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The eyelid contour, pupil contour, and blink event are important features of eye activity,

and their estimation is a crucial research area for emerging wearable camera-based

eyewear in a wide range of applications e.g., mental state estimation. Current approaches

often estimate a single eye activity, such as blink or pupil center, from far-field and

non-infrared (IR) eye images, and often depend on the knowledge of other eye

components. This paper presents a unified approach to simultaneously estimate the

landmarks for the eyelids, the iris and the pupil, and detect blink from near-field

IR eye images based on a statistically learned deformable shape model and local

appearance. Unlike the facial landmark estimation problem, by comparison, different

shape models are applied to all eye states—closed eye, open eye with iris visible, and

open eye with iris and pupil visible—to deal with the self-occluding interactions among

the eye components. The most likely eye state is determined based on the learned

local appearance. Evaluation on three different realistic datasets demonstrates that the

proposed three-state deformable shapemodel achieves state-of-the-art performance for

the open eye with iris and pupil state, where the normalized error was lower than 0.04.

Blink detection can be as high as 90% in recall performance, without direct use of pupil

detection. Cross-corpus evaluation results show that the proposed method improves on

the state-of-the-art eyelid detection algorithm. This unified approach greatly facilitates

eye activity analysis for research and practice when different types of eye activity are

required rather than employ different techniques for each type. Our work is the first study

proposing a unified approach for eye activity estimation from near-field IR eye images

and achieved the state-of-the-art eyelid estimation and blink detection performance.

Keywords: landmark detection, deformable shape model, eyelid estimation, pupil estimation, blink detection

INTRODUCTION

Eye activity has been of great interest since observations of human attention and intention began
(Duchowski, 2007). The types and applications of eye activity that have been investigated up to
now include gaze direction as a pointing device for paralyzed people (Duchowski, 2007); pupil
size, blink, and eye movement (fixation and saccade) for cognitive load measurement (Chen et al.,
2011), emotion recognition (Lu et al., 2015), visual behavior change (Chen et al., 2013), human
activity recognition (Bulling et al., 2011), and mental illness diagnosis (Vidal et al., 2012); eyelid
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closure for emotion recognition (Orozco et al., 2009), and fatigue
detection (Yang et al., 2012; Daniluk et al., 2014). As opposed
to these dynamic changes in eye components (eyelid opening,
pupil size and location, blink length and depth) which form
eye activities, static eye images are also of interest especially
in biometrics. For example, eye shape is part of the face for
face verification (Vezzetti et al., 2016, 2017), and iris texture
is extracted from eye images for identity verification (Bowyer
and Burge, 2016). Nevertheless, the basis for capturing these
eye activities or biometrical information from an eye image are
the eyelid contour and pupil contour. With specific algorithms,
eyelid closure, pupil size, blink event, eye movement, and gaze
direction can also be measured or developed. Therefore, robust
and accurate estimation of eyelid and pupil contours is essential
for these applications.

Historically, eyelid contour estimation is often conducted on
eye images under normal light conditions and in the far field.
In this scenario, only the iris boundary is visible instead of the
pupil; hence the pupil contour estimation is unavailable, and
the eyelid contour is only able to estimate blink but no other
types of eye activity. To obtain a reliable pupil contour, infrared
(IR) illumination is required. With IR cameras, the bright or
dark pupil effect can help the pupil to be distinguished from
the background (Duchowski, 2007; Hansen and Ji, 2010) while
for precise pupil size change, wearable IR cameras are desired
which give close-up IR eye images, however, this makes all other
structures, such as eyelids and iris, in IR eye images inferior
for eye activity detection. Recent applications to mental state
and behavioral studies demand as many types of eye activity as
possible (Chen et al., 2011). Therefore, a wearable eye-directed
IR camera is ideal to capture all types of eye activity in real life,
especially for pupil size measurement.

Although methods for pupil size estimation in near-field IR
eye images have often been studied, few investigations (Fuhl
et al., 2017) have been undertaken into eyelid contour estimation.
Apart from being able to estimate eye closure and blink, robust
eyelid contour estimation can certainly improve pupil contour
estimation as it reduces background noise by limiting the search
of the pupil inside eyelid contour.

However, the challenges are: (i) unlike eye images under
normal light conditions, IR illuminance eliminates color
information, and renders some robust features such as eye
corners and iris edges weak and indistinctive, while pupil and
eyelash features are stronger but can change dramatically with
eye movement as opposed to a constant iris size, making
distinctive eye features more complex in general; (ii) near-field
high resolution eye images introduce more eyelash details than
far-field, which are unwanted noise for eyelid contour estimation.
In addition, fine-grained eyelid trajectories can result in blink
detection not being as simple as detecting only two states of
closed and open eye. Furthermore, motion blur due to eyelid
movement, which seldom occurs in far-field eye images, can
impair some distinctive eye features, further compounding the
problem. Some examples can be found in Figure 1.

Facial landmark detection from the images in the wild has
now attained strong performance (Xiong and De la Torre, 2013;
Feng et al., 2015), and by analogy these computing techniques can

be applied to eye images. However, the eye has its own distinct
characteristics which are different from the face. The greatest
distinction is that eye appearance can be completely deformed
when the eye is closed, because the major components—the pupil
and iris—disappear, as well as the eye corners, fundamentally
changing the geometrical structure of the eye image. The problem
due to this fundamental structure change is arguably more severe
than occlusion of one facial component during facial landmark
detection because the modeled components sometimes do not
exist when applying model-based approaches.

In this paper, we aim to estimate eyelid and pupil landmarks,
and blink events from near-field IR eye images simultaneously
which is important to describe eye activity in a full spectrum.
Specifically, we want to answer two questions: (i) whether eyelid
and pupil landmarks can be reliably and robustly detected using
deformable shape models for near-field IR eye images, where
variability due to blink, detailed eyelashes and low contrast
around eyelid during tasks is magnified in a close-up view,
which has not been investigated; and (ii) how to reliably separate
blinks from eye activities using a deformable shape model for
eye landmarks that do not employ any knowledge of other
eye components, as opposed to existing algorithms for blink
detection or pupil size estimation which often use thresholds
to indicate eyelids being close enough or pupil size being small
enough for blink and to discard pupil size when it is small enough
during pupil size estimation. These existing algorithms requires
accurate thresholds, but they are hardly generalized for everyone
and every context. The proposed model-based approach can
overcome this limitation. Meanwhile it is novel to be integrated
into deformable shape model as facial landmark detection does
not have the problem of significant geometrical structure change.

RELATED WORK

The majority of studies on eyelid and blink detection are for
frontal face images taken under normal light conditions and
in the far field. They usually begin with face recognition and
then estimate eye regions, cropped according to topography rules
(Moriyama et al., 2006; Bacivarov et al., 2008; Yang et al., 2012;
Mohanakrishnan et al., 2013; Daniluk et al., 2014; Yahyavi et al.,
2016) or utilizing facial landmarks (Fridman et al., 2018). The
eye images thus are in low resolution with clear views of only the
iris and the eyelid contour. Few studies (Alabort-i-Medina et al.,
2014) investigated high resolution or close-up eye images where
the eyelashes were clearly visible.

Eyelid Detection
The general principal of eyelid detection has been to utilize the
difference of intensity or edges between the skin, iris, and sclera.
Methods to date include finding the points which have maximum
response to an upper eyelid and lower eyelid filter (Tan and
Zhang, 2006; Daniluk et al., 2014); heuristically examining the
polynomials fitted to eye corner points with each, pairs and triples
of edge segment above the iris center for topography criteria
(Sirohey et al., 2002); and searching among parabolas which
pass through the eye corner points to maximize an objective
function involving edges, intensity and area (Kuo and Hannah,
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FIGURE 1 | Why near-field IR eye activity estimation is difficult: unlike far-field non-IR eye images in high resolution [first row of (A)] (Alabort-i-Medina et al., 2014) and

low resolution [second and third rows of (A)] (Mohanakrishnan et al., 2013), where the eyelash is barely visible and the intensity between skin, the sclera and iris is

often distinctive, IR near-field eye images, (B) enhance the contrast between the pupil and its surroundings but weaken the contrast between skin, the sclera and iris.

The close-up view highlights greater eye appearance difference due to ethnicity, blinking, motion blur, eyelash density, illumination changes, and camera positions than

the far-field view. The first two rows of (B) are from the Task Analysis 1 dataset (Epps and Chen, 2018) and Task Analysis 2 dataset (Chen et al., 2013), respectively,

which are natural eye movements recorded during tasks. The third row is from the publicly available (Fuhl et al., 2017) dataset.

2005). Similarly, Fuhl et al. (2017) detected the upper and
lower eyelid from close-up IR eye images based on the intensity
change around the edges of eyelid. The lower eyelid was firstly
detected, where the initial point for searching along a line was
among the locations corresponding to the peaks of the intensity
histogram. The locations near the line which satisfied the criteria
of maximum area difference, gradient threshold, and concave
polynomials were preserved. The upper eyelid search area was
limited according to topography rules. Within this area, the
polynomials fitted to three points were evaluated on the intensity
change values and the maximum change was selected.

These techniques require reliable and distinctive eye corner
or/and iris features and may be unreliable for IR eye images
where the intensity of skin, iris, and sclera are indistinct.
Moreover, parameters or design choices in these methods were
empirical and did not consider different degrees of occlusion
to eye components (iris, pupil, and lower eyelid), limiting its
generalizability to eyelid detection across a diverse range of eye
appearance in unconstrained scenarios.

For more sophisticated model-based approaches, pre-defined
models have been initialized to novel eye images before being
aligned to the optimal locations. Moriyama et al. (2006) hand
crafted a 2D generative eye shape model based on the anatomical
eye structure, which included the upper and lower eyelid,
sclera, eye corners, and iris. The upper and lower eyelid were
further composed of three or four sub-parts. Eleven parameters
were deployed to control the eye structure, the motions of
eyelid and 2D iris movement. Fitting the parameterized eye
model to a novel image was posed as a problem of tracking
the motion parameters with Lucas-Kanade gradient descent.
Variations due to individual eye appearances and illuminance
reflections were mitigated by the manual initialization of the
size and texture of each eye part. Orozco et al. (2009) also used
a parametrized shape model but derived from a hand-crafted
standard design from the computer animation industry for the
appearance-based tracker. This also required careful manual
initialization, as the texture was learned online from near-frontal
images. Yang et al. (2012) employed a four-landmark deformable

template and fitted it to a likelihood map of the eye region
by maximizing the total likelihood. The likelihood map was
constructed from the Mahalanobis distance to the skin color
distribution, which was obtained by clustering the color and
texture descriptors.

All these methods were demonstrated for low-resolution eye
images and employed a single shape model for both eye open and
eye closed images, so that even when the eye is closed, the iris
was still a valid and visible part of the shape model (Orozco et al.,
2009), which makes little sense.

Tan and Zhang (2006) firstly determined the eye state of
open or close by examining the existence of the iris using
intensity and edge information. Then the eye feature was
modeled as either a straight line or a deformable template before
manual initialization and application of a standard Lucas Kanade
framework for tracking.

Recently, Alabort-i-Medina et al. (2014) compared
three standard deformable model fitting techniques, Active
Appearance Models (AAM), Constrained Local Models (CLM),
and Supervised Descent Method (SDM) to track the deformation
and motion of eyelid, the iris and pupil. In order to represent the
open and fully closed eye correctly, two sets of shape models were
used for the two eye states. In contrast to manual initialization
of the shape or texture as in previous work, the initial shape
model was statistically learned from training data, making fewer
assumptions about the shape and texture of an individual’s eye.
Learning and evaluation were conducted for open and closed
eye images individually. The results demonstrated that for
open eye images, AAM performed best when the Cumulative
Error Distribution (CED) normalized to eye size was <0.05,
otherwise SDM was the best choice. For closed eye images, SDM
performed best.

This work demonstrated the potential for applying facial
landmark detection approaches, especially the SDM technique, to
far-field high resolution eye images for open eye motion tracking,
however, their performance for fully closed eye images was poor.
The feasibility for near-field IR eye images is unknown, neither
of how to determine the open and closed eye states and how the
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trained shape model affects individual eye alignment whose state
is unknown.

Blink Detection
There are a variety of blink detection techniques in the literature,
which can be categorized into four main groups. The first
depends on iris or pupil existence (Tan and Zhang, 2006; Chen
and Epps, 2014). For example, for near-field IR eye images, apart
from declaring a blink when there was no pupil blob, Chen and
Epps (2014) employed two ellipse fittings to the detected pupil
blob. One was fitted to the whole pupil contour, and the other was
fitted to the bottom half contour, so that blink was determined
by the degree of pupil occlusion by the eyelid. However, these
methods require prior knowledge of pupil or iris blob and are not
suitable for cases when the bottom of the blob is occluded.

The second is based on the eyelid distance with a pre-defined
threshold, e.g., the ratio between the eye width and its aperture
(Bacivarov et al., 2008). However, the decision for the threshold
may be especially difficult for the fine-grained eyelid trajectory.

The third involves eye motion. Mohanakrishnan et al. (2013)
proposed motion vector difference in the face region and eye
region to detect blink, since the motion vector in the eye
region can be “random” during a blink, while it is typically
similar to the face region when the eyelid is still relative to the
face. Instead of determining a similarity threshold, Appel et al.
(2016) extracted features from the intensity difference of two
adjacent frames specifically for near-field IR images. However,
these methods are probably not able to detect long blinks since
during these, the eyelid also does not move. In the latest work,
Fogelton and Benesova (2018) used motion vectors in the eye
region and learned a sequence model of blink using Recurrent
Neural Network to detect blink completeness and achieved
similar or slightly better performance than other methods in
four datasets.

The last detects blink directly from the eye appearance in
images. Yahyavi et al. (2016) employed PCA and artificial neural
networks for open and closed eye images. Mohammadi et al.
(2015) detected the open and closed eye states by finding an
appropriate threshold for the intensity change. Bacivarov et al.
(2008) used the AAM parameters’ difference in open and closed
eye images to identify blink. Sun et al. (2013b) used SVM to
classify each frame as the onset, apex and offset of blink and
construct a temporal model of HMM-SVM to determine blink
event. They found that this temporal model and the intensity
feature were significantly better than using multi-class SVM and
HOG, LBP, Gabor and optic flow features to detect blink.

The reported blink detection performance among previous
studies is usually high, above 90% in accuracy. On one hand,
most of these results were for low resolution non-IR eye images,
and it is questionable whether close-up IR images containing
a variety of detailed eye appearance changes can be classified
simply into open and closed eye states. On the other hand, most
datasets for evaluation were collected during leisure scenarios
where voluntary blink often occurred, evidenced by completely
closed eyes. However, during tasks, most blinks are partial and
most full blinks have the lids approaching each other but not
necessarily touching (Brosch et al., 2017). These involuntary

blinks may have different duration, amplitude and speed ratio of
eye closing and opening to voluntary blinks (Abe et al., 2014).

Pupil Contour Estimation
Since the pupil is only distinct under IR illumination and
its size can be accurately measured only when the resolution
of pupil is good enough, pupil detection is always conducted
on IR eye images. Estimated pupil contour can be fitted by
an ellipse model to obtain the pupil center, pupil size, and
other features of interest. One straightforward approach is to
segment the pupil from the background through binarization,
however, it is challenging to find an adaptive threshold for a
variety of eye images with large variations. Chen and Epps
(2014) proposed a self-tuning threshold method which requires
minimum parameter to tune to handle these variations for
near-filed IR images. Other algorithms operate on remote IR
images, with the aim of pupil center detection. These algorithms
(Fuhl et al., 2016) involve a combination of multi-thresholding,
edge filtering, morphological operation, intensity gradient, and
iterative search of appropriate points satisfying a series of criteria.
Fuhl et al. (2016) compared six such start-of-the-art algorithms
for pupil center detection with head-mounted IR eye images.
They found that their dual algorithm outperformed the others. In
this algorithm, a first approach using edge image, morphological
operations, and heuristic selection of the best edges is trialed, and
if this fails, advanced blob detection is used.

Nevertheless, determining the best parameter settings is not
always easy for an unknown dataset, and the sensitivity to
different parameter settings, which can be examined through
cross-corpus evaluation, is unknown. Moreover, sophisticated
model-based approaches have not been seen in pupil detection.

Proposed Three-State Deformable Eye
Model
As the pupil, iris and eyelid always interact with each other in
normal eye behaviors, some eye activities cannot be detected
alone. For example, if blink is detected based on pupil size, robust
pupil detection is required. However, pupil size estimation is
often unreliable due to blink or partial eyelid occlusion (e.g.,
eyelash down) and blink is not the only factor changing pupil size,
therefore, reliable pupil size estimation requires prior knowledge
of blink occurrence. In this study, we propose a unified approach
by employing deformable shape models to detect eyelid contour,
pupil contour, and blink simultaneously.

However, different to the problem of partial occlusion in facial
landmark detection, where the majority of face components are
still in position and recognizable, the majority of eye components
can completely disappear when the eye is closing or closed
or suffering from motion blur, as shown in Figure 1B. For
shape models, each component’s shape is required to be pre-
defined; but these pre-defined shapes cannot be guaranteed
to appear in each eye image, which may affect the parameter
optimization process. This is resolved by distinguishing different
eye states. The proposed framework is shown in Figure 2,
where under each eye state (e) and given initial landmark
locations (s), the increment of each landmark (8) is trained
given the annotated landmarks. Meanwhile, a model of local
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FIGURE 2 | An overview of the proposed unified approach for eyelid contour, pupil contour, and blink estimation, where s are the landmark locations, e are the eye

states, 8 is the trained shape model, F is the trained local appearance model, d is the similarity between the local appearance at the final landmarks and the trained

appearance model.

FIGURE 3 | (A) L = 28 landmarks (denoted by blue dots) for the state of open eye with the pupil and the iris (e = 3), (B) L = 20 landmarks for open eye with the iris

(e = 2), and (C) L = 12 landmarks for closed eye (e = 1). Centering each landmark is a small patch (denoted by a red square) for local appearance. These landmarks

comprise the eye shape model for each eye state. All three eye images shown are from the same subject, yet dramatic differences between them can be observed.

appearance represented by the feature of the patch at each
annotated landmark (F) was also trained. During the testing
phase, the initial landmarks on a test eye image move
incrementally according to the trained shape models under
each eye state, and the local appearance at final landmarks
(s′) is collected. Only the eye state where the similarity (d)
between the local appearance and trained appearance model is
maximum is selected and the landmarks in the selected eye state
is used.

Three-State Deformable Eye Model
We propose three distinct eye states for eyelid landmark
detection before recognizing blink. They are closed eye (e1),
open eye with iris only (e2), and open eye with iris and pupil
(e3). Each eye state applies a pre-defined different number of

landmarks (s
′

i = [x1, y1, . . . , xLi, yLi]
T , where Li is the number of

landmarks, i = 1, 2, 3), as shown in Figure 3. These landmarks
do not contain the furrow and bulge texture of the eye as
in Moriyama et al. (2006) and Alabort-i-Medina et al. (2014)
since they are not distinguishable in IR eye images. The states
of closed eye and open eye with iris are associated with blink
since sight cannot occur without the pupil. The reason for
including an open eye with iris state is that it is common
during tasks to observe that the eyelid moves fast during a
blink but is not always fully closed. In this state, the pupil
is fully occluded, but the lower half of the iris is still visible.
This eye state is not rare in tasks (Brosch et al., 2017) as we
often observe this partially-open-eye blink in our datasets shown
in Figure 1B.

Learning Shape and Appearance
For training data with eye landmarks for each eye state (ei, i = 1,
2, 3), we firstly warp the image I′, I = W(I′), and its landmarks,
s = W(s′), to the average size of all training images, which
includes scale and translation. W(•) is the warp operator. We
then not only train a shape model 8i but also an appearance
model for each eye state, Fi, i= 1, 2, 3.

The recently proposed SDM (Xiong and De la Torre, 2013)
was chosen to train these shape modes. SDM is a supervised
discriminative model for solving general non-linear optimization
problems, which has attracted great attention in facial landmark
detection. This technique defines a local appearance model
around pre-defined landmarks in an image, and builds a non-
linear mapping function8 between the local appearance features
{f (I, s)} and shape update through the process of training a
cascaded regressor.

The discriminative model,8 : f (I, s0) → δs, is trained by
minimizing the cost function with ground truth annotation
(Alabort-i-Medina et al., 2014; Feng et al., 2015),

1

2N

N
∑

n=1

∥

∥s0 (n) + δs (n) − s∗ (n)
∥

∥

2

2
(1)

where s∗(n) is the ground truth shape of the nth training image,
δs(n) = 8(f (I, s0)) is the corresponding shape update, and s0(n)
is the initial shape estimate.
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The non-linear mapping function is obtained by cascading a
sequence ofM linear regressors R:

8 = R1R2 . . .RM (2)

where Rm = {Am, bm}. The regression matrix Am and bias term
bm of each regressorRm can be obtained in closed form by solving
a linear least squares problem with training data.

Meanwhile, the local appearance features around each
annotated landmark are extracted. The trained appearancemodel
for the ith eye state is the average of the local appearance features:

Fi =
1

Ni

Ni
∑

n=1

f (In, sn
∗) (3)

The shape models 8i are used to predict the landmarks while the
appearance models Fi are used to distinguish the eye states.

Inference of Shape and Blink
Landmarks are predicted by updating the shape according to the
mapping function using their local appearance features. Given a

novel eye image I
′

, the eye landmarks are recursively updated for
each eye state from its warped image I, using the same warping
parameters for training data:

δs = Amf (I, sm−1) + bm (4)

sm = sm−1 + δs (5)

Usually, after M = 5 cascade levels, Equation (1) converges
(Xiong and De la Torre, 2013; Feng et al., 2015). Therefore, we
can obtain estimated eye landmarks si and the local appearance
features {fi(I, si,m)} in the final update. The eye state e is
determined by finding the maximum cosine similarity (di) to the
trained local appearance model:i

e = argmax
i

di = argmax
i

fi . F
′

i
∥

∥fi
∥

∥

∥

∥F
′

i

∥

∥

(6)

The final set of eye landmarks is the landmarks of the detected
eye state. The shape is then warped back to the original images
using the reciprocal scale and translation:

s′ = W−1(si (i = e)) (7)

Meanwhile, blink is determined by

b
(

I′
)

=

{

blink otherwise
not blink if e = 3

(8)

Hence, the eyelid contour can be found from the detected eye
landmarks when e = 3 or 2, while the upper eyelid contour can
be found when e = 1. The pupil contour can only be found from
the deformable model in non-blink images when e= 3.

EXPERIMENTS

We employed three datasets to evaluate and cross-corpus
evaluate the performance of eye landmarks and blink detection.
Furthermore, eyelid estimation performance was compared with
that of the only algorithm for eyelid detection in near-field IR eye
images, to the best of our knowledge.

Datasets
a) Task Analysis 1 (TA1) dataset (Epps and Chen, 2018):

The IR near-field eye videos were recorded by a head-
mounted off-the-shelf webcam (30 fps) from 24 subjects
of different ethnicity while they were completing mental
and physical tasks (ethics approval was obtained). For each
subject, there was over 1 h of video recording. We selected
200 images within the first few minutes from each subject
for annotation, so there are 4,800 images in total. These
selected images contain noticeable eye movement change
from the preceding video frame. This dataset suffers from
strong lighting conditions, causing weak contrasts, and an
invisible iris in the images, some of which are shown in
the first row of Figure 1B. For model training and test, we
manually placed 12, 20, and 28 landmarks for each eye state,
fully closed eye (6%), open eye with iris (3%), and open eye
with iris and pupil (91%), respectively, as shown in Figure 3.
Half of the eye images from all subjects were used for training
and the other half were used for test. During cross-corpus-
validation, all eye images were used for test.

b) Task Analysis 2 (TA2) dataset (Chen et al., 2013): Similar to
the TA1 dataset, IR near-field eye movements were recorded
also during tasks but using a different webcam, a different 22
subjects, and in an indoor light condition (ethics approval was
obtained), some images of which are shown in the second row
of Figure 1B. We selected 4,400 eye images (200 from each
subject) and annotated them with the same scheme as in TA1
dataset for training and test. They contain 8.6% closed eye,
4.1% open eye with iris, and 87.3% open eye with iris and
pupil. The ratio of training and test images was the same as
that in TA1 dataset.

c) Fuhl et al. dataset (2017): This public dataset contains 5101 IR
near-field eye images from 11 subjects. They were recorded in
realistic scenarios andmay contain deliberate eye movements.
Some examples are shown in the third row of Figure 1B.
This dataset comes with an annotation of 10 eyelid landmarks
(Fuhl et al., 2017) regardless of eye state. Therefore, we
only can obtain the eyelid alignments. Half of the data
were used for training and the other half were used for
test with our method. The performance of predicted eyelid
landmarks was compared with the recently proposed Fuhl
et al. algorithm (2017), which only evaluated eyelid detection
on this dataset without pupil landmark detection and without
model-based approach.

Cross-corpus validationwas also conducted in twoways. Onewas
to use the Fuhl et al. algorithm (2017) to test all eye images from
TA1 and TA2 without altering any parameter. The other was to
use the models trained on TA1 or TA2 to test all eye images from
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FIGURE 4 | (A–C) CED curves for three eye states on TA1 and TA2 datasets using SDM deformable eye models. (D) CED curves for eyelid landmarks only using Fuhl

et al. algorithm (2017) and SDM deformable eye models on Fuhl et al. dataset (2017) and (E) the cross-corpus evaluation on TA1 and TA2 datasets (for interpretation

of the references to color in this figure legend, the reader is referred to the web version of this article). It is worth noting that Fuhl et al. algorithm failed eyelid detection

for 2,295 out of 4,800 test images in the TA1 dataset and 196 out of 4,400 test images in the TA2 dataset. These errors were not counted in (E).

this dataset. It should be noted that only 10 eyelid landmarks in
the states of open eye with iris and open eye with iris and pupil
can be tested because our trained models in the closed eye state
were eyelash contours instead of eyelid.

Experimental Settings
In all experiments, we set the radius of the local patch around
a landmark to be 16 pixels, which was fixed for all dataset
evaluations. A Histogram of Oriented Gradients (HOG) feature
was used to represent the local appearance feature, f (I, s), since
it was reported effective (Feng et al., 2015). Six regressors were
used in cascade to train the shape model, as it was found that
performance did not change significantly when M > 5, similarly
to Alabort-i-Medina et al. (2014) and Feng et al. (2015). The
initial shape for each test image was scaled by the ratio of mean
shape model from the training data and the test image size.

RESULTS AND DISCUSSION

Results of Landmark Detection Given True
Eye States
Figures 4A–C show the CED curves for three eye states for the
TA1 and TA2 datasets, given the true eye states. The errors were
normalized by the distance between the two eye corners in each
image, and averaged across all landmarks and images. The results

show that the predicted iris landmarks (red curves) are generally
not as accurate as eyelid landmarks (blue curves) for IR near-
field images, probably because of weak contrast between the iris
and sclera. Meanwhile, the open eye with iris and pupil state
(Figure 4C) achieves the best performance among the three eye
states. This state is also the most studied eye state for eyelid
detection in non-IR far-field images. With the proposed three-
state deformable eye model, eye landmark estimation can achieve
similar normalized errors to state-of-the-art facial landmark
alignment (Alabort-i-Medina et al., 2014; Feng et al., 2015).
However, the performance of closed eye (Figure 4A) and open
eye with iris (Figure 4B) were generally worse than the wide-
open eye state with all eye components (Figure 4C). It is very
likely that more variations, such as motion blur and eyelash
changes mostly occurred during eyelid movement. Also, there
is less training data for the former two states. Interestingly,
the TA2 dataset has better image quality, which improves eye
landmark estimation only for the state of open eye with iris and
pupil while deteriorating the performance of the other two states.
The tentative reason could be that clear views of the closing
eye generate unwanted details of eyelash compared with blurred
eye images.

Figures 4D,E are the CED curves for only 10 eyelid landmarks
estimation using the Fuhl et al. algorithm and/or on their public
dataset. As their algorithm outputs polynomial curves of eyelid

Frontiers in ICT | www.frontiersin.org 7 October 2019 | Volume 6 | Article 18

https://www.frontiersin.org/journals/ICT
https://www.frontiersin.org
https://www.frontiersin.org/journals/ICT#articles


Chen and Epps Eyelid and Pupil Landmark Detection and Blink Estimation

FIGURE 5 | ROC curves for blink detection on TA1 and TA2 datasets (for

interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article).

locations, to compare with the annotated ground truth, 10
eyelid landmarks on the predicted curves were selected by firstly
locating the two eye corners corresponding to the annotated
ones, and then searching the nearest point to each of the
remaining annotated landmarks.

From Figure 4D, we can see that the SDM-based deformable
eye model achieved comparable performance to the Fuhl et al.
algorithm on their public dataset. However, the Fuhl et al.
algorithm failed on 6 out of 2,434 test images (output null), and
these errors were not taken account into the normalized errors
because the distance between the ground truth and the predicted
null landmarks is impossible to calculate.

Figure 4E shows the cross-corpus validation performance
of eyelid-only landmark estimation. Although all performances
dropped compared with evaluations on the same datasets, the
three-state deformable eye model was relatively more reliable
than the Fuhl et al. algorithm, which output null for 2,295 out
of 4,800 test images in the TA1 dataset and 196 out of 4,400
test images in the TA2 dataset. The normalized eyelid errors
in Figure 4E do not include these null outputs. However, our
proposed method never has null outputs although the landmarks
could be very far away from the ground truth.

All these results suggest that for IR eye images, the deformable
eye model can perform well for pupil landmark detection. This is
not surprising because the infrared light enhances the distinction
between the pupil and its surroundings. Meanwhile, when the
eye is completely open and the eyelash is up, the variations
are mainly due to pupil size change, pupil/iris position change,
and eyelid shape change between individuals (Figures 1B, 6).
For the closed eye state and open eye with iris state, large
variations are from pupil/iris shape (only in open eye with
iris state), eyelid motion, eyelid shape and eyelash shape.
Even within an individual, the variation can be substantial
due to eyelid movement (Figures 1B, 6). The eyelid landmark
detection in these states becomes difficult, and the degradation

TABLE 1 | Confusion matrix for three eye states classification.

P
P

P
P

P
P

Actual

Predict
Closed eye Open eye

with iris

Open eye

with iris and

pupil

Closed eye 0.77 (TA1)

0.76 (TA2)

0.21 (TA1)

0.18 (TA2)

0.02 (TA1)

0.06 (TA2)

Open eye with iris 0.17 (TA1)

0.29 (TA2)

0.75 (TA1)

0.69 (TA2)

0.07 (TA1)

0.01 (TA1)

Open eye with iris and pupil 0.06 (TA1)

0.04 (TA2)

0.05 (TA1)

0.05 (TA1)

0.89 (TA1)

0.91 (TA2)

of SDM-based deformable eye model performance and the cross-
dataset performance confirms this challenge. Overall, SDM-
based deformable eye model performance is better than the Fuhl
et al. (2017) baseline algorithm because the eyelid landmark
detection performance even in the worst cases (Figure 4A closed
eye and Figure 4B open eye with iris) is comparable to that
using Fuhl et al. algorithm for the best case (fully open eye)
and one worst case (open eye with iris). Another advantage of
the proposed three-state SDM-based deformable eye model is
that we distinguished three eye states, and each fits the most
appropriate eye model given all three models. Possible errors
due to inappropriate models are reduced and the three-state
model will not encounter eyelid detection failure unlike Fuhl et al.
algorithm where the pre-condition of finding lower eyelid must
meet for next processing.

Results of Blink Detection
Table 1 shows the confusion matrix of the three eye states
detection on the TA1 and TA2 datasets. These results
demonstrate that using the proposed approach to distinguish
three eye states can achieve strong performance, above 69% in
recall. Among the results, the open eye with iris and pupil state
obtained higher recall performance than the other two states.
This is most likely due to the higher accuracy of eye landmark
estimation for this state.

Figure 5 shows the Receiver Operating Characteristic (ROC)
curve for blink detection, which was obtained by grouping the
states highlighted in blue in Table 1 into a single blink class.
Specifically, the recall of blink detection was 89% on TA1 dataset
and 91% on TA2 dataset (solid curves). Note that blink detection
using the proposed three-state deformable model approach based
on pupil visibility is novel, rather than directly examining pupil
or iris existence like existing methods (Bacivarov et al., 2008;
Chen and Epps, 2014). The results are comparable to the general
performance of blink methods for non-IR far-field eye images,
which is often over 90% in recall. The dotted ROC curves are
the blink detection performance of cross-evaluation, where the
training and test data were from different datasets. The blink
detection recall performance degraded significantly, while the
precision dropped slightly. This means that a number of open
eyes with iris and pupil states were misclassified as the other two
eye states. Inaccurately predicted eye landmark is probably the
main reason, since the local appearance extracted from the wrong
landmarks could not be similar to the trained appearance model.
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FIGURE 6 | Successful (1st row) and failed (2nd row) eye landmark detections selected from the TA1, TA2, and Fuhl et al. dataset. The red dots are the annotated

landmarks and the blue ones are the predicted landmarks (for interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article).

Meanwhile, the local appearance from different datasets might
also vary due to the environments.

All these blink detection results suggest that using the
proposed three-state SDM-based deformable eye model to detect
blink is feasible for IR eye images along with eye landmark
detection. It utilizes three distinct eye states and the best fitted
eye model to find eye blink, which is different from current
techniques mentioned in section Blink Detection. However,
the proposed blink detection method relies on accurate eye
landmark detection. Correctness in fitted eye models leads to
high blink detection performance as indicated by the higher
eye landmark detection performance in the open eye with
pupil and iris state and in the cross-dataset blink detection
performance (Figure 5). Although there is no parameter required
in this method, the dependency of eye landmark detection plays
a similar role as those parameters requiring setting in blink
detection in existing techniques, but does not require manual
tuning in our method.

Results of Landmark Estimation Given
Detected Eye States
As mentioned earlier, eye components often interact with each
other during eyelid movement, so it is difficult to determine
which component should be detected first. Investigations of the
proposed approach based on true vs. detected eye states also show
this challenge. Table 1 shows that the better the eyelid landmark
estimation, the higher the recall performance of eye state, while
Table 2 shows how eyelid landmark estimation performance
drops due to eye state estimation errors. This is because, as
Figure 2 shows, given a novel image, the final predicted eye
landmarks are the ones from the detected eye state. FromTable 2,
we can see that on average, the landmark error increased by
around 16.7% on the TA1 dataset and around 18.6% on the
TA2 dataset compared with the performance given the true eye
states. When given a trained deformable eye model from another
dataset, the final eyelid landmark estimation performance was
significantly degraded. The landmark error increased by around
160 and 180% compared with the performance given the true eye
states and given the models trained from the same dataset.

These results give us the overview of what factors affect
the performance significantly. In our study, the cross-dataset

testing performance was unacceptable, which indicates that large
variations due to different experimental settings, devices, and
participants, were not grasped by the SDM-based deformable
eye model. Therefore, more techniques need to be studied to
further improve eye landmark estimation in order to obtain more
accurate eye activity for wearable eye computing.

Some Typical Eye Landmark Detection
Results
Figure 6 presents some good and bad examples from the three
datasets used. In general, if the shape model performs well, the
alignment can have very small errors, better than the Fuhl et al.
algorithm as shown in Figure 4D, while the errors can be large
if the shape model does not have the directions to deform which
should be learned from SDM. These failures are mostly rare cases
during tasks, therefore, there are few training examples for them.

Future work will focus on methods of improving the
performance for these rare eye movements and cross-dataset
performance. One direction is to collect and annotate more data
for the closed eye state and open eye with pupil state from
different people. More initial eye landmark locations need to
be added to train the models and an algorithm for selecting
useful initial locations formodel training can be developed. These
are to let the models learn better by exposing more variations.
Another direction is using convolutional neural networks,
which have been developed well in recent years and found to
outperform other methods in facial landmark localization and to
be performed for multi-task learning (Sun et al., 2013a; Jackson
et al., 2016; Ranjan et al., 2017). The large amounts of parameters
trained for neural networks are expected to grasp most variations
presented in three eye states, however, the method may be very
expensive due to requiring large amounts of annotation and
computing resources.

CONCLUSIONS

Eye activity, including eyelid movement, pupil size, fixation,
saccade, and blink, is attracting more and more attention in
human mental state analysis with wearable cameras. However,
most studies have focused on non-IR far-field eye images to
compute individual eye activity such as blink or eye center.
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TABLE 2 | Average error normalized by two eye corners’ distance.

Training and test from the same dataset Train TA2

Given true three eye states Given detected three eye states Given true states Given detected states

Test dataset TA1 TA2 TA1 TA2 TA1 TA1

All three eye states 0.031 0.029 0.039 0.037 0.098 0.115

Closed eye 0.059 0.071 0.067 0.089 0.120 0.118

Open eye with iris 0.054 0.069 0.054 0.079 0.094 0.080

Open eye with iris and pupil 0.029 0.023 0.037 0.030 0.097 0.116

This work has presented a unified approach to obtain the eyelid
contour, pupil contour, and blink event, from which most eye
activity can be further extracted. In this approach, the eyelid
contour and pupil contour are obtained from the update of
the deformable shape models which are statistically learned for
the most likely eye state. At the same time, blink is detected
based on whether the most likely eye state contains the pupil.
Results on three different datasets containing large variations of
eye appearance in realistic situations demonstrate comparable
performance with facial landmark detection and similar blink
estimation performance to that in non-IR far-field eye images,
therefore, a deformable shape model is suitable for eyelid and
pupil landmark detection from near-field IR eye images. The
proposed method also led to better and reliable results than the
eyelid detection algorithm, Fuhl et al. (2017), based on intensity
change for near-field IR images, which does not model the eye
shape or extract pupil information and fails to find eyelid in
a number of near-field IR eye images. However, due to the
specific attributes of different eye activities in near-field IR eye
images—not only eyelash and eyelid topological change due to
the viewpoint, but also complete geometrical and texture change
due to the interaction of eyelash, eyelid and pupil, the eyelash and
eyelid landmark estimation in the cases of fully closed eye and
slightly opened eye, as well as eye landmark estimation and blink
detection in cross-corpus evaluation, are still challenging. More
methods need to be studied to further improve eye landmark
and blink detection for near-field infrared images. This is the
first study focused on near-field IR eye images to obtain eyelid
and pupil landmarks and blink based on deformable shape
models, and to use different eye states to deal with the significant
geometrical structure change in eye images. Future work will

involve in using the wearable system to obtain all eye activities
to conduct and improve human mental state analysis.
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