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Computational imaging technology (CIT), with its many variations, addresses

the limitations of industrial design. CIT can e�ectively overcome the

bottlenecks in physical information acquisition, model development, and

resolution by being tightly coupled with mathematical calculations and

signal processing in information acquisition, transmission, and interpretation.

Qualitative improvements are achieved in the dimensions, scale, and resolution

of the information. Therefore, in this review, the concepts andmeaning of CIT are

summarized before establishing a real CIT system. The basic common problems

and relevant challenging technologies are analyzed, particularly the non-linear

imaging model. The five typical imaging requirements–distance, resolution,

applicability, field of view, and system size–are detailed. The corresponding key

issues of super-large-aperture imaging systems, imaging beyond the di�raction

limit, bionic optics, interpretation of light field information, computational

optical system design, and computational detectors are also discussed. This

review provides a global perspective for researchers to promote technological

developments and applications.

KEYWORDS

computational imaging interpretation, imaging model, computational imaging system,

optical system design, information transfer

1 Introduction

Computational imaging technology (CIT) is a new imaging modality that has

recently received considerable attention because of its novel physical characteristics. With

the rapid development of optoelectronics (Zhang et al., 2017), information processing

(Wickens and Carswell, 2021), photon integration (Fu et al., 2022), and other technical

capabilities, photoelectric imaging technology is urgently required in various fields, such

as remote sensing, biomedicine, deep space exploration, artificial intelligence, and resource

exploration. However, owing to theoretical limitations, such as the Abbe diffraction limit,

mutual restriction of a large field of view and high resolution, independent imaging links,

and exponential attenuation of ballistic light intensity with an increase in propagation

distance, the imaging effect of traditional imaging technology based on the object-image

conjugation mode in photoelectric detection is limited by aspects such as imaging media,

optical systems, and signal interpretation.
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1) The imaging medium: Owing to the existence of strong

scattering media due to meteorological conditions, such as

haze, rain, and snow, photoelectric imaging systems cannot

effectively receive information from the target directly. Sometimes,

the low signal-to-noise ratio (SNR) causes a scattered light

field information distribution, increasing the difficulty of SNR

interpretation and reducing the effective imaging distance.

2) Optical system: The optical system cannot always

simultaneously resolve the mutual conflict between the resolution

and field of view, because the traditional imaging technology of the

ray-tracing mode is affected by the principle and structure of the

system. In addition, overcoming extremely small aberrations leads

to increased complexity, volume, weight, and power consumption

of the system.

3) Interpretation of the optical field information: the imaging

mode with single-intensity information as the main means of

detection is affected by considerable background noise that reduces

the contrast between the target and the background, ease of aliasing,

and difficulty in effective detection and interpretation.

Therefore, traditional imaging methods experience different

degrees of information loss at the space, physical, and information

levels, greatly limiting the application of photoelectric imaging

systems in certain applications. Due to limitations in industrial

design thinking, the development of traditional photoelectric

imaging technology with “object-image conjugation” mode as

the core has reached a plateau, and it is difficult to advance

further. However, the emergence of CIT, which focuses on

information acquisition and interpretation, lead to potential new

opportunities (Lukac and Radha, 2011). CIT embraces many

disciplines, such as optics, mathematics, and informatics, which

makes imaging no longer solely reliant on optical hardware but also

includes mathematical calculations and signal processing, breaking

the limits of traditional photoelectric imaging technology. The

development of optical CIT has led to the development of many

new imaging technologies, such as ptychography imaging (Enders

et al., 2014), lensless imaging (Monakhova et al., 2020), scattered

light imaging (Cua et al., 2017), synthetic aperture imaging (Tian

et al., 2023), and quantum imaging (Bogdanski et al., 2004),

and has quickly become an important research direction in the

imaging field globally. These developments play an important role

in photoelectric detection.

Several publications analyze and condense computational

imaging methods from varying standpoints. Ozcan provided

a summary of recent research on emerging techniques in

computational imaging, sensing, and diagnostics, as well as

complementary non-computational methods that have the

potential to revolutionize global healthcare delivery (Coskun

and Ozcan, 2014). The IEEE even launched a journal, IEEE

Transactions on Computational Imaging, in 2015 dedicated to

the topic. Qionghai Dai investigated the most recent and most

promising progress in computational imaging, considering the

various dimensions of visual signals including spatial, temporal,

angular, spectral, and phase dimensions (Hu et al., 2017). Ravindra

A. Athale discusses the progress made in Computational Imaging

since the mid-1990s and identified three motivations for using

Computational Imaging: when a direct measurement of the desired

parameter is physically impossible, when the dimensionality of the

desired parameter is incompatible with present technology, and

when making an indirect measurement is more advantageous than

making a direct one (Mait et al., 2012).

The purpose of this paper is to investigate the potential

advancements of computational imaging technology through

five future application perspectives: “higher,” “farther,” “smaller,”

“wider,” and “stronger,” for promoting the continuous and

comprehensive development of CIT and rapid application

transformation of the technology. In this study, the concept

of computational imaging is described from broad and narrow

perspectives, and its components are analyzed and key technologies

existing in the process of technological development are

summarized. This study provides a new perspective on the

status quo, development, and future of CIT, which can help the

development of corresponding imaging technology research and

promote the further development of CIT.

2 Concept, components, and
development status of computational
imaging

2.1 Concept and components of
computational imaging

CIT was born following the rapid development of information

processing technology (Lee et al., 2022), micro-nano fabrication

technology (Qian and Wang, 2010), artificial intelligence

technology (Suo et al., 2021), and high-speed computing

power (Ying et al., 2020), and is an innovation in photoelectric

imaging technology. In a broad sense, all optical imaging

methods introduced in the imaging process can be considered

computational imaging. In addition, the use of the processing

speed of powerful computers to assist or directly participate in

the improvement of the imaging effect, such as image processing,

belongs to computational imaging. In a narrow sense, CIT is

driven by information, and the use of information acquisition,

transmission, and interpretation to describe the optical imaging

process, which is a multidisciplinary combination of new imaging

technology, set optics, mathematics, and information technology.

Further, traditional optical imaging is “what you see is

what you get, and what you get is what you see.” The

information-centered computational imaging method combines

a full-link imaging process with mathematical calculations and

signal processing through information acquisition, transmission,

and interpretation. In terms of the information dimension,

scale, and resolution, information transmission is combined with

mathematical analysis to overcome the bottleneck problems of

difficult physical information acquisition, model development, and

resolution in the imaging process, to achieve the imaging “get more

than what you see, and get better than what you see” results.

CIT comprehensively considers the physical nature of

the imaging process, promotes the movement of imaging

system design from the traditional aberration-driven

to information-driven methods, considers the full-link

imaging process, and realizes the change in the information

transmission mechanism. Its components can be divided into

three aspects:
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1) CIT designs imaging systems from the perspective of

information transmission, improves the degrees of freedom

of imaging, and fully excavates the light field information

for the purpose of accurate information acquisition and

transmission. This enables CIT to achieve a breakthrough in

the “invisible,” “incomplete:” and other problems of traditional

optical imaging technology.

2) From the perspective of the entire imaging process, CIT

decomposes the traditional photoelectric imaging-independent

optimization concept. The light field representation model

migration to the transmission medium, and the imaging system

into the imaging model driven by information transfer, give full

play to the characteristics and advantages of the media optical

system and information processing in the imaging link, breaking

the limitations of traditional imaging.

3) CIT introduces the idea of information coding to

broaden the information channel and increase the capacity of

the information required for imaging in the form of active

or passive coding. Through active coding methods such as

light sources and optical system modulation, CIT expands the

method of information acquisition and improves the efficiency

of information collection. In addition, considering the encoding

effect of the transmission medium on information, through the

joint multiplexing of multi-dimensional physical quantities such

as amplitude, phase, polarization, and spectrum, the interpretation

ability of information is improved, and breakthroughs in imaging

resolution, field of view, and action distance are achieved,

turning “impossible” imaging into “possible.” However, CIT cannot

process information that has not yet been acquired. Instead,

it actively discards nonessential dimensional information and

increases the amount of necessary dimensional information to

improve the imaging performance and overcome the limitations of

traditional imaging.

2.2 CIT history and development

The concept of computational imaging has existed since

the beginning of image processing; however, it was not until

the 1990s that Athale first introduced it (Mait et al., 2012).

Subsequently, Stanford University, Columbia University, the

Massachusetts Institute of Technology, Boston University, and

others formally initiated research on CIT. and established the

Media Lab Camera Culture Group, Computational Imaging Lab,

Hybrid Imaging Lab, Electrical and Computer Engineering Lab,

and other laboratories that initiated research on CIT. In the USA,

almost all top universities and research institutes have quickly

established relevant laboratories and research centers. At the same

time, many enterprises represented by the GelSight Company

in the USA also quickly followed up and developed a series

of products (Juyang et al., 1992). In the military field, the US

Defense Advanced Research Projects Agency (DARPA) has set

up several computational imaging related projects since 2007,

such as “ARGUS-IS (Leninger et al., 2008),” “SCENICC (Sprague

et al., 2012),” and “AWARE (Bar-Noy et al., 2011).” The North

Atlantic Treaty Organization Science and Technology Agency also

established a computational imaging task force in 2016, with

defense units such as the US Army, Navy, Lockheed Martin, and

the UK Ministry of Defense as the main members, and launched

several projects such as SET-232 (Bosq et al., 2018).

In China, research on computational optical imaging is

consistent with international activities. Corresponding laboratories

and research centers were set up by Xidian University, Tsinghua

University, Beijing Institute of Technology, and other universities,

China Aerospace Science and Technology Corporation, Institute

of Aerospace Information Research Institute, Xi’an Institute of

Optics and Precision Mechanics, Changchun Institute of Optics,

Fine Mechanics and Physics, and Chinese Academy of Sciences.

To conduct research on computational optical imaging, the

Computational Optical Imaging Technology Laboratory of the

Institute of Aerospace Information Innovation, Chinese Academy

of Sciences, has conducted extensive research in the fields of

computational spectrum, light field, and active three dimensional

(3D) imaging. The computational optical remote-sensor team

at the Aerospace Information Research Institute developed and

launched the world’s first spaceborne computational spectral

imaging payload (Liu et al., 2020). The National Information

Laboratory and Institute of Optoelectronics Engineering at

Tsinghua University have made important contributions (Cao

et al., 2020). The Institute of Computational Imaging of Xidian

University relies on the Key Laboratory of Computational

Imaging of Xi’an to conduct research based on technologies

such as scattered light imaging, polarization imaging, and wide

area high-resolution computational imaging, and has obtained

internationally recognized research results (Fei et al., 2019).

The Optical Imaging and Computing Laboratory and the

Measurement and Imaging Laboratory of the Beijing Institute of

Technology have also proposed optimized solutions (Xinquan,

2007) for computational display and computational spectral

imaging. The Intelligent Computational Imaging Laboratory of

Nanjing University of Science and Technology has achieved

excellent results in quantitative phase imaging, digital holographic

imaging, and computational 3D imaging (Zhang et al., 2018).

There are some notable research organizations in Europe that

have been actively involved in computational imaging: Imperial

College Computational Imaging Group (Imperial College London),

Computational Imaging Group (University College London),

Image and Video Analysis Group (Trinity College Dublin),

Computer Vision Laboratory (ETH Zurich), Computer Graphics

and Visualization Group (University of Zaragoza), Centre for

Vision, Speech, and Signal Processing (University of Surrey), Max

Planck Institute for Intelligent Systems (Germany), and Computer

Vision and Image Processing Group (University of Verona).

Although CIT research continues, and many new imaging

technologies have been derived, fragmented research has led

to the difficulty of global systematic consideration of CIT,

weak theoretical foundational support, and unclear application

requirements. At the same time, the rapid development of Graphics

Processing Unit (GPU) technology and advancements in Artificial

Intelligence (AI) (Sinha et al., 2017; Barbastathis et al., 2019)

have significantly contributed to the progress and application of

computational imaging. In addition, as a research field covering

many individual technologies, the current development ideas

of CIT are disorganized. The complexity and breadth of the

system make it difficult to present a clear research context, and
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the common basic problems and key technologies lack in-depth

thinking. CIT is a type of target-oriented research technology,

and its related research serves to develop or improve specific

performance indicators and improve the target imaging quality by

sacrificing other non-essential dimensions.

In summary, based on the demand orientation of CIT, the five

application perspectives of “higher,” “farther,” “smaller,” “wider,”

and “stronger” in future development are analyzed in this study.

The characteristics, application prospects, and mutual relations of

CIT are clearly defined, and new theories and ideas of CIT are

discussed from another perspective, to promote the development

of CIT in an orderly, systematic, and continuous manner.

3 Higher (resolution)

The optical resolution indicates the fineness of the images.

Generally, the higher the resolution of an image, the more

information it contains. This is an important performance

indicator for imaging applications. It is difficult for photoelectric

imaging systems to obtain an ideal image point from a point target

in conventional optical imaging systems due to the diffraction

effect of light waves, which results in a diffuse spot being obtained.

The larger the size of the spot, the lower the resolution. The

Abbe diffraction limit indicates that the resolution of an ideal

optical system is determined by the angular radius of an Airy spot.

When the diffraction limit is exceeded, the image cannot be clearly

observed, limiting the resolution of the system. The resolution is

defined by n sinφ = 1.22 λ/D (Abbe, 1873) [Hole Diameter: D,

wavelength: λ, n: refractive index of the working medium of the

lens, φ half of the maximum cone angle (objective lens aperture

angle) at which light enters the lens]. In diffraction limited systems,

the larger the aperture of the optical system, the higher the imaging

resolution. However, owing to the limitations of the production

technology, cost, and application scenarios, the aperture of the

optical system cannot be unlimited. To achieve effective resolution

improvement, CIT must explore new oversized-aperture optical

systems and novel imaging techniques that exceed diffraction limits

and improve image reconstruction methods.

3.1 Oversized aperture imaging technology

The finiteness of the aperture of a photoelectric imaging

system limits the imaging resolution. Traditional large-aperture

photoelectric imaging systems under industrial design suffer from

long development cycles, difficult processing and installation,

high development costs, and poor environmental adaptability. In

addition, they are prone to deterioration of the imaging quality

owing to a decrease in the surface accuracy of the optical system.

To solve this problem, it is necessary to develop a new type of ultra-

large aperture optical imaging system, which is mainly realized

using two synthetic aperture imaging technologies: primary mirror

splicing and array complementary imaging. Compared with

the traditional single-aperture photoelectric imaging system, the

imaging resolution is higher, the mirror processing difficulty is

lower, and the system is lighter.

In a primary mirror splicing space-based telescope, the primary

mirror of the single-aperture telescope is divided into small pieces,

with the pieces of sub-mirror spliced into an equivalent primary

mirror, and folded in the fairing of the launch vehicle. After launch,

the pieces are unfolded and reassembled through precision confocal

adjustment and the resolution of the equivalent large-aperture

telescope is achieved. As shown in Figure 1, the James Webb

Space Telescope, which is the successor to the Hubble Telescope,

was designed to use 18 hexagonal sub-mirrors with a diagonal

distance of 1.5m (Sabelhaus, 2004). However, even if primary

mirror splicing technology is adopted, it is difficult to support a

space telescope larger than 8–10m in the short term until the

splicing and folding technology has been improved.

Array complementary image telescope technology is also

known as distributed synthetic aperture interferometry imaging

technology (Changsheng et al., 2017). It collects light based

on multiple small-aperture telescopes and then performs

complementary imaging on the optical imaging telescope through

an optical path delay line, baseline matching, beam pointing, and

other relay optical systems. An imaging baseline is formed to

achieve equivalent large-aperture effects. The larger the baseline,

the higher the image resolution. These distributed devices can

be launched separately, and assembled into a common frame

structure in space. In theory, the array complementary image

method can realize a larger aperture than the primary mirror

splicing technique.

In Xiang et al. (2021) proposed a coherent synthetic aperture

imaging system. Figure 2 shows a schematic diagram of the system

in a scene of two synchronous orbit satellites, one of which is

equipped with a camera, and the other with a laser source for

angle-changing illumination.

3.2 Imaging beyond the di�raction limit

To achieve imaging beyond the diffraction limit, novel imaging

methods, such as structure illumination microscopy (Gustafsson,

2000), stochastic optical reconstruction microscopy (Rust et al.,

2006), negative refractive super lenses (Pendry, 2000), and

ptychography imaging (Wang et al., 2022), have been proposed.

The ptychography imaging concept was first proposed by HOPPE

W in 1970s (Hegerl and Hoppe, 1972). The core of this method is

to search for a unique complex solution to satisfy the constraints

of multiple far-field diffracted intensity images in overlapping

scanning modes. An iterative algorithm of phase restoration is

used, which sacrifices the time dimension and thus achieves an

imaging result with an ultra-diffractive resolution limit. In Zheng

et al. (2013) proposed the Fourier ptychographic microscopy

technique that uses an objective lens with lower magnification

to simulate the performance of an objective lens with higher

calculated magnification. Subsequently, a reconstruction algorithm

was adopted to recover the complex amplitude information of the

object and obtain high-resolution images. A conventional Fourier

ptychographic imaging system uses a light emitting diode (LED)

plate as an illumination source. Figure 3 shows a schematic of

a conventional Fourier ptychographic imaging system (Jiasong

et al., 2016) and the reconstructed images, which have a much
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FIGURE 1

James Webb Space Telescope (Sabelhaus, 2004).

FIGURE 2

Array coherent synthetic aperture imaging (CSAI) system. (A) Schematic of CSAI system, (B) simplified CSAI system, and (C) photograph of CSAI

system.

higher imaging resolution than conventional optical microscopic

imaging. Although imaging beyond the diffraction limit has

been accomplished in the field of microscopic imaging, there

has been no similar breakthrough in large-scale macroscopic

imaging applications. This is also an urgent problem that needs

to be solved using computational imaging in pursuit of higher

imaging resolution.

In addition to the non-interference computational imaging

microscopy techniques introduced above, interferometric

computational imaging techniques (Park et al., 2018) such as

synthetic aperture quantitative phase imaging (Cotte et al., 2013)

have doubled the maximum spatial frequency as shown in Figure 4.

Alexandrov et al. (2006) introduced a novel synthetic aperture

optical microscopy technique that generates high-resolution,

wide-field images in both amplitude and phase using Fourier

holograms. The spatial and spectral qualities of the illumination

field, as well as the collection and solid angles, determine the part

of the complex two-dimensional spatial frequency spectrum of an

object that is captured by each hologram. They showcased the use

of synthetic microscopic imaging to capture spatial frequencies

that are beyond the modulation transfer function of the collection

optical system, all while maintaining a long working distance

and wide field of view. While its capabilities are restricted by the

numerical aperture of the objective lens.

3.3 Super-resolution reconstruction

Super-resolution reconstruction is a type of information

processing technique that uses low-resolution image recovery

to obtain high-resolution images, and was first proposed by

Harris (1964). It depends on the number of raw low-resolution

images that can be classified as single-image and multi-image

super-resolution. In Dong et al. (2014) applied deep learning
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FIGURE 3

Fourier ptychographic microscopy system based on light emitting diode (LED) array, its imaging reconstructed results (Jiasong et al., 2016). (A)

Fourier ptychographic microscopy system based on LED array, and (B) reconstructed images.

to a natural image super-resolution reconstruction procedure

and proposed a super-resolution convolutional neural network

(SRCNN) model, as shown in Figure 5. To address the problem

of the weak learning ability of the SRCNN shallow model, Kim

et al. (2016) proposed a very deep super-resolution network model

that included 20 convolutional layers. The use of a deeper network

model improved the reconstruction effect. However, a deeper

network model results in slower convergence speed. Lim et al.

(2017) proposed an enhanced deep super-resolution reconstruction

network model with 69 convolutional layers. This method reduced

the memory requirements by approximately 40% and improved

the convergence speed by improving the residual. The restoration

results are shown in Figure 6.

However, because the super-resolution reconstruction

technology relies only on subsequent data processing, the result

of the super-resolution reconstruction is different from the real

value. The next research direction is to organically combine super-

resolution reconstruction with the imaging process to achieve

real-time super-resolution.

4 Further (imaging distance)

The traditional industrial design of optoelectronic imaging

relies on ballistic light. Owing to the exponential decay of the

energy intensity of ballistic light in imaging environments, such

as clouds, smoke, and haze, the traditional imaging distance is

severely limited. Moreover, for long-distance imaging, the target

information presents a low SNR. For signals below 1 dB current

recovery methods cannot effectively extract the target information.

To pursue longer detection distances, new imaging methods that

are suitable for extreme imaging environments are needed to mine

and interpret imaging information.

4.1 Scattered light imaging technology

An optical imaging system that is exposed to bad weather

conditions such as fog, haze, rain, or snow, or even to underwater

imaging conditions, cannot obtain the target information directly

owing to the random transmission of photons, which can only

result in an irregular distribution of the scattered light field.

Imaging through scattering technology is a mainstream imaging

technology that can recover clear target information through the

deep interpretation of scattered light images carrying hidden target

information. Currently, imaging through scattering technology

includes wavefront shaping (Katz et al., 2011), optical memory

effect (OME)-based nonvisual imaging (Osnabrugge et al., 2017),

and deep learning methods.

4.1.1 Wavefront shaping
In Vellekoop and Mosk (2007) proposed a scattered light

imaging technique based on wavefront shaping (Vellekoop, 2010).

The experimental setup and imaging results are shown in Figure 7.

When light passes through a strong scattering medium, the phase

at each position behind the scattering layer is randomly distributed,

forming a speckle image as shown in Figure 7B. However, when a

feedback signal is introduced, as shown in Figure 7C, the brightness

of the target behind the scattering layer is three times higher than

that of the speckle image, and the focusing effect is improved

beyond that of an optical lens. In Vellekoop et al. (2010) used

feedback-based wavefront shaping imaging technology to focus

on a thickness 6µm behind a traditional optical system. It had a

spot diameter 1/10 that of traditional imaging, which significantly

improved the resolution of the optical system. Subsequently, Katz

et al. (2012) used a feedback-based wavefront-shaping method

to achieve real-time imaging through scattering media using

incoherent light sources. The imaging effect is shown in Figures 7E,

F, which significantly promotes the engineering application of

feedback-based wavefront shaping technology.

In Popoff et al. (2010a) first proposed a method based on

transfer matrix (TM) measurement of the scattering medium as

shown in Figure 8A. The core connects the incident light field to the

outgoing light field through a complex matrix (Pendry, 2000). By

measuring this complexmatrix and combining it with optical phase

conjugation (OPC) technology, focused imaging at any position

or time can be achieved (Popoff et al., 2010b; Drémeau et al.,

2015). In Liutkus et al. (2014) introduced compressed sensing in

TM measurements, which significantly reduced the measurement
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FIGURE 4

(A) Reconstructed image for azimuthal angle 0◦; (B, C) phase images of selected areas of synthesized image; (D) confocal microscope image.

FIGURE 5

Comparison of super-resolution reconstruction e�ect of convolutional neural network. (A) Image super-resolution results, and (B) peak SNR (PSNR)

curve.

difficulty of the transmission matrix. In the same year, Andreoli

et al. (2015) proposed a method for measuring TM at different

wavelengths, which solved the problem of wideband-focused

imaging by establishing a 3D multispectral TM. In multispectral

research, Dong et al. (2018) successfully achieved transparent

scattering medium imaging using a multiplexing phase-inversion

method, as shown in Figure 8B.

The imaging through scattering technology based on optical

phase conjugation obtains the original incident light-field

information from the reverse light path through the reciprocity of
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FIGURE 6

Enhanced deep super-resolution (EDSR) model restoration results.

FIGURE 7

Principle of wavefront shaping based on feedback and imaging results. (A, C) Experimental diagrams, (B) speckle image, and (D) single-point focusing

result. (E) Camera image with incoherent light before correction, and (F) optimized phase pattern.

turbid media and the invariance of the time reversal path, as shown

in Figure 9 (Feld et al., 2008). Compared with feedback-based

wavefront shaping technology, the measurable number of channels

in this method is not a single channel but multiple channels,
making it suitable for real-time measurement. In Shen et al.
(2016) successfully used the digital OPC (DOPC) technology to
achieve light focusing through biological tissues with a thickness
of 9.6 cm and imaging of chicken breast tissue in vitro with a
thickness of 2.5 cm, effectively expanding the sample thickness in
OPC technology. The imaging effect (shown in Figure 9C) has a
huge advantage in non-invasive optical imaging, manipulation,

and treatment of deep tissues. Subsequently, Ruan et al. (2017)

achieved precise control of neurons through focused imaging

of 2mm thick live brain tissue. Wavefront shaping technology

has great application potential in fields such as endoscopy,

super-resolution imaging, nano positioning, and cryptography.

4.1.2 OME
In Feng et al. (1988) and Freund et al. (1988) first proposed

the OME. Specifically, the intensity of the speckle pattern obtained

after scattering in the medium does not change significantly; it just

changes by a small amount when the incident angle of the light

wave changes within a small range. By using the OME of scattering

media, Bertolotti et al. (2012) proposed a scanning-based speckle
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FIGURE 8

Optical TM of scattering imaging and experimental results. (A) Optical TM of scattering imaging, (B) initial speckle pattern and single point focus.

FIGURE 9

Optical phase conjugation (OPC) of imaging through scattering. (A) Tissue turbidity information, and (B) OPC light field reconstruction. (C) Result of

2.5 cm isolated chicken breast tissue.

correlation imaging technique based on OME. The incident light

scans the imaging target within the OME range to obtain speckle

images at different angles. The target is reconstructed using a phase-

recovery algorithm, as shown in Figure 10A. Although this method

can achieve single-frame imaging, the complex data collection

process cannot meet the requirements of real-time detection.

In addition, Katz et al. (2014) proposed a non-invasive imaging

method based on single-shot speckle correlation (SSC) that does

not need to consider spatial scanning and is suitable for non-

invasive imaging through scattering. Through the long-term efforts

of researchers, the SSC technology has emerged in multiple fields.

In Stasio et al. (2015) proposed a light manipulation method for

multi-core fibers by combining DOPC and OME in fiber imaging.

The following year, Porat et al. (2016) also introduced SSC into

fiber optic imaging, breaking the constraint that the input and

output ends of traditional fiber optic endoscopes need to fit with

the imaging object and image plane. In Qiao et al. (2017) proposed

a non-invasive 3D light field manipulation method based on OME.

The following year, Chengfei et al. (2018) tracked 3D targets hidden

behind scattering media by studying the correlation of imaging

objects through different positions and postures, as shown in

Figure 10B.

The size of the image object in the scattered light imaging

technique based on the OME is constrained by the OME range,

which limits its field of view. In actual scene imaging, OME is not

applicable when the scattering medium is thick and the imaging

object is too large.

4.1.3 Non-line-of-sight imaging technology
In a specific combat environment, such as urban street combat

and military counterterrorism, it is necessary to be able to observe

terrorist activities and master the initiative of counterterrorism by

circumnavigating obstacles, such as streets and walls, over a long

distance. Therefore, there is a need to view objects that are hidden

by obstacles and that cannot be achieved using traditional optics.

In the non-visual field scenario, the information carried in back-

scattered light can be interpreted to realize real-time monitoring of

multiple targets bypassing obstacles.

In Ramesh and Davis (2008) proposed the non-line-of-sight

(NLOS) imaging technique. Based on in-depth exploration, current

NLOS imaging is divided mainly into active and passive NLOS

imaging. The difference between the two methods is that active

NLOS imaging uses actively modulated lasers, captures photons

after three scattering cycles, and completes the reconstruction of

the target object by calculating the time-of-flight information of the

photons. Passive NLOS imaging light sources use natural ambient

light with no need for modulation to achieve the reconstruction of

the hidden object.

In Raskar (2012) first used a streak tube camera to realize the

3D imaging of hidden targets. The experimental setup is shown

in Figure 11. It can reconstruct images of targets at different

depths with a resolution of up to centimeters and high temporal

and spatial resolutions. In Gariepy et al. (2016), and then in

Chan et al. (2017) achieved NLOS detection within a few seconds

and realized dynamic tracking of moving targets as shown in
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FIGURE 10

(A) Schematic of scanning-based speckle correlation imaging principle. (B) Rotation tracking results of di�erent objects.

Figure 12. In Wu et al. (2021) increased the imaging distance by

three orders of magnitude for the first time, achieving 1.43 km

of NLOS detection imaging and real-time tracking of hidden

target objects. They designed a near-infrared, high-efficiency NLOS

imaging system and improved algorithm models to solve the

problems of optical attenuation and spatiotemporal information

mixing caused by diffuse reflection. This system is expected to be

used in real scenarios such as daily transportation, national defense,

and security.

Active NLOS imaging has good resolution and high accuracy.

Ambient light has a small influence, and can be used for 3D

reconstruction with the help of a modulated light source.

However, passive NLOS imaging can achieve the reconstruction

of hidden targets using natural ambient light, which makes

it more suitable for practical applications. Currently, passive

NLOS imaging is mainly based on spatial coherence or

intensity coherence. In Batarseh et al. (2018) used a dual-

phase Sagnac interferometer to reconstruct and estimate the

position of hidden objects; the imaging results are shown in

Figure 13A. In Saunders et al. (2019) achieved passive NLOS

imaging of two-dimensional scenes based on the intensity

coherence theory by incorporating occlusions of estimated

positions in their experiments to obtain the spatial information

of photons. The image reconstruction results are shown in

Figure 13B. Although passive NLOS imaging is suitable for

practical scenarios, because its light source does not require

modulation, the detector receives less photon information,

resulting in a low SNR and imaging resolution in Batarseh et al.

(2018).

In general, non-visual imaging can effectively detect scenes

outside the visual domain, which is of great significance for

applications such as military operations, public transportation

safety, hostage rescue, anti-terrorism street fighting, and

biomedical imaging.

4.1.4 Imaging based on deep learning
With the continuous development of computer technology,

many studies report on the use of deep learning to solve relevant

problems in imaging through scattering. If traditional scattered
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FIGURE 11

Active NLOS imaging technique based on striped-tube camera. (A) Imaging light path, (B) striped image, and (C) reconstruction result.

FIGURE 12

NLOS imaging principle and reconstruction result based on occlusion. (A) Experimental optical path, (B) raw data without occlusion, (C) original data

with occlusion, (D) reconstruction result without occlusion, and (E) reconstruction result with occlusion.

light imaging is regarded as a forward propagation process,

scattered light imaging based on deep learning is a reverse solution

process in which the input light field information is obtained

by building a suitable neural network based on the output light

field intensity. In Ando et al. (2015) introduced deep learning in

imaging through scattering for the first time and used a support

vector machine to scatter the collected face data; non-face data

intensity maps were classified. In Lyu et al. (2019) established a

hybrid neural network (HNN) model to recover hidden targets

in strongly scattering media, as shown in Figure 14. Although the

HNN reconstruction results are similar to those of the original

image, the reconstruction results based on OME do not recover

the image under the same conditions. The recovery range of

scattered light imaging based on deep learning is wider than

that of OME. Subsequently, Li et al. (2018) trained scattering

maps with different scattering media, and their network structure

autonomously used the statistical features in the training data

to realize the image recovery of different types of objects under

different scattering media. In Lai et al. (2021) introduced the idea

of transferring learning to the problem of recovering different

types of objects by training images from multimode fibers (MMFs)

and scattering media. MMF data was migrated to a scattering

medium to achieve image recovery for different objects and

scattering media.

Scattered light imaging based on deep learning has several

advantages compared with traditional scattered light imaging. For

example, scattered light imaging can be realized through intensity

measurement, and for strong scattering media, imaging can obtain

a larger field of view. Nevertheless, it is undeniable that the deep

learning method still has shortcomings such as a heavy computing

burden, long computing time, high cost, and weak flexibility.

Moreover, it cannot explain the physical laws of light propagation

in the scattering medium. In addition, the better trained network is

not well adapted to other systems, and the network structure cannot

automatically adjust the parameters according to the changes in the

imaging environment.
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FIGURE 13

(A, B) The intensity distribution across the DuPSaI field of view corresponding to the square and equilateral triangle objects, respectively. (C, D) Plots

of real and imaginary components of SCF measured for the square and equilateral triangle objects, respectively. The imaginary component is color

coded and superposed on the 3D representation of the real part of SCF. (E, F) Variations of real and imaginary SCF components at y = 0. The

corresponding apodizing function ŴA(s) is also indicated by dashed lines. (G, H) The 1D projection of the intensity distributions recovered from SCF

measurements (solid lines) together with the actual intensity profiles evaluated across the targets (dotted lines).

FIGURE 14

Character reconstruction results. (A) Speckle pattern, (B) hybrid neural network (HNN) reconstruction results, (C) original image, and (D)

reconstruction results of optical memory e�ect.

4.2 Polarization imaging technology

Polarization plays an irreplaceable role in the study of

descattering. The current research shows that the polarization

distribution characteristics of a scattered light field are closely

related to the imaging distance. The polarization statistical

characteristics of a scattering medium, such as water, were

studied, and the intensity and polarization characteristic

distribution of the scattered light field were considered globally

to address the long-distance imaging problem affected by

the medium.

4.2.1 Polarization descattering imaging technique
In Tyo et al. (1996) investigated the ability of polarization

difference images for recovering target information at different

scattering levels, and in Tyo (2000) analyzed the point spread

functions (PSFs) of polarization difference and summation images,

and investigated the PSFs in single-scattering and multiple-

scattering media using the Monte Carlo algorithm. The PSFs of the

polarization difference images were found to be much narrower

than those of the polarization summation images, as shown in

Figure 15A, implying that the use of the polarization difference

technique in transmission scattered light imaging can acquire
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FIGURE 15

(A) PSF comparison between polarization di�erence and polarization summing images. (B) De-hazing results in a real scene (Liu et al., 2015).

target images with more high-frequency information and better

imaging results.

In Schechner et al. (2003) proposed a polarization haze imaging

model that showed that the two types of spectral intensities

received by the detector (background-scattered light and target-

information light) exhibited obvious polarization differences. The

distribution of target information light can be effectively resolved

by the extraction and interpretation of the polarization difference

information. In Panigrahi et al. (2015) obtained polarization

images from snapshot polarization cameras and proposed a linear

representation method for optimizing the polarization image

contrast, which effectively enhanced the visual effect of long-

distance imaging over 1 km. To date, polarization differential

imaging technology has developed relatively maturely; however, the

use of this method is limited when the haze concentration is high.

To reduce the complexity of the algorithm, this method assumes

that the reflected light of the target is unpolarized, which is not

applicable in many scenarios. In addition, this technique is highly

dependent on the sky region and is not universal.

To address these problems, Fang et al. (2014) proposed a

haze-removal algorithm. For no-sky background imaging, Zhang

et al. (2016) combined polarization imaging technology with dark

channel prior technology and proposed a new haze removal

method. Although the abovemethods can achieve image defogging,

they do not consider the difference in the frequency domain

between the target and haze. Liu et al. (2015) analyzed the

characteristics of haze images based on the frequency domain

distribution of the target information and haze information, and

proposed a multi-scale polarization defogging technology, greatly

improving the details of the image shown in Figure 15B.

In Schechner and Karpel (2006) proposed an underwater

polarized imaging model based on a polarized differential imaging

defogging technique combined with an image processing defogging

technique that can achieve clear underwater imaging. In Liu

et al. (2015) achieved clear transmission scattering imaging. They

combined the differences in the spatial frequency distribution of

the scattering medium and atmospheric molecules with multiscale

image processing based on polarized differential imaging. This was
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followed by further studies on underwater long-range polarization

extended-range imaging (Han et al., 2017; Liu et al., 2018), as shown

in Figure 16. In Hu et al. (2021) proposed a polarization differential

underwater imaging technique with three degrees of freedom.

Although polarization imaging technology can effectively

remove the adverse effects of scattering media, the use of

polarizers and other components leads to the loss of light intensity

energy, which is not conducive to remote imaging; therefore, it

is necessary to develop a high-efficiency polarization detection

method. In addition, the precise interpretation of the polarization

information is a topic for future research focusing on polarization

imaging technology.

4.2.2 Single photon imaging technology
To achieve clear imaging and target detection under harsh

conditions at long or even at very long distances, signal processing

needs to be optimized. According to the results of signal attenuation

quantification, the signal-to-background ratio interval of the

current detected signal has been analyzed and studies conducted on

the extraction and recovery of weak signals from chaotic systems.

Imaging targets with low SNRs at long distances usually requires

a long time for information accumulation and processing. In Li

et al. (2020) designed a single-photon light detection and ranging

(LIDAR) imaging system for the detection of very weak single-

photon signals. They designed a single-photon LIDAR imaging

system to achieve 3D imaging of targets at a distance of 45 km.

In 2021, this imaging system was further optimized to achieve 3D

imaging of mountain targets at a distance of 200 km (Li J. Y. et al.,

2021; Li X. et al., 2021), as shown in Figure 17.

5 Smaller (weight, volume, and power
consumption)

The traditional optical system design, under the guidance of

industrial design ideas, is driven by aberrations. To satisfy the

requirements of the imaging field of view, focal length, and image

quality, multiple lens combinations made of different materials are

required to eliminate aberrations. Such systems are often complex

in structure, large in size, and heavy, and an increase in the number

of lenses causes difficulties in processing technology. It is difficult to

realizeminiaturized and lightweight photoelectric imaging systems.

5.1 Optical imaging technology imitating
the compound eye

Insect compound eyes are small, have a large field-of-view

angle, and are sensitive to high-speed moving objects. Inspired

by their unique imaging modes, the compound eye-like optical

system achieves wide-area high-resolution imaging by mimicking

biological visual mechanisms, which significantly improves the

imaging performance of optoelectronic imaging and detection

equipment. In Brady and Hagen (2009) proposed the TOMBO

compound eye imaging system, which was designed using the

juxtaposed compound eye structure of dragonflies as a reference,

as shown in Figure 18. Each aperture images the full field of view.

Compared with traditional single-aperture imaging, the multi-

aperture imaging method effectively improves the information

capacity of the system. Although multi-scale imaging is obviously

different from the multi-aperture imaging approach, the multi-

scale system adopts a multi-stage system cascade to achieve high-

performance imaging, and most of the more mature imaging

systems currently contain only two stages (Figure 18C), large-scale

primary optics and small-scale secondary optics. The large-scale

primary optics are used mainly to collect as much light energy as

possible and to perform the initial aberration correction, whereas

small-scale secondary optics are used mainly to secondarily

transmit the light passing through the primary optics and image it

onto the detector behind the secondary optics. Overall, however,

the compound eye-like optical imaging technology not only

effectively solves the problem of constraints between a large field

of view and high resolution but also significantly reduces the size,

weight, and power consumption of the imaging system.

Since 2012, the Swiss Federal Institute of Technology in

Lausanne has successively developed Panoptic (Afshari et al., 2012;

Popovic et al., 2014), OMNI-R (Akin et al., 2013), GigaEye-1

(Cogal et al., 2014), GigaEye-2 (Popovic, 2016), and other multi-

aperture imaging systems, among which, the OMNI-R has a full-

field-of-view angle as high as 360◦ × 100◦, and its structure

is similar to that of GigaEye-1. However, GigaEye-1 supports

two imaging modes and exhibits good imaging effects for both

static and dynamic scenes. In 2017, an ultra-compact high-

definition imitation compound eye system was developed (Cogal

and Leblebici, 2016), which has a pixel count of up to 1.1

million pixels while achieving full-field-of-view of 180◦ × 180◦

imaging, and the radius of the whole system is only 5mm. The

system is equipped with a distributed illumination system, which

is able to achieve dark-environmental imaging. In 2014, a new

astronomical telescope was designed by Law et al. (2014, 2015)

that can image an area of 384 square degrees and detect up to 16

magnitudes, which greatly improves the telescope’s imaging range

and detection capability.

5.2 Design of computational optical system

In a traditional optical system design, the imaging link has a

one-way design and independent optimization. This means that the

optical design and image-processing algorithms are independent

of each other, and the imaging link cannot be considered as a

whole. Hence, it is easy to miss the optimal scheme for the joint

design of an optical system and image processing. The minimalist

optical system comprehensively considers the entire imaging link

and achieves the purpose of simplifying the optical system structure

and reducing costs based on the idea of global optimization to

better promote the engineering application of the optical system.

A comparison of the two design processes is shown in Figure 19A

(Stork and Robinson, 2008).

In Robinson and Stork (2006) proposed a method for the joint

design of an optical system, detector, and image processing for

document scanners and other instruments. The method uses the

mean square error (MSE) of the predicted recovered image and
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FIGURE 16

Underwater imaging results of polarization di�erential imaging technology. (A) CP (correlation peak) value curve, (B) traditional and polarization

imaging results, (C) passive polarization imaging simulated results, and (D) underwater reconstructed image.

the optically blurred image as an evaluation index and combines

it with the Wiener filtering-based image recovery algorithm to

recover optically blurred images. The effect of the recovered image

was better than that of the traditional design (Robinson and Stork,

2007, 2008), as shown in Figure 19B. In 2008, Robinson and Stork

proposed the idea of co-designing an optical design with image

restoration, which achieved end-to-end optimization by combining

an optical transfer function with an image processing system using

the MSE between the restored and original target images. In Li J.

Y. et al. (2021) combined Zemax software and image processing

through data exchange dynamic link communication technology

to form a closed-loop link for optical-algorithmic joint design

optimization, which reduced the difficulty of the optical system

design with the system volume, weight, and cost, as shown in

Figure 19C. The joint design of a simple lens can be comparable

to the imaging quality of a traditionally designed complex lens.

Computational optical system design technology effectively

solves the shortcomings of the traditional optical system with

complex internal structure, large volume, and high cost through

the whole link integration optimization design and provides

strong technical support for the miniaturization, light weight, and

portability of photoelectric imaging equipment.

5.3 Computational detector technology

Traditional photodetectors are based on photosensitive

semiconductors. The thermal sensitivity, negative resistivity,

temperature characteristics of semiconductors, and quantum

effects generated for detectors of small sizes affect the detection

efficiency, thus affecting the photoelectric imaging ability.

Therefore, it is necessary to find new photosensitive materials
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FIGURE 17

Illustration of single photon long-range imaging over 200 km. (A) Photograph of mountains, (B) experimental setup, (C) experimental hardware, (D)

experimental environment, and (E) 3D profile of mountains.

FIGURE 18

Principle of multi-aperture imaging. (A) Traditional imaging, (B) 3 × 3 multi-aperture imaging, and (C) 5 × 5 multi-aperture imaging.

and create new photosensitive components to overcome the

material limitations of silicon-based semiconductors to improve

the detection sensitivity and reduce the detection threshold. At

present, photodetectors can only respond to light intensity. With

the attenuation of light waves through long-distance transmission,

the light intensity information reaching the detector is limited,

and more is needed to retain the physical quantity information

of other dimensions. The development of a detector with multi-

dimensional physical quantity response is of great significance for

achieving remote imaging.

A traditional photodetector has a fixed plane structure and

depends on the correction compensation of the optical system

to obtain the ability of the focusing plane target surface. This

can be achieved by using different lens combinations, resulting

in a complex system, image distortion, and quality degradation

problems. The retinal structure of the human eye is concave,

allowing imaging to be realized by relying only on the relatively

simple optical structure of the lens. Inspired by this, if an imaging

detector with a flexible curved surface is used, as shown in

Figure 20, and the adaptive layout is conducted according to the

focal plane shape of the optical system, the correction pressure

of the optical system’s imaging distortion can be reduced, the

optical system design and complexity can be simplified, and high-

resolution performance can be achieved (Zhang et al., 2017).

However, current processing technology limits the preparation

of curved surface detectors, and improving the process is

major difficulty.

In the process of converting incident photons into discrete

digital signals that can be processed by a computer, it is

necessary to perform signal sampling; Nyquist sampling used

by traditional detectors causes considerable data redundancy

and time-consuming data processing. Therefore, it is necessary
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FIGURE 19

(A) Traditional and global designs compared. (B) Restoration images of traditional and joint designs compared. (C) Image quality of three lens joint

design and six lens traditional design compared.

to design a new non-uniform sampling computing detector

and establish a matching computational optical system design

scheme so that the significance of detection and sampling

focuses on the target information to improve the imaging

resolution and signal processing speed. In addition, it is

necessary to develop an optical processing method that can

transfer the information calculated from the electrical signal

processing at the back end of the detector to the front end

of the detector so that the detector itself can preprocess the

imaging information.

6 Wider (imaging field of view)

The amount of information obtained by an optical imaging

system is determined by its field of view and the resolution

of the optical system. A large field of view can cover a larger

observation range, and a high resolution can provide more detailed

information. The amount of information focused through the lens

and collected by the imaging equipment is always limited because

the spatial bandwidth product cannot be improved, similar to that

used to determine the performance of a traditional imaging system.

This results in a pair of irreconcilable contradictions between the

spatial resolution and the imaging field of view. Therefore, through

computational imaging, the system coding mode is used to upgrade

the dimensions of the information, improve the utilization rate of

the light-field information, and achieve a large field of view and

high resolution.

6.1 Single-scale and multi-aperture
imaging technology

Single-scale multi-aperture imaging is a technique used

to improve and realize the function of an imaging system

by mimicking biological visual mechanisms, such as the

widely used fisheye lens. To achieve a large field of view

and high-resolution imaging, a biomimetic multi-aperture

imaging system was developed by drawing on the structure of

the compound eye of arthropods, which was first proposed

by Brady and Hagen (2009), to some extent solving the

problem of the incompatibility of a large field of view and

high resolution.

In Akin et al. (2013) developed a high-resolution imaging

system inspired by the panoramic optics approach, capable of

omnidirectional video recording at 30 frames per second and a

resolution of 9,000× 2,400. The imaging field of view of the system

reached 360◦ × 100◦, and the physical and photographic samples

of the system are shown in Figure 21A.

ARGUS-IS (Leninger et al., 2008), an aerial camera system

jointly developed by DARPA in the USA and Aerospace Systems

in the UK in 2013, has a strong imaging reconnaissance capability.

With 1.8 billion pixels, the system can monitor an area of more

than 24 square kilometers from an altitude of 5.4 km, and detect

more than 40,000 moving objects, including the identification

and calibration of moving people and cars. It also has powerful

information storage capabilities, as shown in Figure 21B. Its

imaging resolution is sufficient to identify and track vehicles and
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FIGURE 20

Curved computational detector. (A) Photograph of hemispherical FPA based on original silicon optoelectronics, (B) ray patterns traced, (C) imaging

setup, and (D) image result of “W” on curved detector.

FIGURE 21

(A) High resolution omni-directional light field imaging system and results. (B) ARGUS-IS system and imaging renderings. (C) Multi-aperture system

prototype and imaging results.

pedestrians from an altitude of 6,500m, ground resolution of

0.15m, instantaneous field of view angle of 23 µrad, and can

simultaneously track at least 65 targets.

In Fu et al. (2015) designed the first generation of a bionic

compound eye optical systemwith a large field of view and low edge

aperture resolution. However, the central aperture had the opposite
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effect (Kitamura et al., 2004). The 31 components detected the

target using the edge aperture and accurately identified the target

using the center aperture with a full field of view of 53.9◦. In Shao

et al. (2020) research group designed a multi-aperture system with

a full field of view of 123.5◦ × 38.5◦. The system also supported

real-time viewing and other functions, such as images, videos, and

other information. The prototype and imaging results are shown in

Figure 21C.

6.2 Concentric multi-scale imaging
technology

Since Brady and Hagen (2009) proposed the theory of multi-

scale imaging in 2009, this imaging method has received extensive

attention from researchers worldwide. Since 2012, the AWARE-

2 (Golish et al., 2012; Youn et al., 2014), AWARE-10 (Nakamura

et al., 2013; Marks et al., 2014), and AWARE-40 (Nakamura et al.,

2013) were developed. It takes only 18 s to actually shoot a single

photograph, which effectively realizes high-resolution imaging with

a large field of view. As an improved version of AWARE-2,

AWARE-10 has a field of view of 100◦ × 60◦, two billion pixels,

and a resolution of 12.5 cm @ 5 km, representing a significant

improvement in the number of pixels and resolution compared

to AWARE-2.

In Shao et al. (2020)’s team developed a prototype multi-scale

wide-area high-resolution computational optical imaging system

based on the design principle of the secondary imaging system,

as shown in Figure 22A (Fei et al., 2019). It had an imaging field

of view of 120◦ × 90◦, a system pixel count of 3.2 billion, and a

resolution of 5 cm @ 5 km, which was capable of clearly resolving

target objects within a range of 5 km. It was suitable for applications

such as key area defense, border patrol, long-distance detection,

and social activity surveillance. In the future, such systems can

also play an important role in airborne, ground-based, and

super-converged real-view reconnaissance. In the same year, Shao

Xiaopeng’s team designed a multi-scale system in the infrared band

with a range of 8–12µm. The system had a magnification ratio of

2× and a focal length of 68–136mm. The system resolution was

0.179 mrad in the telephoto mode, and 0.36 mrad in the short focal

length, which was capable of effectively realizing the acquisition of

targets in a large field of view and the identification of targets in a

small field of view with high precision. The following year, the team

miniaturized the multi-scale computational optics system, taking

advantage of Galileo’s compact structure to reduce the volume and

complexity of the computational optics system. This resulted in a

significant reduction in cost and energy consumption, and greater

applicability when the system was engineered for application.

On the basis of AWARE-2 (Golish et al., 2012; Youn et al.,

2014) and AWARE-10 (Nakamura et al., 2013), Brady developed

an AWARE-40 (Nakamura et al., 2013; Marks et al., 2014) imaging

system. Unlike AWARE-2 and AWARE-10, the primary mirror

in AWARE-40 adopted a double Gaussian-like structure instead

of a spherical lens, and its pixel count was up to 3.6 billion, with

a resolution of up to 5.4 cm @ 5 km. The system had a superior

imaging performance and could clearly detect and identify long-

distance targets. The prototype and the imaging results are shown

in Figure 22B. In Wu et al. (2016) comprehensively considered

light, light field information, sensors, and image reconstruction in

the computational imaging process and used 4D deconvolution

algorithms based on a multi-scale imaging design scheme to

obtain a large-field-of-view high-definition image suitable for

biomedical applications.

7 Stronger (universality)

Extreme imaging conditions are an urgent problem in

photoelectric imaging technology and are also the key to

improving the universality of the system. However, traditional

imaging methods are limited by single-intensity detection and

information interpretation. It is difficult to obtain and calculate

the target information effectively under the interference of a strong

background and noise, resulting in imaging failure. CIT fully mines

the polarization, spectrum, and other information of the light field,

conducts high-dimensional constraints through upgraded light

field information, and effectively solves the target information in

extreme scenes to achieve high-universality photoelectric imaging.

7.1 Spectral imaging technology

Hyperspectral imaging uses narrow and continuous spectra

for the continuous remote sensing imaging of targets, which has

great advantages in the fine classification, matching identification,

and analysis of distant targets. However, the global scanning of

multiple spectral bands results in tens or even hundreds of gigabytes

of data per spectral data cube. Hence, rapidly locating the target

information of interest from a large amount of data is a problem

that needs to be solved by hyperspectral imaging technology in

the future. In addition, the traditional scanning imaging method

of hyperspectral imaging results in poor real-time imaging.

In Kumar et al. (2017) proposed a single-exposuremultispectral

imaging technique using a single camera. It sacrificed spatial

dimensional information using spatial correlation and spectral

decorrelation of scattered images to achieve multispectral imaging

of simple structures, as shown in Figure 23.

In Monakhova et al. (2020) presented a system comprising an

array of tiled spectral filters placed directly on an image sensor

and a diffusion plate placed close to the sensor. Each point on

the diffusion plate plane was mapped to a unique pseudorandom

pattern on the spectrum filter array, which encoded multiplexed

spatial spectral information. By solving the sparse constraint

inverse problem, hyperspectral images were recovered at a sub-

super-pixel resolution.

A spectral detector based on amonochrome camera can achieve

spectral imaging with a compact and simple structure, and its

cost is significantly less than that of a traditional spectral imaging

system. However, the trade-off between spectral resolution and

spectral range and the energy transmittance problem still exists, and

the related theoretical supplement is the key research direction of

spectral imaging technology in the next step.
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FIGURE 22

(A) Multi-scale computational optical imaging system and its imaging e�ect. (B) Optical imaging system and imaging e�ect of AWARE-40.

FIGURE 23

(A) Schematic of multispectral imaging technique with scattering medium and monochromatic camera, (B) snapshot hyperspectral imaging.
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7.2 Polarization 3D imaging technology

The existing 3D imaging methods are limited by the means

of interpretation and imaging equipment, and cannot satisfy

the increasing demand for 3D imaging in many different

application scenarios. It is difficult to achieve the universal high-

precision imaging of long-range targets. Polarized 3D imaging

technology, through the study of the object surface morphology

and polarization characteristics of the reflected light, interprets the

multi-physical information of the optical field and achieves high-

precision reconstruction of the target (Miyazaki et al., 2016). The

separation of the specular-diffuse reflection and the multi-value of

the azimuth angle in the polarized 3D imaging method have been

the core problems restricting its development in Figure 24A. In

Miyazaki et al. (2002a) proposed a rotational measurement method

to eliminate the multi-value of the incidence angle in specular

reflection and then proposed visible and infrared wavelength

measurement methods (Miyazaki et al., 2002b), which effectively

avoided the multi-value of the incidence angle. With the help of

the polarization of far-infrared wavelengths and high-precision

measurement of the angle of incidence, they solved the multi-

value problem of the angle of incidence. However, methods using

far-infrared and visible light band measurement are complex and

expensive. Moreover, different bands must be resolved under image

matching and other issues, making the process cumbersome and

complex. Many studies have proposed effective solutions to the

multi-value problem of the incidence angle. On the basis of

accurately obtaining the target angle of incidence, eliminating the

multi-value problem of azimuth has become another challenge for

researchers. Morel et al. (2006) proposed an active illumination

method for the multi-value azimuth. This method solves the multi-

value azimuth problem by modulating the light source in different

directions; however, it cannot measure the azimuth of a moving

target. Zhou et al. (2013) proposed a method to diffuse the azimuth

information from the high-frequency region to the low-frequency

region to solve the multi-value problem in the low-frequency

region, which can achieve high-precision 3D reconstruction of the

target on complex surfaces.

In Kadambi et al. (2017) acquired a surface depth map of a

target object using Kinect and then fused it with the polarized

3D imaging technique. They effectively recovered the detailed

information of the object’s surface depth map while solving the

problem of a non-unique azimuthal angle and realized high-

precision 3D imaging under different target conditions. The

reconstruction results are shown in Figure 24B. However, this

method is limited by the distance of the Kinect device and it is

difficult to achieve high-precision imaging over long distances.

Subsequently, Han et al. (2022) combined a deep learning approach

with a monocular polarization camera to simultaneously achieve

specular-diffuse reflection separation and azimuthal correction to

achieve millimeter-level 3D imaging accuracy at a long distance, as

shown in Figure 24C. In addition, Li X. et al. (2021) proposed a

near-infrared monocular 3D computational polarization imaging

method to improve the material universality. They introduced a

reference gradient field in the weight constraints to globally correct

the surface normal blurring of the target with inhomogeneous

reflectivity, which realized the direct shape reconstruction of

inhomogeneous surfaces with inhomogeneous reflectivity. This

method is simple, robust, and effectively avoids the influence of

changes in the reflectivity.

By increasing the dimensions of the light field information,

polarization 3D imaging technology solves the problem of mutual

restriction between the imaging distance and 3D accuracy in

3D imaging and effectively improves the universality of 3D

imaging technology.

7.3 Extremely low SNR interpretation
technology

This improvement in the physical dimensions can relax, and

achieve a universal expansion of, the imaging conditions. For

extremely low-SNR decoding technology under extreme imaging

conditions, an increase in the mathematical dimension is also a

major development idea. A typical example is the sparse low-

rank decomposition of signals, and its core introduces a sparse

low-rank matrix decomposition model in mathematics for signal

detection. The slow-varying background term is regarded as a low-

rank term, and the weak man-made target term is regarded as a

sparse term. Accordingly, with the help of the optimization model

the SNR of the target signal can be greatly enhanced. Then, through

the separation of the information and inverse transformation, the

detection of the weak target and optical field disturbance signal

in a specific domain can be achieved, which greatly improves the

imaging universality. This principle is illustrated in Figure 25A

(Zutao et al., 2016).

Because the solution of the sparse low-rank problem is

pathological, in Cao et al. (2017) proposed a low-rank sparse

decomposition model based on the truncation norm to detect

the background and foreground of datasets from different video

databases. The recovered background and foreground contain

no noise, which meets practical requirements. Part of the

processing effect is shown in Figure 25B. This idea was then

used to process the face image to effectively remove shadows and

reflections from the image, and the processing effect is shown in

Figure 25C.

Subsequently, Fei et al. (2021) applied sparse-low-rank

decomposition to underwater imaging for the first time and

proposed an underwater polarimetric imaging technique based

on sparse-low-rank characteristics. They established a sparse

low-rank decomposition model for underwater images in

the polarimetric domain, effectively separated the target and

background information, and reconstructed a high-definition

target image to achieve high-quality recovery of the image under

the conditions of a low SNR. The imaging results are shown in

Figure 25D. In the same year, Daubechies et al. (2004) and Berman

et al. (2016) proposed a low-rank and dictionary expression

decomposition method for haze removal in dense fog scenes, by

constructing a low-rank and dictionary expression decomposition

model to obtain a low-rank “haze” map. They then recovered a

clear image using double and triple interpolation, producing a haze

removal effect in different scenes, as shown in Figure 25E. This

proves that the proposed method yields satisfactory results for hazy

images in different scenes.
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FIGURE 24

(A) Results of specular-di�use reflection separation and 3D reconstruction of di�erent targets. (B) 3D reconstruction results in di�erent

environments. (C) 3D reconstruction results with millimeter-level 3D imaging accuracy at a long distance.

8 More skills

“Higher,” “farther,” “smaller,” “wider,” and “stronger” are

the urgent needs of the next development of photoelectric

imaging technology, as well as the core of the development

of CIT. In many cases, CIT allows for several skills to be

achieved simultaneously. For example, computational microscopy

techniques (McLeod and Ozcan, 2016; Aidukas et al., 2019) able

to guarantee compact, portable and low-cost imaging systems

with very large field of view and super-resolution capabilities

have recently demonstrated as shown in Figure 26. Polarized 3D

imaging (Han et al., 2022) not only obtains target polarization

information for high contrast imaging, but also achieves high-

precision 3D imaging and restores the true 3D information of

the target.

In CIT imaging, the imaging process was comprehensively

considered in the entire link, and the encoding effect of

the transmission medium on the imaging information was

analyzed. The joint multiplexing of multi-dimensional physical

quantities such as amplitude, phase, polarization, and spectrum

can improve the interpretation ability of information, improve

imaging resolution, imaging field of view, imaging distance,

imaging equipment, and imaging universality, and finally achieve

a breakthrough in imaging limits.

9 Summary and prospect

In the age of information technology, the emergence of

powerful computational capabilities, constantly innovating

information theories, new detector structures, and new

technologies, such as quantum optics, have brought broader

development space for optoelectronic imaging and promoted

the emergence of CIT that combines traditional optics and

signal processing technology. The contribution of GPU and AI

(Kellman et al., 2020) to computational imaging is profound and

has played a crucial role in advancing various aspects of image

processing, computer vision, and related fields. GPU contribute

through their parallel processing power, enabling accelerated image

processing algorithms, supporting deep learning applications for

image recognition and reconstruction, facilitating real-time image

and video processing, and efficiently handling large datasets.

Researchers have found that AI algorithms (Schmidhuber,

2015; Horisaki et al., 2016) can provide new perspectives and

significant enhancements compared to traditional CIT methods,

while in certain cases, specific difficulties in CIT have spurred

advancements in AI architectures themselves. The symbiotic

relationship between these two disciplines is expected to yield

mutual benefits, particularly due to their close ties to optimization

theory and application.
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FIGURE 25

(A) Decomposition principle of low-rank and sparse matrix. (B) Recovery result of low-rank sparse decomposition model based on the truncation

norm (LRSD-TNN). (C) Face restoration results of LRSD-TNN. (D) Reconstruction results of original image under di�erent concentration conditions.

(E) Defogging results in di�erent scenes.

CIT introduces mathematical computation into the imaging

physical process, is driven by imaging information transfer,

integrates the design of the entire link, enhances information

utilization and interpretation, and achieves revolutionary

advantages that are difficult to obtain using traditional optical

imaging technology. The advantages include improvement in

imaging resolution, extension of imaging distance, increased

imaging field of view, and reduction in the size of the optical

system. CIT is expected to realize imaging of clouds and fog, living

organisms, tissue imaging, NLOS imaging, and other subversive

imaging applications.

The development of CIT is not only a reliable way to

overcome the limitations of traditional photoelectric imaging

but also an inevitable choice for the future development of

photoelectric imaging technology. However, as an emerging

cutting-edge crosscutting technology, many challenges remain in

the development of CIT. On the one hand, the lack of basic theories

leads to a lack of guidance for the interpretation of information

and system design. In addition, the direction of development is

unclear, resulting in fragmentation of studies and technology, and

independence. Table 1 lists the advantages and disadvantages of the

typical CITs.
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FIGURE 26

(A) Experimental setup of the low-cost computational microscopy, (B) Bayer color filter array, (C) FPM imaging scheme.

The core of the future development of CIT is the efficient

deciphering of high-dimensional light field information, which

cannot be separated from the promotion of the following

technologies: (1) The development of high-performance system

components is the foundation of computational imaging

technology, such as free-form surface optical systems (Li and

Gu, 2004; Ye et al., 2017), high-performance detectors (Tan and

Mohseni, 2018; Wang et al., 2020), and related fields. (2) Light

field control devices such as meta-surface (Zhao et al., 2021; Yu

et al., 2022; Arbabi and Faraon, 2023) technology will utilize

nanostructures to introduce more physical quantities into the

imaging process, achieving higher performance imaging while also

solving the problem of large system volume and mass. (3) The

improvement of computing power [hardware and compressive

sensing theory (Qaisar et al., 2013; Rani et al., 2018), new models

such as deep learning (LeCun et al., 2015; Kelleher, 2019), quantum

computing methods (Hidary and Hidary, 2019; Rawat et al., 2022),

photon computing (Antonik et al., 2019; Pammi et al., 2019), etc.]

is still a necessary condition for CIT to further enhance. The above

methods will be conducive to achieving the ambitious goals of

computational imaging development, including higher, farther,

smaller, wider, and stronger. In addition, CIT will offer a more

systematic and integrated solution to meet imaging needs for future

development. By combining the respective advantages of a variety

of imaging methods, it can achieve imaging effects and application

scenarios that are not possible for traditional photoelectric imaging

technology, realizing imaging applications such as remote sensing

imaging in space, biomedical imaging, underwater imaging, and

military counter-imaging. We believe that with the continuous

development of CIT and theory, computational imaging systems
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TABLE 1 Advantages/disadvantages of typical techniques for computing imaging links compared.

Scattered light
imaging

Polarization
imaging

Bionic
compound
eye optical
system

Minimal
optical
system

Super-
resolution
reconstruction
Imaging

Low SNR signal
recovery

Advantage Solve the problem of
penetrating through
clouds and through fog
during the detection
process

Effectively eliminate
the influence of
imaging media on
reconstruction
results

Overcome the
mutual restriction
of large field of view
and high resolution

Lighter, low cost,
and portability

The reconstruction
effect is greatly
improved

Effectively realize the
detection of
long-distance targets
with low signal-to-noise
ratio

Disadvantage Difficulty in imaging
through dynamic
scattering media,
Unable to achieve
multi-scattering scene
imaging

Long-distance
imaging is limited

Data processing
pressure is high

Immature
technology

Large amount of
calculation,
Algorithm has
limited application
effect

Long processing time,
Information processing
is stressful

will be richer, more 3D, and more effective; thus, CIT can become

a future-oriented imaging technology to support forward-looking,

strategic scientific, and technological research areas.
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