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Big data are expected to exert profound impacts on medicine. High-throughput 
technologies, electronic medical records, high-resolution imaging, multiplexed omics, 
these are examples of fields that are progressing at a fast pace. Because they all yield 
complex heterogeneous data types, managing such variety and volumes is a challenge. 
While the computation power required to analyze them is available, the main difficulty 
consists in interpreting the results. In light of the emerging precision medicine paradigm, 
oncology is influenced by digital phenotypes characterizing disease expression, In par-
ticular, digital biomarkers could become critical for the evaluation of clinical endpoints. 
Currently, integrative approaches are conceived for the analysis of multi-evidenced data, 
i.e., data generated from multiple sources, such as cells, organs, individual lifestyle 
and social habits, environment, population dynamics, etc. The granularity, the scales of 
measurement, the model prediction accuracy, these are factors justifying an ongoing 
progressive differentiation from evidence-based medicine, typically based on a relatively 
small and unique scale of the experiments, thus well assimilated by a mathematical or 
statistical model. A premise of precision medicine is the N-of-1 paradigm, inspired by 
a focus on individualization. However, diversity, amount, and complexity of input data 
points that are needed for individual assessments, suggest centrality of systems infer-
ence principles. In turn, a revised paradigm is acquiring relevance, say (N-of-1)c, where 
the exponent c indicates connectivity. What makes connectivity such a key factor? For 
instance, the synergy embedded but often latent in the data layers, namely signatures, 
profiles, etc., which can lead to many stratified directions. Reference then goes to the 
biological and medical insights due to data integration, here discussed in view of the 
current oncological trends.

Keywords: precision medicine, big data, digital health, genomics, cancer networks

treNDs iN HeALtH

Digital health is legitimating what was described about 30 years ago by Dawkins (1982), when pre-
senting the extended phenotype principle. Phenotypic features, which include biological and genetic 
ones, are subject to continuous change as a result of all types of environmental interactions. Technology 
is clearly a game changer in most environments, especially those lived by humans, and is driving 
the transition toward digital phenotypes (Jain et al., 2015; Beckmann and Lew, 2016). An example is 
provided by digital biomarkers (Meister et al., 2016). These represent structured and unstructured 
information re-organized qualitatively and quantified by measures, scores, and predictions. Medical 
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imaging at the technological side, and lifestyle and social dynam-
ics at the environmental and behavioral sides, represent possible 
sources of digital biomarkers influencing precision oncology. The 
ultimate aim is to identify patient groups with certain risk factors 
or presenting different response to therapy compared to other 
groups (Capobianco, 2016; Dominietto and Capobianco, 2016; 
O’Connor et  al., 2016). Hence, finding new digital phenotypes 
augments the ability to diagnose and cure a variety of oncological 
conditions, beyond early detection, and leading to new disease 
classification, treatment, and management.

In cancer, which is manifestly heterotypic, early diagnosis 
is crucial. During treatment, the management of the disease is 
a priority and issues to be considered refer to both prevention and 
therapy. Naturally enough, patient engagement is also being revo-
lutionized, particularly under the influence of drivers like social 
influences and m-health (Teare et  al., 2017). Finally, following 
the primary goal of precision medicine of bringing individualized 
solutions in terms of therapies, new models beyond the P4 para-
digm are destined to emerge (Hood and Flores, 2012; Schellekens 
et al., 2017). Multiple factors need to be considered for proper 
assessment of cancer therapeutic solutions. For instance, with 
reference to multimodal drug combinations designed to special 
drug regimens targeting cancer cells, among the involved factors, 
a role in the molecular context is played by monitoring and assess-
ing the immune response, measuring feedback signals from the 
microenvironment, considering the lifestyle and diet influences, 
etc. These complement more specific factors, those characterizing 
complexity inherent to sub-clonality, resistance, recurrence. For 
example, clones are especially important to explain phenotypic 
heterogeneity, while offering insights in tumorigenesis and 
treatment response. These properties refer to the fact that sub-
populations may be identified across a spectrum of differentiated 
cancer characteristics, like proliferation and growth rates, which 
complicate the assessment of the effects of the metastatic power 
(Tabassum and Polyak, 2015).

Concerning sub-clonality, the utility of sequential approaches 
to precision oncology is acquiring relevance, as from the recent 
interest in temporal collateral sensitivity (Pritchard et al., 2013; 
Zhao et al., 2016). In particular, as sub-clones compete for domi-
nance, some may prevail when they are resistant to treatment, 
thus becoming drug-induced sub-clones. Then, they can mutually 
or synergistically cooperate in communities, thus favoring (even 
just transiently) the metastatic process through cross-seeding 
dynamics, i.e., when the sub-clones that are present at a site have 
originated at other sites (Gundem et al., 2015; Hong et al., 2015; 
Shen, 2015; Tabassum and Polyak, 2015).

Combinations of drugs or targeted therapies are considered 
a priority in clinical contexts, but the current trends also assign 
centrality to the understanding of a milieu of data layers informing 
on stromal cell–cell interactions and environmental factors (Dry 
et al., 2016). These layers include genomic profiles, epigenomic 
marks, risk factors, marker indicators of metastatic conditions, 
which can also be aligned with precursor and premalignant con-
ditions. In such integrated context, the exposome (see examples 
of ongoing activities in http://humanexposomeproject.com/; 
http://www.projecthelix.eu/; http://www.exposomicsproject.eu/; 
http://emoryhercules.com/) is highly relevant.

Cancer cells communicate locally and globally with the 
microenvironment, due to systemic interactions in response to 
inflammation, immune responses, vasculature, and metabolism 
signals coming from the stroma. A worthwhile attempt is to 
enable reprogramming by inducing invasion even against the 
environmental constraints prone to prevent or block the meta-
static development of cancer cells (Axelrod et al., 2006). Clearly 
enough, the possible definitions of a cancer system are highly 
dependent on the understanding of the systemic environmental 
influences that regulate progression and determine the metastatic 
process.

cANcer HeterOGeNeitY

Many factors contribute to one of the most challenging features 
of cancer, heterogeneity, which is the main factor determining 
the observed variation in cancer phenotypes. In particular, the 
clonal variety with its distinct genetic profiles implies an inherent 
differentiation in molecular evolution due to multiple resistance 
mechanisms and consequently drug responsiveness. Intra-tumor 
heterogeneity implicates that patients present differences in rela-
tion to the same cancer type, and that the same patient presents 
differences between tumor sites. Consequently, there are substan-
tial difficulties in predicting tumor dynamics and the associated 
outcomes. Note that spatiotemporal heterogeneity allows adapta-
tion to varying microenvironment constraints (Keats et al., 2012; 
Fisher et al., 2013).

Furthermore, similar mutations may result in differentiated 
phenotypes, while dissimilar mutations can converge to the same 
phenotype (De Sousa e Melo et al., 2013). This complexity is of 
course destined to complicate tremendously every clinical phase, 
particularly the one called to establish therapeutic paths. An 
example is offered by the Molecular Analysis for Therapy Choice 
(NCI-MATCH), which is based on patients’ genetic features 
(Mullard, 2015). Another example is offered by the Molecular 
Profiling-based Assignment of Cancer Therapy (NCI-MPACT), 
for which the goal is targeting oncogenic driver mutations in 
main pathways (DNA repair, PI3-K/mTOR, Ras/Raf/MEK) of 
unresponsive patients (Do et al., 2015). These examples indicate 
the need of systematically organized clinical trials aimed to assess 
signaling pathway-driven therapies. In turn, new strategies for off-
label targeted therapies might follow in the realm of particularly 
resistant cases and rare cancers (Xue and Wilcox, 2016). In such 
cases, the emerging paradigm is that of the basket-trial design, 
aimed to conduct several independent and parallel phase II trials 
due to simultaneous screening over genetic aberrations detected 
by NGS-derived gene panels, thus enabling the assessment of a 
multitude of treatments in a large number of clinical trials (Redig 
and Jänne, 2015).

Back to sub-clonality, the role of clone-specific mutations is 
emphasized. Such alterations cover a wide variety of cases and 
suggest that clone-driven inference should become central from 
both a systems and a dynamic perspective. In particular, the 
latter involves slow- and fast-growing clones, likewise early- and 
late-emerging clones (Wang et al., 2013a,b). Therefore, Figure 1 
illustrates the point that due to the role of the microenvironment 
and the imposed constraints, it is crucial to refer novel phenotypes 
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FiGure 1 | Cancer prevention landmarks. Integrative predictive genomics and EHR will be the drivers of novel systems and precision medicine approaches 
targeted to deciphering paths from premalignancy to malignancy. Identification of clonal subpopulations and their interactome are challenges ahead. Another rich 
and highly unexplored source is the Exposome together with its links with the Epigenome. A current challenge is re-defining onco-epigenomics and immune-
oncology research. Clonal networks will be increasingly characterized in terms of tumor microenvironment and centered on epigenetic marks.
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by clone–clone and clone–stroma interactions to study disease 
progression. Due to the lack of experimental models (Marusyk 
et al., 2014), the role of computational models needs to acquiring 
further value, especially models centered on clonal networks. 
One type of complexity comes from cancer drivers that combine 
in many possible ways, while triggering state transitions. The 
focus of next generation computational algorithms should mainly 
be the identification of such transitions, and the prediction of tip-
ping points or early warning signals useful to indicate closeness 
to the state switches. A primary aim remains the mitigation of 
the effects of such changes by taking preventive interventions. In 
principle, the identification may also extend to attractor states, 
those in which stationarity would be restored (Brock et al., 2015; 
Taherian Fard and Ragan, 2017). When considering possible 
sources of variation in cancer systems, i.e., genetic, epigenetic, 
and other, the attention shifts to their translation into systems 
perturbations, like in the case of treatments targeted to control 
growth and proliferation. Drug sensitivity represents a crucial 
factor, one enabling selectivity between sub-clones, suggesting 
that different data will be needed to inform on phenotypes and 
differentiated cancer-inducing agents.

However, multiple phenotypes could span complexities that 
could still be governed by a relatively limited number of prin-
ciples. In such regard, computational algorithms will be deter-
minant for estimating the needed reduction of dimensionality 
able to approximate the distance between data bulks (or ranks). 
Thus, while finding signatures may continue to be a goal (Wang 
et al., 2015), these indicators will step from simply molecular ones 
(genes, proteins) to network ones (gene or protein modules), 
with the connectivity between nodes capturing even the higher 
dependencies and synergies in the system.

It is, therefore, likely that precision medicine, while focusing 
on the N-of-1 paradigm (Brannon and Sawyers, 2013), will induce 
a revision of the paradigm, namely (N-of-1)c empowered with 
the “c” or connectivity factor. This would be primarily acting as 
a driver of synergy between complex variables embedded in 
multilayered data, and as a result, spanning multiple stratifica-
tions. Consequently, the crucial identifications to be faced involve 
novel sensors of systems phase transitions that might inform on 
the insurgence of metastasis, tumor recurrence, drug selection, 
therapy assessment. Then, further identifications would consider 
diversification into categories ranging from clone specific to clone-
pervasive evidences. Clearly enough, learning from each patient 
should make the above context actionable toward individualized 
solutions, but learning from few samples can be a limiting factor 
due to reduced statistical power for evaluating the uncertainty of 
predictions and the replicability of the results. Finally, higher rates 
of false positives call for adjustment by multiple testing of control 
for type 1 error rate, which needs to be rebalanced with the benefit 
of the novel identification types (Jain et al., 2015; Grody, 2016).

rOLe OF HiGH-tHrOuGHPut 
GeNOMics

Next generation sequencing generates massively parallel amounts 
of data through the sequences of genomic regions explored in 
shotgun mode. The applications are expected to reach many pos-
sible directions, especially aimed at selecting patients for specific 
therapies. In cancer experiments, the malignant phenotypes 
represent a variety of possible detections obtainable in multiple 
ways. Hundreds of genes are currently targeted, but only a few 
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are actionable, i.e., effectively and/or successfully “drugged” 
according to approved drugs (Alyass et  al., 2015; Dietel et  al., 
2015). Then, different marker types will become central to future 
analyses, from prognostic markers (focused on disease outcomes) 
to predictive markers (focused on identifying patient sub-groups 
responsive to specific treatments).

However, it is well known that spotting cancer phenotypes is 
a cumbersome task from the computational standpoint. Many 
possible variants (in the order of several thousand hits for whole 
exome sequencing and several million hits for whole genome 
sequencing) reveal only limited causative examples. Also, only a 
relatively small number of variants can lead to either drugged or 
druggable targets. Currently, the detection of mutations is mostly 
left to targeted panels covering hundreds or even thousands of 
target loci (Malapelle et al., 2015; Marrone et al., 2015). This way, 
the detection of low-level mosaicism referred to mutations com-
mon across tumors can be ensured. At the same time, access to 
genetic information can be enabled at an individual basis, and 
therapy can be targeted to specific mutational signatures.

A couple of limitations must be mentioned: (a) variants 
present in more than 1% of normal human chromosomes are 
most likely not clinically relevant in cancer (Strom, 2016); (b) 
variability among patients remains an issue in the response to 
treatments. Given different types of heterogeneities, cellular 
one in which a mix of tumor and stroma cells is found, as well 
as molecular one due to sub-clonality, the path forward in the 
study of cancer genomes implies integrative approaches to cover 
methylation profiles and variation from non-coding genomic 
regions in view of a deeper assessment of differential expression. 
From a methodological side, the relationships among profiles 
or data layers should include cross-interactions, aimed to find 
possible multilayered latent structures underlying intra-layer 
dynamics (Kim et al., 2016; Tordini et al., 2016; Hasin et al., 2017; 
Huang et al., 2017). From a biomedical perspective, new markers 
will aim to measure drug response, as with pharmacodynamic 
ones, i.e., molecular indicators of drug effect on a target and 
useful to associate drug regimen, target effect, and biological 
tumor response (https://next.cancer.gov/developmentresources/
pd_biomarker.htm), and also those neoantigens arising from 
cancer-specific mutations, and requiring genomics-proteomics 
pairing (Snyder et al., 2014).

DiFFereNtiAL MeAsures BeYOND 
eXPressiON

Cancer networks have nowadays become quite popular. They 
are not simply descriptive or explorative tools, but they are gen-
erators of hypotheses under very complex conditions that they 
can represent quite straightforwardly. Among the systems-level 
insights that networks provide, the most promising implications 
refer to identification of novel drug targets (Ishitsuka et al., 2016; 
Vinayagam et al., 2016; Sharma et al., 2017). Only a few examples 
of such applications are currently available, but their promising 
ideas depend on known properties:

 (a) Networks are modular structures (Newman, 2012; Bonnet 
et  al., 2015; Fortunato, 2016). Due to the properties of 

modules, or communities, which embed more significant 
dependence among their components than with the external 
entities, the focus can be put on nodes treated as single targets 
but also on modules representing multiple connected targets. 
The relevance of therapeutic targets is of course high, as some 
of them cannot be directly used, but an indirect monitoring 
through their interactors could be allowed by tracking the 
significant connectivity paths surrounding them (Mora et al., 
2014, 2016)

 (b) Topological measures establish a series of measurable 
features that can be used to characterize network nodes, 
say target genes or proteins, and this might improve the 
discrimination power of algorithms in identifying with 
significance. Therefore, for each available sample not only 
genes (1…..N) or proteins (1…..P) could be put into asso-
ciative (correlative or causal) or interactive communication, 
but also features (1…..F) can be embedded at each of such 
entities (nodes, links), thus expanding the dimensionality 
of the informative array exploitable for inference. To bridge 
with the earlier introduced digital biomarkers, it is tempting 
to enrich the network with therapy-related variables, such 
as response, follow-up, drug effects, etc. (Dominietto et al., 
2015; Dominietto and Capobianco, 2016)

 (c) Dependence in networks is naturally imported through the 
inherent metric based on the node connectivity patterns. 
This metric might be extended to cover highly complex 
network configurations (De Domenico et al., 2013, 2016). 
Network metrics go beyond the ones generally adopted in 
clustering, and as a result, more confidence can be assigned 
to the various associations between nodes, especially 
when comparing normal to disease networks, or temporal 
trajectories of disease networks across disease stages (say, 
pre- and posttreatment). Clearly enough, there is some 
level of uncertainty to consider, which requires statistical 
evaluations of significance, but also elucidation of the role of 
network entropy in cancer. Notably, the so-called fluctuation 
theorem of dynamical systems was proposed to establish 
criteria of assessment of cancer system hallmarks, through 
a correlation between systems entropy (or uncertainty) and 
resilience (robustness). Cancer cells are shown to be charac-
terized by increased network entropy, while differential gene 
expressions are anticorrelated with local network entropy 
changes. This is important for possible identifications of 
novel drug targets and for the role of gene essentiality in 
knock-down experiments (West et al., 2012).

cANcer PreveNtiON

Together with the concept of clonal evolution, and following the 
developments of the cancer stem cell hypothesis, the differen-
tiation status of cancer cells is a determinant of their functional 
properties (Shackleton et  al., 2009). Consequently, phenotypic 
heterogeneity in cancer reflects also non-genetic diversity occur-
ring in normal cells (Marusyk et al., 2012). For instance, a driver 
of cancer development takes into consideration phenotypic states 
represented by the so-called epigenetic landscapes, together with 
their inter-attractor dynamics.
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Another important consideration is that mutations are 
observed in healthy or pre- or even non-malignant cells too, 
thus, beyond the acquired mutations that may be selected and 
result clinically relevant, particularly at a later stage of cancer 
development. While establishing the clonal structure of tumors 
is very important for predicting its evolution (Rosenthal et al., 
2017), the detection of very early cancer stages will depend on 
the examination of healthy samples and will allow the defini-
tion of molecular hallmarks of premalignant conditions (Ryan 
and Faupel-Badger, 2016), and even the foreseen achievement 
of a precancer genome atlas (Campbell et  al., 2016; Kensler 
et al., 2016). Examples are already available, for instance with 
a series of recent studies centered on melanoma: one in which 
mutations were examined from precursor to invasive lesions 
(Shain et al., 2015), another in which single-cell RNA-Seq was 
employed to profile a multitude of cell types (Tirosh et  al., 
2016), and then one focusing on subtypes from multiple sites 
(Hayward et al., 2017).

To conclude, a couple of considerations are dedicated to 
non-primary cancer prevention, i.e., to other actions requiring 
preventive and timely interventions. An example is provided by 

dormancy, in which the metastatic process is inactive for years, 
and offers a therapeutic window against metastasis especially by 
targeting pathways that may help preserving the dormant state 
in cells. A more intermediate strategy to tackle the metastasis 
cascade process at stages of still limited and treatable lesions 
would require the colonization process to be locally interrupted 
by targeting at specific sites pre-metastatic niches (Steeg, 2016; 
Peinado et al., 2017). Figure 1 sketches some relationships that 
call for future in-depth (re-)examination, characterization, and 
further interoperable and actionable development in view of 
adapting and refining the cancer prevention map.
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