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Parkinson’s disease (PD) patient care is limited by inadequate, sporadic symptom

monitoring, infrequent access to care, and sparse encounters with healthcare

professionals leading to poor medical decision making and sub-optimal patient

health-related outcomes. Recent advances in digital health approaches have enabled

objective and remote monitoring of impaired motor function with the promise of

profoundly changing the diagnostic, monitoring, and therapeutic landscape in PD. We

recently demonstrated that by using a variety of upper limb functional tests iMotor, an

artificial intelligence powered, cloud-based digital platform differentiated PD subjects

from healthy volunteers (HV). The objective of this paper is to provide preliminary evidence

that artificial intelligence systems may allow one to discriminate PD patients from (HV)

further and determine different features of the disease within a cohort of PD subjects.

The recently introduced Neural Network Construction (NNC) technique was used here

to classify data collected by a mobile application (iMotor, Apptomics Inc., Wellesley,

MA) into two categories: PD for patients and HV. The method was tested on a series

of data previously collected, and the results were compared against more traditional

techniques for neural network training. The NNC algorithm discriminated individual PD

patients from HVs with 93.11% accuracy and ON vs. OFF state with 76.5% accuracy.

Future applications of artificial intelligence-powered digital platforms can enhance clinical

care and research by generating rich, reliable, and sensitive datasets that can be

used for medical decision-making during and between office visits. Additional artificial

intelligence-based studies in larger cohorts of patients are warranted.

Keywords: Parkinson disease, digital health, digital biomarker, artificial intelligence, objective monitoring, motor

function, neural networks, grammatical evolution
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INTRODUCTION

Parkinson’s disease (PD) is a prevalent neurodegenerative disease
affecting about 1% of the world population over the age of 55
(Nussbaum and Ellis, 2003). About five million people worldwide
are estimated to have PD. PD Prevalence is expected to double
by the year 2030 (Dorsey et al., 2007). PD is diagnosed in the
presence of two or more cardinal motor symptoms such as rest
tremor, bradykinesia (slow movement), or rigidity (stiffness).
Bradykinesia is universally present in PD and responds relatively
well to existing treatments (Hughes et al., 1992).

For the last 50 years symptomatic treatment of PD has
focused on replacing the declining levels of the neurotransmitter
dopamine with the orally administered dopamine precursor,
levodopa (L-Dopa). However, chronic administration of L-
Dopa leads to side effects, such as fluctuations in motor
performance and dyskinesias (Sweet and McDowell, 1975) as
the disease progresses, after more than 3–5 years of therapy.
These phenomena can be as troublesome as the disease itself
(Olanow et al., 2006).

Parkinson’s disease (PD) patient care is limited by inadequate,
sporadic symptom monitoring, infrequent access to care, and
sparse encounters with healthcare professionals leading to poor
medical decision making and sub-optimal patient health-related
outcomes. More frequent patient monitoring and treatment
adjustments can lead to better symptomatic management and
reduction in treatment-related complications such as motor
fluctuations (Papapetropoulos et al., 2015).

Recent advances in digital health approaches have enabled
objective and remote monitoring of impaired motor function
with the promise of profoundly changing the diagnostic,
monitoring, and therapeutic landscape in PD (Pasluosta et al.,
2015). Sensing technologies, mobile networks, cloud computing,
the Internet of Things and big data analytics innovations that
have the potential to transform healthcare and our approach
to patients with chronic, complex, and disorders like PD
(Espay et al., 2016).

Tapping tests conducted through the interface of fingers
and/or other areas of the hand and a touch sensing screen
has been shown to measure motor function in PD (Djuric-
Jovicic et al., 2016; Giancardo et al., 2016; Mitsi et al., 2017).
PD patients frequently develop fluctuations in motor function as
a side effect of commonly used anti-parkinsonian medications.
These fluctuations, termed “ON” and “OFF” states, are difficult to
manage in clinical care and often serve as endpoints in PD clinical
trials (Papapetropoulos, 2012).

iMotor is a clinically validated digital platform (iMotor;
Apptomics Inc., Wellesley Hills, MA, USA) that utilizes the
smart-tablet’s screen sensing capabilities during upper limb
function tests (similar to ones conducted in the neurologists’
office) to objectively collect data that allow detection and
quantification of neuromotor function. It has been tested in
various movement disorders including PD and more recently
Essential tremor (Mitsi et al., 2017). A series of screenshots from
the application are presented in Figure 1.

We demonstrated that by using a variety of upper limb
functional tests iMotor differentiated PD subjects from healthy

volunteers (HV) (Mitsi et al., 2017; Wissel et al., 2017). The
objective of this paper is to provide preliminary evidence that
artificial intelligence systems may allow one to discriminate PD
patients from HV further and determine different features of the
disease within a cohort of PD subjects.

MATERIALS AND METHODS

Data from a study (10) with the iMotor application were collected
from 36 participants (19 with PD and 17 healthy controls)
for the following tasks: (1) Two-target finger tapping test, (2)
Pronation–supination test, and (3) Reaction time test: Details
on the execution of these tests are provided in Figure 1 and
described in details in previous papers on iMotor (Mitsi et al.,
2017; Wissel et al., 2017).

In this paper, experiments were conducted on the data
collected by iMotor to automatically classify records into two
categories: HV and PD. The method used for the classification is
the recently introduced classificationmodel of constructed neural
networks. Neural networks are well-established parametric tools
(Cybenko, 1989; Bishop, 1995), used with success in many areas
such as recognition of patterns (Artyomov and Yadid-Pecht,
2005), signal processing (Uncini, 2003), astronomy (Valdas and
Bonham-Carter, 2006), and mathematics (Lagaris et al., 1998).

A neural network can be expressed as a function N
(−→x ,−→w

)

where −→x is the input vector and −→w is the vector of the
parameters to be estimated (weight vector). Modification of the
vector of parameters (neural network training) is conducted by
minimizing the equation below (also named error function):

E
(

N
(−→x ,−→w

))

=

∑M

i=1

(

N
(−→xi ,

−→w
)

− yi
)2

(1)

In the above the set
(−→xi , yi

)

, i = 1.M is the data used to train
the neural network. The symbol yi stands for the output of
the function estimated at the point −→xi . Some training methods
used are Back Propagation (Rumelhart et al., 1986), RPROP
(Riedmiller and Braun, 1993), Genetic Algorithms (Yao, 1999),
and Particle Swarm Optimization (Zhang et al., 2000). The
constructed neural networks with grammatical evolution have
been described by Tsoulos et al. (2008) and are based on the
Grammatical Evolution technique (O’Neill and Ryan, 2001) to
evolve the neural network topology along with the network
parameters. The method of constructing neural networks has
been also used with success in other problems such as solving
differential equations (Tsoulos et al., 2009) and in problem
of locating Amide I bonds in chemistry (Papamokos et al.,
2009). The results from this method are compared against the
results from neural network trained with a local optimization
procedure and against the results from neural network trained
with a hybrid genetic algorithm. The Grammatical Evolution
procedure, as well as the proposed method, are outlined in the
following subsections.

Grammatical Evolution
Every chromosome in the genetic population is a vector
of integers, which is mapped through a mapping procedure
described in O’Neill and Ryan (2001) governed by the BNF

Frontiers in ICT | www.frontiersin.org 2 May 2019 | Volume 6 | Article 10

https://www.frontiersin.org/journals/ICT
https://www.frontiersin.org
https://www.frontiersin.org/journals/ICT#articles


Tsoulos et al. AI for Motor Status Determination

FIGURE 1 | Screenshots of iMotor-based tapping tests. (A) Two-target test: the participants alternatingly tapped with the index finger, as fast and as accurately as

possible, the centers of two concentric circles on the tablet screen. (B) Pronation-supination test: the participants alternatingly tapped the palmar and dorsal surfaces

of their hand as fast as possible on the tablet screen. (C) Reaction time: the participants tap on the target with their index finger following a visual queue as fast as

possible. (D) Task completion screen: sample patient score report, available immediately to the patient.

grammar of Figure 2 into an artificial neural network with one
hidden level. The output of the constructed neural network
is a summation of different sigmoidal units, and it can be
formulated as:

N
(

x, p
)

=

∑H

i=1
p(d+2)i−(d+1)σ

(

∑d

j=1

(

p(d+2)i−(d+1)+jxj

)

+p(d+2)i

)

(2)

where x ǫ Rd, H =
nodes
d+2

is the number of hidden nodes and the
vector p denotes the parameters (weights) of the neural network.
The function σ (x) is the sigmoid function:

σ (x) =
1

1+ exp (−x)
(3)

The constant nodes represent the total number of input
parameters. The sigmoid function is used as activation function
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FIGURE 2 | Example of a one-point crossover.

because it is continuous and differentiable at every point.
Also, the derivatives of this function can easily be estimated
and have been used with success in many applications of
neural networks.

Steps of the Algorithm
The main steps of the algorithm have as follows:

1. Initialize the following parameters:

1. The number of chromosomes S.
2. The maximum generations allowed K.
3. The crossover rate pc ǫ [0, 1].
4. The mutation rate pm ǫ [0, 1].
5. A positive number ε <1, used for the termination rule.
6. A positive integer number G which determines the

frequency of the application of the local search procedure.
7. A positive integer parameter M which provides the

number of chromosomes that participate in the local
search procedure.

8. Set iters=0, as the current number of generation.

2. Initialize the S chromosomes. Each chromosome is mapped
to a neural network as noted in the subsection of
Grammatical Evolution.

3. Calculate the fitness for every chromosome, using Equation
1 and

4. Applied the genetic operations of selection and mutation to
the population.

1. Selection procedure: The chromosomes are sorted in
descending order according to their fitness value. The
first

(

1− ps
)

∗S chromosomes are transferred to the next
generation. The rest of the chromosomes are substituted
by offsprings created through crossover procedure: For
every offspring, two chromosomes (parents) are selected
from the old population using tournament selection. The
procedure of tournament selection is as follows: A set
of N > 1 randomly selected chromosomes is produced,
the chromosome with the best fitness value in this set
is selected, and the others are discarded. Each offspring
is created by the parents using the one-point crossover.
During one point crossover, the parent chromosomes are
cut at a randomly selected point, and their right-hand side
sub-chromosomes are exchanged as shown in Figure 2.

2. Mutation procedure: For every element of each
chromosome a random number r in a range [0,1] is
produced. If r ≤ pm then the corresponding element is
randomly altered. For the case of grammatical evolution
simply a new integer in the range [0,255] is produced.

3. Replace the ps∗S worst chromosomes in the population
with the offsprings created by the genetic operators.

5. Set iters=iters+1.
6. If iters mod G=0 then

1. For i= 1..M do

1. Select a chromosome Ri randomly from the
genetic population.

2. Construct with the Grammatical Evolution procedure
the corresponding neural network (Ri) .

3. Train the neural network N (Ri) with a local
optimization procedure. This process enhances
the weights created by the Grammatical Evolution
procedure. The local search method used is a BFGS
variant of Powell.

2. End for

7. Endif
8. If iters ≥ K or the best chromosomes has fitness value below

the predefined threshold & epsi; terminate, else go to step 3.

Data Description
The method was evaluated on three different datasets collected
using the iMotor digital platform usingmethodologies previously
described (Mitsi et al., 2017; Wissel et al., 2017). In summary:

1. The first dataset named TWO_TARGET is produced from the
two-target finger tapping test: (tapping of the index finger on
the tablet screen). The dataset contains the following variables:
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TABLE 1 | Experimental parameters.

Parameter Value

S 200

K 50

G 200

M 2

pc 0.9

pm 0.05

1. Total number of taps during a test period of 30 s.
2. Speed the index finger travels between two targets during

the test period.
3. Average interval between two consecutive finger

screen taps.
4. Average accuracy as measured by the average number of

pixels from the center of the target center.

2. The second dataset is called PALM (tapping of the hand
surface on the tablet screen). This dataset is produced
from the pronation-supination test and contains the
following variables:

1. Total number of taps during a test period of 30 s.
2. Average interval between two consecutive finger

screen taps.
3. Average accuracy as measured by the average number of

pixels from the center of the target center.

3. The third test is called REACTION (tapping of index finger
on a target on following a color shift on the tablet screen).
This dataset is produced by the reaction time test and has the
following features:

1. Average interval between two consecutive finger
screen taps.

2. Average accuracy as measured by the average number of
pixels from the center of the target center.

A cluster of Intel machines running Ubuntu Linux 14.04 were
utilized to conduct the analysis. Experiments were run 30
times with random seeds for the embedded generator of the
C programming language and averages were used each time.
Values for parameters of the Neural Network Construction
method are shown in Table 1. The 10-folding validation
was used.

The following classification methods were tested:

1. BAYES. The Naive Bayes classifier methodology
(Webb et al., 2005).

2. SIMPLE. A neural network with 10 hidden nodes was used.
The network was trained using the optimization method of
Powell.

3. GENETIC. A neural network with 10 hidden nodes was used.
The network was trained using a hybrid genetic algorithm
using the same parameters shown in Table 1. After the
termination of the genetic algorithm, the BFGS variant of
Powell was used to minimize further the training error.

TABLE 2 | Accuracy of the NNC algorithm in healthy volunteers vs. PD

patients (% correct).

Dataset Bayes (%) Simple (%) Genetic (%) NNC (%)

2-target tapping 73.33 64.11 67.10 69.98

Pronation/Supination 70.00 57.67 63.89 69.00

Reaction time 76.67 71.33 74.67 83.90

ALL variable combined 80.00 74.33 79.89 93.11

Dataset (sensitivity/specificity) for NNC, 2 Target tapping (93/53%), Pronation/supination

(92.50%/50%), Reaction time (89.50/78.50%), all variable (97.50%/85%).

TABLE 3 | Accuracy of the NNC algorithm in detecting motor fluctuations in PD

patients (% correct).

Dataset Simple (%) Genetic (%) NNC (%)

MOST vs. LESS affected side during ON 59.50 61.50 75.83

MOST vs. LESS affected side during OFF 61.67 65.00 71.50

ON vs. OFF MOST affected side 68.16 68.50 76.50

ON vs. OFF less affected side 74.33 75.00 75.83

4. NNC. A hybrid method utilizing constructed neural networks
by grammatical evolution and a local optimization procedure
is used to train a neural network. The local optimization
procedure was a combination of the BFGS variant of Powell
and Differential Evolution.

RESULTS

PD subjects included in our analysis had an average age of 67.9
(SD 8.8) years, a mean disease duration of 6.5 (SD 4.6) years, and
a mean UPDRS score was 24.6 (SD 6.7). All PD subjects were
Hoehn & Yahr stage 2 indicating moderate disease severity.

The NNC algorithm discriminated individual PD patients
from HVs with 93.11% accuracy (Table 2) and ON vs. OFF
state with 76.5% accuracy (Table 3). Results from alternative
classification methodologies are presented in Tables 2, 3. The
discriminatory precision of Naive Bayes appears lower compared
to the NNC algorithm when all variables were combined.

DISCUSSION

This study investigated the ability of artificial intelligence
systems to discriminate PD patients from HV and determine
the patient motor status (ON vs. OFF) in a clinic-based
cohort. To our knowledge, this is the first attempt to compare
different artificial intelligence classification methodologies
in finger tapping data. Despite the small sample size, the
discriminatory precision of the NNC machine learning
algorithm for both diagnostic purposes and motor status
detection is encouraging. A recent study with similar
objectives, attempted automatic discrimination of a movement
pattern related to the risk of fall in PD termed as “freezing
of gait (FoG) using machine learning techniques in a
wearable accelerometry dataset derived from 36 patients
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(Aich et al., 2018). The classification accuracy was ∼88%
generating evidence for the real-life application of wearable
accelerometer-based system to assess and monitor the FoG.
Additional studies report similar results in FoG classification
(Palmerini et al., 2017).

Early detection of Parkinson’s disease and systematic early
and accurate detection of motor fluctuations (and other motor
symptoms) using artificial intelligence may have significant
therapeutic implications leading to improvements research
methodologies and most importantly in PD patient care.

Enrichment of machine learning algorithms with
additional sensor data (i.e., accelerometry, gyrometry,
spirography) may enhance the precision of the algorithm.
More recent versions of iMotor have incorporated
some of these capabilities, and additional studies are
currently ongoing.

Future applications of artificial intelligence-powered
digital platforms can supplement standard clinical care and
research methodologies by providing rich, reliable, and
sensitive datasets during and between office visits. Additional
artificial intelligence-based studies in larger cohorts of patients
are warranted.
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