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While the advance of deep learning has allowed to automate many tasks in

bioimage analysis, quantifying key visual features of biological objects in an

image, such as cells, organs, or tissues, is still a multi-step and laborious task.

It requires image segmentation and definition of features of interest, which often

might be image- and problem-specific. This approach requires image labeling

and training of the segmentation method as well as manual feature design

and implementation of dedicated procedures for their quantification. Here we

propose a self-supervised learning (SSL) approach to encoding in microscopy

images morphological features of molecular structures that play role in disease

phenotype and patient clinical diagnosis. We encode super-resolution images

of slit diaphragm (SD)—a specialized membrane between podocyte cells in

kidney—in a high-dimensional embedding space in an unsupervised manner,

without the need of image segmentation and feature quantification. We inspect

the embedding space and demonstrate its relationship to the morphometric

parameters of the SD estimated with a previously published method. The

SSL-derived image representations additionally reflect the level of albuminuria—a

key marker of advancement of kidney disease in a cohort of chronic kidney

disease patients. Finally, the embeddings allow for distinguishing mouse model

of kidney disease from the healthy subjects with a comparable accuracy to

classification based on SD morphometric features. In a one step and label-free

manner the SSL approach o�ers possibility to encode meaningful details in

biomedical images and allow for their exploratory, unsupervised analysis as well

as further fine-tuning for specialized supervised tasks.

KEYWORDS

self-supervised learning, bioimages, deep learning, image representations, classification

1 Introduction

Biological image analysis typically consists of extracting from images visual

features of interest, such as size, density, positioning, or shapes of cells or other

molecular structures. This approach requires defining these features and implementing

computational methods for image segmentation and feature quantification. While

it allows for hypothesis testing and provides interpretable insights into the image
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data, this approach carries several limitations. Firstly, across a

range of biomedical domains and imaging modalities, image

segmentation methods often times need to be retrained or

redesigned for the specific problem, carrying an important work

burden of image labeling for the method training. Secondly, given

the broad visual variability of biological structures, quantifying

their visual properties might require feature definition and

implementation of dedicated methods for their quantification.

However, not all useful and potentially important features can

be explicitly formulated or easily quantified. Unconstrained and

complex structures, such as biological membranes, nerves, or blood

vessels are difficult to capture with a set of hand-designed features

(Shamir et al., 2010; Zhao et al., 2022).

Recent advances in self-supervised learning (SSL) offer

opportunities to analyze image data in a label- and feature-

free manner (Hu et al., 2021). These methods can be used

to produce image representations that capture their key visual

attributes without the need of image segmentation and engineering

of features. Data augmentation during model training defines

the invariances in the image representations. Manipulating image

aspects such as imaging artifacts, brightness, blur, or unimportant

features, such as object orientation angle in data augmentation

allows to exclude them from the image representations. Ultimately

the representations encode only the semantically meaningful

visual features.

First methods in self-supervised learning include Siamese

networks (Bromley et al., 1993) and autoencoders (Vincent et al.,

2008). Without the use of labels these approaches generate compact

representations of input data while discarding noise and spurious

details. More recently, several SSL methods emerged based on

contrastive learning (Bromley et al., 1993; Grill et al., 2020; He et al.,

2020; Zbontar et al., 2021). These methods are trained with the

objective of maximizing agreement between differently augmented

views of the same data either with or without using another data

point as a negative reference. Resulting image representations are

compact while capturing key semantic elements contained in an

image.

While power of the self-supervised methods has been widely

demonstrated in biomedical images (Shurrab and Duwairi, 2022),

their applications to biological images are still scarce. SSL in the

biomedical domain is most often used for pre-training of methods

that are further fine-tuned for a supervised task, hence reducing

the problem of the cost and limited availability of labeled images.

SSL-based image representations are however seldom used as an

end tool for data exploration and discovery. This is potentially due

to the difficulty of quantitative validation of the SSL-derived image

representations (Huang et al., 2023).

Abbreviations: AMAP, Automatic Morphological Analysis of Podocytes; BT,

Barlow Twins; BYOL, Bootstrap Your Own Latents; FP, Foot process; FSGS,

Focal segmental glomerulosclerosis; MCD, Minimal Change Disease; MoCo,

Momentum Contrast; NTN, Murine Nephrotoxic Nephritis; PCA, Principal

Component Analysis; RF, Random Forest; ROI, Region of interest; SD, Slit

Diaphragm; SDNS, Steroid-dependent Nephrotic Syndrome; SimCLR, Simple

Framework for Contrastive Learning; SSL, Self-Supervised Learning; STED,

Stimulated Emission Depletion Microscopy; t-SNE, t-Distributed Stochastic

Neighbour Embedding.

Here we present a self-supervised approach to the analysis

of super-resolution microscopy images of a specialized molecular

structure—the slit diaphragm (SD) in the kidney. SD is formed

by membranes of neighboring podocyte cells, which form

interdigitating patterns between the cells (Figure 1). Previous

studies, based on segmentation of foot processes (FPs)—individual

protrusions in the SD, have demonstrated the relationship of SD

morphology to the kidney’s filtration capacity (Deegens et al., 2008).

Dense and elongated FPs were shown as characteristic to healthy

tissue, whereas less dense and more circular shapes typically occur

in diseased kidney (Butt et al., 2020).

Though FPs are distinguishable within the SD, in particular in

the diseased tissue, its definition is imprecise (Deegens et al., 2008).

FPs are protrusions or bends of the podocyte membranes. However,

determining the initiation and termination of a bend, as well as the

critical angle at which a membrane bend qualifies as an FP, is largely

subjective. Furthermore, parameters describing individual FPs do

not take into account their spatial configurations, positions, and

orientations relative to one another. In a nutshell, quantification of

SD morphology is an example of a problem where finding the right

set of morphometric features to comprehensively describe it, might

prove challenging (Ichimura et al., 2018).

To address this problem, we explore the potential of SSL

methods to describe the complex morphological structures in

microscopy images of the SD. We quantitatively validate the

derived image representations using previously published method

for FP morphometric parameter estimation (David Unnersjö-Jess

et al., 2021). We next demonstrate the capacity of the SSL-based

image representations to reflect type of kidney disease as well as

disease advancement.

2 Materials and methods

2.1 Dataset and imaging

For method development we used a dataset comprising

288 images of mouse kidney tissue samples. 70% of images

were used as the training set, and another 30% for validation

and testing. The samples were collected from four different

mouse models: healthy controls (76 images), models of focal

and segmental glomerulosclerosis (FSGS, 77 images), nephrotoxic

nephritis (NTN) mice (121 images), and mice with Adriamycin-

induced nephropathy (14) (Brähler et al., 2018). All phenotypes

were proportionately present in training, validation, and test sets.

Kidney tissue was collected from individuals with ages from 0 to 20

weeks old and imaged with a super-resolution stimulated emission

depletion (STED) microscopy using a previously published

protocol (David Unnersjö-Jess et al., 2021). Our model was also

tested on a dataset comprised of 151 images of FPs in 19 human

minimal change disease (MCD) and steroid-dependent nephrotic

syndrome (SDNS) patients. We fine-tuned the model with 105

images in this dataset and tested on 46.

For imaging, the tissue was cleared and nephrin - protein

present between podocyte cells along the SD - was marked with a

fluorescent stain resulting in images in which only the SD is visible

(Figures 1B, C). To eliminate noise in the images, we binarized

them into background and the foreground SD signal. All images
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FIGURE 1

Diagram of SD and example microscopy images of SD in mouse kidney. (A) Sketch of SD and its location on capillary in kidney. Diagram on the left

side of the dotted line contains a regular SD pattern of a healthy kidney, right side contains a less regular and more sparse pattern typical of a

podocyte kidney disease. (B) Example microscopy image of SD in a healthy mouse tissue. (C) Example microscopy image of a diseased mouse tissue.

were scaled to the size of 1024 x 1024 pixels. The resolution of each

image is 22 nm per pixel.

In order to inspect and interpret the SSL image representations,

we quantified morphometric parameters of the FPs using a

previously published method (Butt et al., 2021). The morphometric

parameters that we quantified include: FP area, FP perimeter, FP

circularity, SD length, and grid crossing count. Grid crossing count

is measured as the number of intersections of the SD with a grid of

horizontal and vertical lines spaced by 32.5 nm and divided by the

size of the region of interest (ROI)—foreground area in each image

comprising the entire SD signal. Similarly, SD length is measured

relative to the ROI size. FP parameters were averaged for all the FPs

in each image. As a result, each image was described by these five

morphometric measures.

2.2 Model choice

Out of a set of SSL methods: Bootstrap Your Own

Latents (BYOL) (Grill et al., 2020), Simple Contrastive Learning

Framework (SimCLR) (Chen et al., 2020), Barlow Twins (BT)

(Zbontar et al., 2021), and Momentum Contrast (MoCo) (He et al.,

2020), we selected BYOL based on its ability to learn invariant and

informative image features from unlabeled dataset without the need

of defining pairs of negative data points. We used ResNet-34 as the

network backbone. The backbone in this model acts as the encoder

transforming images into their numeric representations. We chose

8 as the representation size after trying out the representations of

higher dimensionalities. The loss function in our implementation

of BYOL is pseudo Huber loss (Equation 1) (Huber, 1964) between

the embeddings produced for the two augmented views of original

images:

pseudo_huber(δ, r) = δ2

(

√

1+
( r

δ

)2
− 1

)

(1)

where r is the difference between embeddings of two

augmented versions of an image and δ is the scaling factor which

we computed as follows. We measured discrete Fourier transform

(DFT) across the whole dataset. Next, we computed mean Fourier

transform for every image separately. Then, we calculated the

difference between DFT and the mean value Fourier transform

of each image. We took the real parts of inverted differences and

averaged their absolute values to obtain δ. We chose Huber loss due

to its ability to balance between L2 and L1 loss. For small values of

r compared to δ it is well approximated by quadratic function r2/2,

while for big values of r it behaves like linear function. Consider the

asymptotic formula:

(1+ x)n = 1+ nx+ o(x) (2)

where x → 0.

Using Equation 2, we can simplify the pseudo Huber loss

function to a quadratic form. This is because, in our context, x is

equivalent to r2. Hence the loss resembles L2: pseudo_huber(δ, r) =
r2

2 On the other hand, if r2 is much larger than δ, then:

( r

δ

)2
>> 1 (3)

Consequently, the expression:

√

1+
(

r
δ

)2
can be approximated

as | r
δ
|, so Huber loss will behave like L1 in the case described by

Equation 3.

2.3 Data augmentations

BYOL learns image representations via maximizing the

agreement between two randomly augmented views of an input

image. Due to the specificity of the images in our study, as image

augmentations in network training we selected and implemented

following operations: random flips along x- and y-axis, random

image rotations, and random relocations of patches of foreground

regions.

Random relocations were implemented taking into account the

location of the tissue blobs in input images. In this augmentation
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we find separate blobs of foreground image areas, crop these

regions and insert them in new, randomly chosen positions

such that the cropped boxes do not overlap. The ROIs were

found using classic computer vision methods provided by opencv

library: contour finding, filling polygons, dilution, and convex

hull (Bradski, 2000).

2.4 Model training

We used Stochastic Gradient Descent optimizer with the

momentum of 0.9 and the weight decay of 1e-4, batch size of

4, and learning rate 1e-3. Training was continued for up to 500

epochs, until the loss stopped decreasing, due to the early stopping

mechanism with the patience equal to 30 steps. The values of

hyperparameters were chosen based on the recommendations of

the original paper as well as based on qualitative assessment using

visualization methods described below (Grill et al., 2020).

Validation loss was calculated every 4 epochs. To prevent

overfitting we used gradient clipping procedure with the norm of

1.0 and loss L2 regularization with the coefficient 1e-3.

2.5 Visualisations

As a part of our analysis we visualised the generated image

embeddings in 2D. We used t-distributed stochastic neighbor

embedding (t-SNE) algorithm (Van der Maaten and Hinton and

Hinton, 2008) with the perplexity of 15 to project the 8-dimensional

representations on two-dimensional space. T-SNE contains a

stochastic mechanism of a random walk in the graph of data

representations during computation of data affinities. To improve

reproducibility of t-SNE-based visualizations independent of its

stochastic step, we used principal component analysis (PCA) to

reduce the dimensionality of latent embeddings prior to t-SNE.

This initial PCA transformation helps to reduce computational

complexity and to limit correlated elements in the data resulting

in more stable t-SNE results.

2.6 Classification model

We trained a Support Vector Machine (SVM) to distinguish

between healthy and diseased conditions. To select the best settings

for this model, we tested different combinations using 10-fold

cross-validation. We used radial basis function as SVM kernel with

margin parameter C = 1.0. We adjusted parameter γ based on the

number and variability of our data points.

In a similar manner we trained an additional SVM classifier

for distinguishing between diseased (FSGS and NTN) vs.

control groups. Adriamycin-treated mice which show intermediate

phenotype between the healthy and diseases were excluded from

this part of the analysis. The function kernel was set to third degree

polynomial, with the margin parameter C = 1.0. The parameter γ

was scaled as the reverse of the product of number of features and

variance in the dataset. Number of training iterations was limited

by the tolerance equal to 0.001.

In order to test the capacity of representations to capture

morphology of the respective images we also trained a regression

model predicting various morphometric parameters from the

embeddings. We used CatBoost model, which builds an ensemble

of decision trees sequentially while minimising the residual error of

existing ensemble.

3 Results

3.1 SSL representations reflect disease
phenotypes

We first inspected the capacity of the SSL embeddings to

distinguish healthy from diseased as well as various types of kidney

disease. The embeddings appear to correctly capture differences in

morphology between the FSGS and healthy mice across their ages

(Figure 2A). Two phenotypes are separate in their latent space with

a limited overlap. FSGS is advancing with age and we could observe

slight pattern of age distribution in the latent space.

The different mouse models of kidney disease, including

FSGS, NTN, and Adriamycin-induced nephropathy mice are

similarly separated in the SSL-derived image representation space

(Figure 2B) with the healthy phenotypes on the one and diseased

phenotypes on the other edge of the data point cloud in the latent

space. Adriamycin-induced disease shows less severe clinical effects

as well as pathological changes in the SD compared to the NTN and

FSGS models which is reflected by their grouping in between the

healthy and the NTN, FSGS phenotypes (Figure 2B).

3.2 SSL representations reflect SD
morphometry

It has been previously shown that morphometry of podocyte

FPs significantly differs between control and disease model mice

(Butt et al., 2020). We next inspected to what extent the SSL

embeddings capture relevant aspects of the morphometry of the

FPs.

Across all images we quantified morphometric parameters such

as SD length, grid crossings, FP area, perimeter, and circularity

(see Materials andMethods for their detailed description). We next

colored the points in their SSL-derived latent space according to

the value of morphometric parameters in the respectivemicroscopy

image (Figure 3). We observed a visible gradient of parameter

values along the projection of data points. Higher SD length and

FP area as well as lower FP circularity characterize healthy control

samples located in the upper right part of the 2D projection of the

embedding space (Figure 3). These healthy samples have a dense

structure of elongated FPs which is reflected by the parameters

(Butt et al., 2020). The diseased tissue samples located in the

bottom-left part of the plot havemore sparse and round-shaped FPs

which is reflected by higher circularity and lower SD length of the

data points in this part of the plot.While not used in the embedding

space construction, the morphometric parameters of FPs are visibly

captured by the SSL model.
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FIGURE 2

t-SNE visualization (perplexity = 15) of 8-dimensional embeddings of images of SD across several kidney disease phenotypes. Each image is

represented by a dot and colored according to the age and phenotype. (A) SSL-derived embeddings that represent FSGS and control phenotypes at

di�erent ages indicated by the color brightness. (B) Projection of embeddings of four disease phenotypes: Adriamycin induced nephropathy, NTN,

control, and FSGS.

FIGURE 3

2D t-SNE projection (with perplexity = 15) of 8-dimensional embedding space of the four disease models colored based on the values of four

morphometric parameters: (A) SD length per area [ µm

µm2 ], (B) grid crossings count [µm−2], (C) mean FP circularity (from 0 to 1), and (D) FP perimeter

[µm].
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FIGURE 4

T-SNE projections (with perplexity = 15) of representations of human samples with respect to their morphometry and patient disease advancement.

(A) 2D projection of the embeddings of the patient cohort colored according to the SD length [ µm

µm2 ] and (B) FP circularity. (C) 2D projection colored

according to the patient level of albuminuria, measured as amount of albumin in urine [g/L]. (D) Histogram of albumin levels [g/L] along the x-axes.

Albumin concentration shows a gradient of increasing values along the 2D latent space projection.

3.3 SSL representations and disease
advancement

We next inspected to what extent the SSL representations

reflect the advancement of kidney disease. We used a previously

published cohort of pediatric patients diagnosed with SDNS and

MCD to inspect whether the SSL-derived image representations

reflect clinical parameters of these patients (Unnersjö-Jess et al.,

2023). The morphometric parameters were previously shown to

change in agreement with the levels of albuminuria in this cohort

(Butt et al., 2021).

The variability of morphometry of FPs in these patients appears

lower compared to the mouse models and the embedding space of

the human samples does not show a clear gradient ofmorphometric

parameter change at a first glance (Figures 4A, B). However, the

level of albuminuria, while differing widely among the patients

(Figure 4C) shows a trend of increased values at the bottom-right

part of the 2D projection of the embedding space (Figure 4D).

These results suggest that the SSLmodel captures clinically relevant

aspects of the SD morphology.

3.4 Predictive power of SSL image
representations

To quantitatively compare the SSL representations with

image representations based on morphometric parameters, we

used both types of representations in a classification task of

distinguishing between the control and FSGS tissue samples

(Butt et al., 2020). Using the same data split as in the

SSL model, we trained two SVM-based classifiers—one on

the SSL-derived image representations and one on image

representations in a form of vectors of five morphometric

parameter values.
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TABLE 1 The accuracy of binary SVM classifier (control or FSGS) based on

either SSL representations (1st column) or morphometric parameters (2nd

column).

Metrics [%] Predictions based
on SSL

representations

Predictions
based on

morphometric
parameters

Accuracy 95 93

Recall 96 85

Precision 95 100

F1 95 92

TABLE 2 The accuracy of SVM prediction of 2 classes FSGS & NTN vs.

control based on either SSL representations (1st column) or

morphometric parameters (2nd column).

Metrics [%] SVM predictions
based on SSL

representations

SVM
Predictions
based on

morphometric
parameters

Accuracy 91 98

Recall 91 98

Precision 93 98

F1 91 97

Table 1 shows the accuracy of genotype prediction of the two

models. While the morphometry offers high prediction accuracy

in the test set, using SSL representations as an input the classifier

distinguishes correctly the two groups with recall and precision of

96 and 95%, respectively (Table 1). Importantly this performance

is achieved without the need of image segmentation and feature

engineering.

As NTN and FSGS share similar morphological changes in

the SD (Tesch et al., 2021), we merged these two conditions

into one class and tested whether it is possible to find a

separating decision boundary between control and the FSGS-

NTN group. The precision and overall performance of the

SVM demonstrate the sufficient separation (Table 2), though it is

lower by 4% compared to FSGS-control classification shown in

Table 1.

To test whether the SSL-derived image representations reflect

the structure of objects they contain, we trained a regression model

inferring values of morphological parameters of FPs from the SSL-

derived image representations. Results of inference of FP circularity

and perimeter are shown in Table 3. Mean squared error is below 1

% of the circularity and below 10% of the perimeter value. These

results corroborate our claim that the SSL embeddings indeed

capture relevant clinical as well as morphological information

about the SD.

4 Discussion

With the advance of deep learning methods, segmentation

of biomedical image data is increasing in accuracy. Segmenting

TABLE 3 The accuracy of CatBoost prediction of morphometric

parameters based on SSL representations.

Metrics Mean circularity Mean
perimeter

[µm]

Mean squared error 0.005 0.173

Mean absolute

percentage error

0.13 0.198

Mean absolute error 0.06 0.34

To evaluate the quality of regressions the metrics of mean squared error, mean absolute

percentage error, mean absolute error were used.

objects of interest in an image enables the quantification of

their key morphological features, such as area or circularity.

While accurate, segmenting highly specific structures or images

with particular characteristics often requires considerable effort

in image labeling and training of the segmentation method

(Wang et al., 2018). Additionally, defining morphometric features

that best describe unconstrained and complex structures such as

membranes, nerves, or blood vessels is challenging both in design

and implementation.

Here we propose an end-to-end, unsupervised solution for

capturing in biomedical images their meaningful visual features.

We present an SSL model that encodes images in form of

their latent representations and we generate such latent vectors

of super-resolution images of SD—a specialized membrane in

kidney. The resulting latent representations reflect not only

morphology of the SD, quantified via several morphometric

parameters, but also the clinical aspects of the disease advancement.

The representations additionally allow for distinguishing between

the healthy and diseased samples as well as to infer their

morphological parameters.

As segmentation and quantification of visual features of

biomedical image data often requires dedicated, problem-specific

images, segmentation masks, and feature design, feature-based

image analysis carries an important work burden (Isensee

et al., 2021; Savjani, 2021). This task becomes even more

difficult if annotation and feature definition requires expertise

in a given branch of biomedical science. Our study showcases

SSL methods as a powerful approach to mining of large

image datasets in an annotation- and segmentation-free manner

and provide insights without the need of their labeling and

feature analysis.
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