 
As all experiments included random selection of training sam-
ples, they were repeated five times, after which results were 
averaged.

Automatic Classification Experiments
Four automatic classification protocols were tested in a leave-one-
scan-out setup (see Figure  3). In all automatic protocols, 100, 
250, or 500 training VOIs were selected for each texture pattern. 
If a texture was represented by less than the intended number 
of samples, all samples were used. In the first approach (a1), we 
trained an Extra-Trees classifier on training data from other 
scans annotated by the same observer who annotated the scan 

under consideration. In the second approach (a3), the classifier 
was trained using training data from other scans annotated by all 
three observers. In the third approach, we trained a classifier on 
consensus training data (a3c). This training data set was obtained 
by selecting VOIs that were labeled two or three times. In the first 
case, the two observers had to agree on the label. In the second 
case, all three observers had to agree. If less than 100 consensus 
samples were available for a texture, regular training samples 
from all users were used. In the fourth approach, we used an 
ensemble classification strategy. For each dataset annotated by 
observer x, five Extra-Trees classifiers were trained on different 
types of training data:

I. training data from other scans annotated by observer x;
II. training data from other scans annotated by all observers;
III. consensus training data from other scans annotated by all 

observers;
IV. training data from other scans annotated by observer y; and
V. training data from other scans annotated by observer z.

The final class label was determined by voting. In case of a 
tie, the class with the highest posterior probability was chosen. 
Results were obtained for fully automatic classification of all 
annotated datasets.
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FigUre 2 | Flowchart of interactive volume of interest (VOi)-based annotation. Green boxes are (simulated) user actions; blue boxes are computer actions. 
In the bottom of the figure, resulting annotations at for the different steps in the procedure are shown. The percentages underneath the images are the percentages 
of VOIs in the scan, which have received a label.
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Experiments with approaches a1, a3, a3c, and ae were 
performed with and without texture selection (ts). Without 
ts, training data from all eight texture types were used to train 
the classifier. With ts, only training data from the texture types 
present in the scan were used (see Texture Selection).

Interactive Classification Experiments
Interactive classification was simulated in a leave-one-scan-out 
setup, as described in Kockelkorn et al. (2016). We investigated 
three manners to decrease annotation effort.

Texture Selection
First, we studied the effect on classification accuracy of indicating 
five VOIs of each texture present in the scan before the start of 
annotation in the different interactive protocols. This approach is 
illustrated in Figure 4A. The major difference in these protocols 
and the ones in Figure  4B was the way in which the VOIs in 
the first axial slice were classified. In the left protocol (i-ts), clas-
sification was performed interactively by a classifier trained on 
the VOIs selected by the simulated observer before training of 
the interactive classifier. In the protocols using automatic clas-
sification results for the classification of the first slice (i-a1, i-a3, 
i-a3c, and i-ae), only training samples from the texture categories 
indicated by the user before annotation were used. Obviously, 
the classification problem is simplified considerably if the system 
knows from the start which of the eight texture classes are present 
in the scan.

Training Data from Previously Annotated Scans
Second, we investigated the effect of using classifiers trained on 
training data obtained from previously annotated scans. These 
automatic classification results could be used at the beginning of 
interactive annotation, when little or no training data from the 
scan under consideration is available.

We tested the following annotation protocols, schematically 
depicted in Figure 4A (with ts) and Figure 4B (without ts):

i: completely interactive annotation, without the use of previous 
training data;

i-a1, i-a3, i-a3c, and i-ae: classification of VOIs in the first 
slice using one of the four automatic classification methods 
described above, followed by interactive annotation; and

i-cc: annotation in which observers could determine per slice 
which classification results they wanted to use as a starting 
point for corrections—this could be i, a1, a3, a3c, or ae.

Classifier Choice
Third, we investigated the scenario in which observers were given 
the option to choose from different classification results when 
correcting the labels of the individual VOIs. The protocols based 
on this approach are i-cc-ts in Figure 4A and i-cc in Figure 4B. 
Users could choose between interactive classification results and 
results of a classifier trained on data from other scans annotated 
by the observers themselves (a1), a classifier trained on data from 
other scans annotated by all observers (a3), a classifier trained on 
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FigUre 3 | schematic overview of the four automatic annotation 
protocols. In protocol a1 (left), training data from the observer whose 
annotations are used as ground truth for this dataset are used to train the 
classifier. In protocol a3 (second from the left), training data from all observers 
is used to train the classifier. In protocol a3c (second from the right), 
consensus annotations are used as training data. In protocol ae (bottom), an 
ensemble of five classifiers was trained. The final label was determined by 
voting of these five classifiers.
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consensus training data from other scans (a3c), and the ensemble 
classification method (ae). For correction of the first axial slice in 
the absence of previous training data, without ts, the user could 
choose for heuristic labeling instead of interactive labeling. From 
these different classification results, the one requiring the lowest 
number of corrections was selected in the simulations.

Slice Selection
Finally, the way in which slices are presented to the observer 
influences the efficiency of the training of the classifier. We com-
pared random slice selection with selection based on cumulative 
uncertainty U of n unassigned VOIs per slice:

 U c
v

n

v= −
=
∑

1

1  

In this formula, the uncertainty of the classifier for VOI v was 
calculated by subtracting the confidence cv from one. cv was the 
highest posterior probability among the classes. By adding the 

uncertainties for all unassigned VOIs in a slice, its cumulative 
uncertainty was determined. In each classification and correc-
tion cycle, the slice with the highest cumulative uncertainty was 
chosen. We chose to use cumulative instead of average uncer-
tainty, since the first method favored slices with large numbers 
of VOIs. Larger numbers of VOIs per slice meant that the cycle 
of retraining, classification, and correction had to be repeated a 
lower number of times.

In our previous study, we subdivided the lungs into five levels 
in axial direction, numbered 1–5 from the apex to the base of the 
lungs (Kockelkorn et al., 2016). Slices are chosen from alternating 
levels in the following order: level 3, level 5, level 2, level 4, and 
level 1. This sequence is repeated if necessary. In this work, we 
compared random and uncertainty-based slice selection in a sce-
nario in which this subdivision was used. In addition, we tested 
the effects of random and uncertainty-based slice selection when 
the lungs were not subdivided and slices could be chosen from the 
apex to the base of the lungs in each classification and correction 
cycle. This resulted in the following slice selection methods:

I. random selection from the entire lungs;
II. uncertainty-based selection from the entire lungs;
III. random selection from different levels in the lungs; and
IV. uncertainty-based selection from different levels in the 

lungs.

Evaluation
In all automatic experiments, classification accuracy was cal-
culated per annotated dataset. For the interactive classification 
experiments, classification accuracy was calculated for each 
classified slice, for classification of the remainder of the scan after 
training on at least 50% of all VOIs, and for the complete dataset. 
In all cases, results for the five repetitions per experiments were 
averaged per annotated dataset. If a scan was annotated by more 
than one observer, results were calculated for all two or three 
annotations separately.

Repeated measures ANOVA was performed to test the differ-
ence in overall accuracy between the interactive protocols without 
ts (i, i-a1, i-a3, i-a3, i-ae, and i-cc), between the best-performing 
interactive protocol with and without ts, and between the best-
performing interactive protocol with ts and the four automatic 
protocols (a1, a3, a3c, and ae) with ts.

resUlTs

interobserver agreement
Four scans in our dataset were annotated by three observers and 
two scans were annotated by two observers. Table 3 shows the 
results of the comparison of the labels of the VOIs that were anno-
tated more than once. Four thousand seven hundred twenty-four 
VOIs were annotated twice. Interobserver agreement was 69%. 
Eight thousand four hundred ninety-eight VOIs were annotated 
three times. A total of 35% of the VOIs were given the same label 
by all three observers. For another 35% of the VOIs, two observ-
ers agreed on the label and one observer had a different opinion. 
The final 30% of the VOIs received a different label from each of 
the three observers.
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Table 3 | interobserver agreement in % for VOis that were annotated two 
or three times.

% of VOis that received

nr of VOis 3 labels 2 labels 1 label

Two times annotated 4,724 – 31 69
Three times annotated 8,498 30 35 35

FigUre 4 | (a) Schematic overview of the tested interactive annotation protocols with texture selection (ts). The top row displays how classification is initiated: the 
user selected five example VOIs of each texture class present in the scan. The images in the second row indicate the classification procedure for the VOIs in the first 
slice. This can be done interactively, by training the classifier on the VOIs that the user indicated before the start of annotation (i, interactive), by using a classifier 
trained on the automatic classification protocols in Figure 3 (a1, a3, a3c, and ae), or by letting observers choose the classification results that they want to correct 
(cc, classifier choice). The third row indicates how the following slices are classified: either interactively (i) or by letting observers choose the classification results that 
they want to correct (cc). (b) Schematic overview of the tested interactive annotation protocols without ts. The top row displays how classification is initiated: in this 
case, no user action is required at this stage. The second and third rows are similar to panel (a).
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Figure 5 shows an example of an axial slice (a), with in the 
second row manual VOI annotations as made by observer 1 (d), 
observer 2 (e), and observer 3 (f). All observers agree that this 
slice contains normal tissue and crazy paving, but the distribution 
of the textures varies between the observers. In addition, observer 
2 has indicated areas of ground glass, which are absent in the 
annotations of observers 1 and 3.

automatic classification results
Use of Previous Training Data
In Figure 6A, the results of the use of different protocols for 
automatic classification—namely using training data from the 

observer who provided annotations for the scan under consid-
eration (a1), using training data from all observers (a3), using 
consensus training data (a3c), and building an ensemble clas-
sifier (ae)—are displayed. The lower border of each box is the 
first quartile (Q1); the upper border is the third quartile (Q3). 
The median value is indicated by the horizontal bar inside the 
box. Upper and lower whiskers extend to the maximum and 
minimum data point, respectively. Results are shown for three 
different intended sizes of the training dataset: 100, 250, and 
500 training samples per texture class. For all four classifica-
tion protocols, adding more training samples yielded higher 
median classification accuracy. This also held for the maxi-
mum accuracy and for Q3. The minimum accuracy was 0 or 
close to 0 for all different protocols and for the three different 
intended training dataset sizes. The interquartile range (IQR), 
calculated as Q3–Q1, increased with an increasing intended 
number of training samples per texture class for the protocols 
a1 and a3c.

Table 4 shows the median, minimum, and maximum accu-
racies for all four automatic classification protocols, for each 
of the three observers, and for all observers taken together. 
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FigUre 5 | examples of automatic and interactive classification results. (a) Axial slice of a computed tomography scan of an interstitial lung disease patient. 
(b) Results of automatic classification using training data from all observers without texture selection (ts). (c) Results of automatic classification with ts. (D) Manual 
VOI labeling by observer 1. (e) Manual VOI labeling by observer 2. (F) Manual VOI labeling by observer 3. (g) Interactive classification results after training on at least 
50% of all VOIs for observer 1. (h) Interactive classification results after training on at least 50% of all VOIs for observer 2. (i) Interactive classification results after 
training on at least 50% of all VOIs for observer 3.

8

Kockelkorn et al. Optimization of Interactive ILD Texture Classification

Frontiers in ICT | www.frontiersin.org December 2016 | Volume 3 | Article 33

The intended number of training samples per texture class was 
500. The protocol in which consensus training data were used 
yielded the highest median percentage of correctly classified 
VOIs for observer 1, observer 3, and for all observers together. 
The protocol yielding the highest median accuracy for observer 2 
was a1, in which only training data from this observer was used. 
The minimum percentage of correctly classified VOIs varied 
between the different observers: for observer 1, this percentage 
varied from 22 to 35%. For observer 3, values ranged between 8% 
for protocol a1 and 18% for protocol a3c. Minimum values were 
lowest for observer 2.

Texture Selection
Figure 6B shows the effect of ts on classification accuracy for the 
four automatic protocols. When using ts, median classification 
accuracy substantially increased for all protocols as compared 
to the results without ts. Minimum and maximum accuracy also 
showed this increase. Similar to the situation in which no ts was 

applied, median classification accuracy increased with increasing 
size of the training dataset.

In Table 5, median, minimum, and maximum classification 
accuracy after ts are shown for the individual observers and 
for all observers together. The spread in median accuracies 
between the different protocols was smaller than when no ts 
was applied. For all observers, median accuracy ranged from 
73% for protocols a3c and a3 to 77% for protocol a1. This latter 
was an increase of 27% points as compared to the scenario in 
which no ts was performed. The same could be seen for all indi-
vidual observers: the spread in median accuracy between the 
classification protocols was also smaller when ts was applied.

Figures 5B,C show the effect of ts. In both panels, VOIs were 
automatically classified using training data from all observers. In 
Figure 5B, this was done without ts, in Figure 5C with ts. Without 
ts, the classifier predicted the occurrence of all texture classes in 
this slice; with ts, the areas containing normal tissue as indicated 
by all observers are more accurately classified.
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Table 5 | Median (and range) of percentages of correctly classified VOis 
for observer 1, observer 2, observer3, and all 33 annotated datasets in 
the four automatic annotation protocols with texture selection.

Median (min–max)% of correctly classified VOis

Protocol Obs 1 Obs 2 Obs 3 all

One user (a1) 78 (66–82) 74 (44–88) 83 (29–96) 77 (29–96)
Three users (a3) 76 (55–86) 69 (44–89) 84 (27–94) 73 (27–94)
Consensus (a3c) 79 (56–92) 73 (23–90) 80 (27–95) 73 (23–95)
Ensemble (ae) 78 (62–90) 73 (26–95) 84 (27–96) 76 (26–96)

For each texture class, the intended number of training samples was 500. Results are 
taken over all annotated datasets.

FigUre 6 | box plots displaying classification accuracies of all 33 annotated datasets for different automatic scenarios. (a) Results for automatic 
classification without ts. (b) Results for automatic classification with ts. Each box displays the median value (horizontal blue line), the first quartile (Q1, lower margin 
of the box), and the third quartile (Q3, upper margin of the box). The lower whisker extends to the smallest data point; the upper whisker extends to the largest data 
point. a1, training data from same user; a3, training data from all users; a3c, consensus training data; ae, ensemble classification; ts, texture selection.

Table 4 | Median (and range) of percentages of correctly classified VOis 
for observer 1, observer 2, observer3, and for all 33 annotated datasets 
in the four automatic annotation protocols without texture selection.

Median (min–max)% of correctly classified  
VOis per protocol

Protocol Obs 1 Obs 2 Obs 3 all

One user (a1) 39 (29–66) 53 (1–69) 32 (8–75) 50 (1–75)
Three users (a3) 47 (30–73) 47 (0–68) 48 (10–72) 47 (0–73)
Consensus (a3c) 65 (22–79) 49 (1–79) 66 (18–83) 53 (1–83)
Ensemble (ae) 57 (35–78) 51 (0–77) 41 (15–77) 51 (0–78)

For each texture class, the intended number of training samples was 500.
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interactive classification results
Texture Selection
The following paragraphs contain the results of interactive 
annotation experiments. First, we studied the effect of ts in 
interactive classification. In 20 of the 33 annotated datasets, 2 
types of textures were found. In nine scans, three textures were 
selected, and in the remaining four scans, four textures were 
selected. In Figure 7, classification accuracies per slice and for 

the remainder of the scan after training on at least 50% of the 
VOIs in the scan are shown for interactive protocols i (without 
ts) and i-ts (with ts). In both protocols, no previously annotated 
training data were used. In the first axial slice, median classi-
fication accuracy was the same whether VOIs were all labeled 
as normal tissue (in i) or VOIs were classified using a training 
dataset of five samples per texture class present in the scan. 
However, the IQR and the total accuracy range were larger if 
no ts was performed. The main advantage of ts in the first slice 
is that the minimum percentage of VOIs that are correctly clas-
sified was 38% instead of 0%. A similar effect could be seen in 
the second, third, and fourth slice. For slice 5 and classification 
of the remainder of the VOIs in the scan, results were similar 
for both approaches. This plot indicates that using training 
data from previously annotated scan may only be beneficial in 
classification of the first axial slice. Therefore, previous training 
data were only used for classification of the first axial slice in 
protocols i-a1(-ts), i-a3(-ts), i-a3c(-ts), and i-ae(-ts).

In the bottom row of Figure  5, interactive classification 
results are shown for one axial slice, for observer 1 (g), observer 
2 (h), and observer 3 (i). These manual VOI annotations are 
shown directly above. Results are shown for classification of the 
remainder of the VOIs, after training on at least 50% of all VOI. 
For individual observers, the classifier was trained differently, 
which is reflected in the results in the bottom row. This indicated 
that the interactive classifier was able to adapt to the annotation 
preferences of the observers.

Use of Previous Training Data and Classifier 
Selection
In Figure 8, classification accuracy for the first slice, classifica-
tion accuracy for the remainder of the scan, and overall clas-
sification accuracy are displayed, without (a) and with (b) ts. 
Median, minimum, and maximum values are given in Table 6. 

http://www.frontiersin.org/ICT/
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive


FigUre 8 | box plots displaying classification accuracies of all annotated datasets for the six interactive protocols without texture selection (ts) (a) 
and for the six protocols with ts (b). For each protocol, distribution of classification accuracy of the first slice (blue boxes), distribution of classification accuracy 
of the remainder of the scan after training on 50% of all VOIs (red boxes), and distribution of overall classification accuracy (green boxes) are shown. See the caption 
of Figure 6 for an explanation of the boxes and whiskers.

FigUre 7 | box plot displaying the classification accuracies of all 33 
annotated datasets for interactive protocols i (blue boxes) and i-ts 
(green boxes). See the caption of Figure 6 for an explanation of the boxes 
and whiskers.
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The red boxes in Figure 8 represent results for classification of 
the remainder of the scan. Since this was done in the same way 
in each interactive protocol, the results do not differ between 
the different approaches. The results for classification of the first 
axial slice, displayed by the blue boxes, displayed a large spread 
of median values: from 47% for protocol i-a3, in which previous 

training data were used for classification of the first axial slice, 
to 82% for protocol i-cc-ts, where observers initiated annotation 
by selecting five example VOIs for each texture present in the 
scan and where they could choose which classification results to 
start from when correcting VOI labels. Protocols i-ts and i-cc-ts 
were the only two protocols for which the minimum number 
of VOIs correctly classified is not close to 0, with 38 and 51% 
respectively. In the overall results, median accuracies ranged 
from 82% for protocol i-a3 to 88% for protocol i-cc-ts. The mini-
mum overall percentage of correctly classified VOIs was also 
largest for protocol i-cc-ts: 72%. For all interactive protocols, ts 
increased overall classification accuracy by 1–5% points.

Repeated measures ANOVA was performed to test for the dif-
ference in accuracy between the six interactive protocols without 
ts (i, i-a1, i-a3, i-a3c, i-ae, and i-cc). Protocol i-cc performed 
significantly better than the other ones [F(5,28) = 29.1; p < 0.01]. 
In addition, repeated measures ANOVA was used to test the 
significance of texture selection on classification accuracy by 
comparing the accuracies of protocols i-cc and i-cc-ts. Texture 
selection had a significant effect on accuracy [F(1,32)  =  11.6; 
p  =  0.002]. Finally, we tested whether interactive classification 
performed better than automatic classification by performing 
repeated measures ANOVA on the four automatic protocols (a1, 
a3, a3c, and ae) and the best-performing interactive protocol. 
Interactive classification performed significantly better than the 
four automatic protocols [F(4,27)  =  21.6; p  <  0.001]. Post hoc 
analysis indicated no significant differences between the indi-
vidual automatic protocols.

slice selection Methods
Finally, we compared four different methods for slice selection in 
interactive classification. Figure 9A displays the distribution of 
the number of slices that had to be reviewed by an observer before 
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Table 6 | Median (min–max)% of correctly classified VOis for all annotated datasets in the 12 interactive annotation protocols.

Median (min–max) accuracy for the first slice

i i-a1 i-a3 i-a3c i-ae i-cc

No ts 69 (0–100) 49 (0–79) 47 (0–75) 55 (1–87) 59 (0–82) 72 (2–100)
ts 68 (38–100) 77 (3–100) 71 (1–99) 71 (1–100) 74 (1–100) 82 (51–100)

Median (min–max) accuracy for the remainder of the scan

i i-a1 i-a3 i-a3c i-ae i-cc

No ts 91 (75–100) 91 (74–100) 91 (75–100) 91 (75–100) 91 (75–100) 90 (75–100)
ts 91 (75–100) 91 (75–100) 91 (75–100) 91 (75–100) 91 (75–100) 90 (75–100)

Median (min–max) overall accuracy

i i-a1 i-a3 i-a3c i-ae i-cc

No ts 84 (61–100) 82 (59–96) 82 (61–96) 83 (61–98) 83 (62–98) 87 (67–100)
ts 85 (65–100) 87 (62–98) 85 (62–98) 86 (62–98) 86 (62–99) 88 (72–100) 

Results are shown for classification of the first slice (top), for classification of the remainder of the scan after training on at least 50% of the VOIs in the scan (middle), and for all VOIs 
in the scan (bottom).
a1, training data from same user; a3, training data from all users; a3c, consensus training data; ae, ensemble classification; ts, texture selection.

FigUre 9 | (a) Box plot displaying the number of slices needed to be inspected by the observer to annotate at least 50% of all VOIs in the scan in the four 
different slice selection methods. (b) Box plot of the overall accuracy for the four different slice selection methods. Experiments were performed using protocol i, 
without texture selection and without the use of previously annotated VOIs for classification of the first slice. See the caption of Figure 6 for an explanation of the 
boxes and whiskers.
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the threshold of 50% of the VOIs in the scan was reached. In these 
experiments, classification protocol i was used, in which no ts was 
performed. Both random slice selection methods required more 
slices to be checked; median values were 8 when the lungs were 
divided into five areas and 9 when the lungs were not subdivided. 
This also means that more rounds of training the classifier and 
reclassification of the remaining VOIs had to be done. Dividing 
the scan into five areas, from which slices were selected alter-
nately, led to a larger spread in the number of slices that had to be 
reviewed. The median number of slices, 5, was the same, whether 
the lungs are divided into five areas or not. Figure  9B shows 
that the distribution of interactive classification accuracy per 

annotated dataset was comparable for all slice selection methods. 
Therefore, use of uncertainty-based slice selection is preferred 
over random slice selection. The number of areas in which the 
lungs were subdivided did not matter in these experiments.

DiscUssiOn

Many studies have focused on automatic texture analysis in ILD. 
In general, these studies use user-defined ROIs/VOIs for which 
one set of annotations is used as the ground truth. In this work, 
we built on the interactive annotation approach that we have 
described earlier (Kockelkorn et al., 2016), in which all lung tissue 
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is annotated and ground truth is defined by the observer using 
the software. One of our aims was to optimize the interactive 
annotation process.

High interobserver variability is a known issue in ILD texture 
annotation. In two of our previous studies, both of which were 
performed on smaller datasets, we found interobserver agree-
ments for two observers of 51% (Kockelkorn et  al., 2010) and 
63% (Kockelkorn et al., 2016). In this work, roughly 70% of all 
VOIs that were labeled at least twice received the same label from 
at least two observers. This also means for roughly one-third of 
the VOIs, all two or three observers assigned a different label to 
the same VOI. With observers having three different opinions on 
the texture label of a VOI, the problem of making a universally 
accepted annotated dataset becomes even more complicated. One 
of the issues we wanted to study was how we could use training 
data from previously annotated scans for classification at the 
start of interactive annotation, when no or little training data 
from the scan under consideration are available. Given the high 
interobserver variability, we hypothesized that using training data 
from the observer who is annotating the scan might have advan-
tages over using training data obtained from all observers. Our 
results indicate that using training data from the same observer 
results in slightly higher classification accuracy, but only when 
combined with ts. Without ts, using consensus training data leads 
to the highest median accuracy in automatic classification. We 
also investigated the use of having a panel of classifiers deciding 
together on the label of VOIs, analogous to physicians making a 
diagnosis together. Using this ensemble approach did not lead to 
higher median classification accuracies when compared with the 
other classification protocols. In general, the differences between 
the median results of the various annotation methods are small 
and which methods yields the highest median accuracy varies for 
the individual observers.

Another aim of our study was to investigate how a classifier, 
trained on previously obtained training data, can decrease user 
effort necessary for interactive annotation of all lung VOIs. 
Since the automatic classification experiments did not indicate 
the superiority of one single automatic classification protocol, 
we tested the use of all automatic classification methods in our 
interactive classification framework. In the most basic protocol 
(i), no ts or automatic classification results were used. VOIs in 
the first axial slice were labeled as normal tissue, which is in this 
dataset with 55% the most common texture. The median labeling 
accuracy over all annotated datasets resulting from this approach 
was 69%, which is below median classification accuracy for all 
automatic protocols with class selection. Median interactive 
classification accuracy for all following slices is above median 
accuracy for all automatic protocols. Therefore, we conclude that 
automatic classification is only beneficial for classification of the 
first axial slice.

Other studies have reported higher automatic classifica-
tion accuracies (Depeursinge et  al., 2012; Song et  al., 2013; 
Anthimopoulos et  al., 2016); however, these were obtained on 
hand-drawn ROIs at specific user-selected locations instead of 
automatically generated VOIs spanning the entire lungs. In addi-
tion, not all classification approaches are suitable for the interac-
tive annotation approach we propose: we opted for pre-calculated 

features and a classifier who is trained relatively fast to reduce 
the time that the observer has to wait for classification results. 
Nevertheless, it would be possible to initiate interactive annota-
tion by classification of the first slice using, for example, a deep-
learning approach.

Besides correcting automatic classification results, observers 
can transfer knowledge of the annotation task in other ways. The 
first is by selecting examples of all tissue types present in the scan 
before the start of interactive classification. In automatic classifi-
cation, ts resulted in a substantial increase of median classifica-
tion accuracy, ranging from 20% points for the protocol using 
consensus training data (a3c) to 27% points for the protocol that 
used training data from the observer who provided the ground 
truth annotations for the scan under consideration (a1).

In interactive classification, using automatic classification 
results without ts leads to a decrease in classification accuracy, as 
compared with the protocols in which ts is applied. This decrease 
is not only seen in the first slice but also in the overall classifica-
tion results: protocols i-a1, 1-a3, i-a3c, and i-ae display a decrease 
in median classification accuracy of 1–2% points as compared 
with protocol i. Therefore, automatic classification results should 
only be used for classification of the first axial slice if the observer 
performs ts before interactive annotation.

Finally, we noted that selecting slices to be corrected by the 
observer based on the cumulative uncertainty in the slice results 
in a smaller number of slices that should be reviewed before 
reaching at least 50% of the VOIs, as compared with random slice 
selection. A smaller number of slices to review means that the 
classifier has to be trained less often, which in turn decreases the 
time observers have to wait for new classification results to be 
generated. Dividing the lungs into five areas, from which slices 
are chosen in an alternate fashion, did not have advantages over 
considering slices from the entire lungs in each classification, 
retraining, and correction cycle. This was contrary to what we 
expected, since ILD textures may be localized.

This work presents several open issues. First, while the 23 
thoracic CT scans included are an increase as compared with 
our previous studies, experiments should ideally be executed on 
a larger dataset, containing various ILD subtypes. Second, only 
part of the dataset was annotated by more than one observer. 
This did enable us to assess interobserver variability and to 
evaluate how the interactive annotation framework adapts to 
individual observers’ annotation preferences. However, in order 
to get to a consensus dataset, three (or more) observers should 
individually annotate all scans and then discuss their results. 
Interactive annotation can facilitate this approach in future 
work. Third, this work does not compare the effects of using a 
different classifier or different features. In principle, any texture 
features could be inserted into the interactive framework. The 
same holds for the classifier, with the limitation that the chosen 
classifier should allow training while the observer awaits the 
results.

In future work, it would be interesting to compare the 
simulation results from this work to results obtained by human 
observers. Given the substantial interobserver variability, it is 
conceivable that observers are influenced by the classification 
results that are suggested by the algorithm. To investigate the 
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influence of suggested annotations, observers could be asked to 
annotate the same scan twice at different time points: once by 
completely manual labeling of all VOIs and once by interactive 
labeling. By comparing the interactive annotation results to the 
manual labels on the one hand and the automatically generated 
labels on the other hand, an estimate of the degree by which 
computer-generated labels influence annotation behavior of the 
observer could be made.

We have shown that automatic classification results can be 
beneficial in interactive annotation, but only when used in com-
bination with ts. In addition, giving observers several different 
automatic classification results to choose from when correcting 
VOI labels decreased the median the number of corrections. 
Using the best-performing protocol, in which observers select 
the textures that should be distinguished in the scan and they are 
provided with alternative classification results in case interactive 

classification accuracy is low, a median accuracy of 88% was 
reached. We therefore conclude that interactive annotation with 
ts and classifier choice could be a useful tool for annotating lung 
tissue in CT scans of ILD patients.
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