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A low-cost close-range
photogrammetric surface
scanner
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Nikolaos Stivaktakis, Nikolaos Partarakis, Emmanouil Zidianakis

and Ioanna Demeridou
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Introduction: A low-cost, close-range photogrammetric surface scanner is

proposed, made from Computer Numerical Control (CNC) components and an

o�-the-shelf, consumer-grade macro camera.

Methods: To achieve micrometer resolution in reconstruction, accurate and

photorealistic surface digitization, and retain low manufacturing cost, an image

acquisition approach and a reconstruction method are proposed. The image

acquisition approach uses the CNC to systematically move the camera and

acquire images in a grid tessellation and at multiple distances from the

target surface. A relatively large number of images is required to cover

the scanned surface. The reconstruction method tracks keypoint features to

robustify correspondence matching and uses far-range images to anchor the

accumulation of errors across a large number of images utilized.

Results and discussion: Qualitative and quantitative evaluation demonstrate the

e�cacy and accuracy of this approach.
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1 Introduction

Close-range photogrammetry is a technique used to create accurate three-dimensional
(3D) models of surfaces from relatively short distances. The motivation for the close
range is the detailed reconstruction of the structure and appearance of these surfaces.
Close-range photogrammetry finds application in the micrometer-range reconstruction
of structures in industrial (Luhmann, 2010; Rodríguez-Martín and Rodríguez-Gonzalvez,
2018; Rodríguez-Martín and Rodríiguez-Gonzálvez, 2019), biological (Fau et al., 2016),
archaeological (Gajski et al., 2016; Marziali and Dionisio, 2017), anthropological (Hassett
and Lewis-Bale, 2017), and cultural (Fernández-Lozano et al., 2017; Inzerillo, 2017)
applications; see Lussu and Marini (2020) for a comprehensive review of close-range
photogrammetry applications.

However, when compared to other surface scanning methods, close-range
photogrammetry is a cost-effective choice; it often requires specialized hardware
that is less expensive but still costly. Moreover, several difficulties hinder its application.
Practical difficulties relate to the numerous images required to cover a given surface
area, the tedious process of setting up and calibrating, and the avoidance of shadows and
reflections, which affect the quality and accuracy of results. Imaging difficulties relate
to the close-range imaging of surfaces, which has a very short depth of field, severe
lens distortion, and limited field of view (FoV). Algorithmic difficulties relate to the
accumulation of geometric errors when using large numbers of images.
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To alleviate practical difficulties an apparatus is proposed that
uses computer numerical control (CNC) to move the camera to
designated locations and automatically acquire images with the
same illumination conditions at each pose. This motorization
undertakes the burden for the operator, making it robust against
human errors. Moreover, it records the (nominal) camera location
and associates it with the acquired image. This information is
exploited for the proposed reconstruction method.

To retain a low cost, an off-the-self consumer-grade camera and
open printable CNC parts are utilized. Specifically, this work reuses
the hardware of the contactless flatbed photogrammetric scanner
used by Zabulis et al. (2021), which is composed of off-the-shelf
and printable components, provides 2D image mosaics of surfaces
in the micrometer range, and costs less than US$1,000.

To address algorithmic difficulties, an image acquisition
approach and a reconstruction method are proposed, designed to
reduce the reconstruction complexity and errors.

The utilized CNC device is shown in Figure 1 (left), with
its three axes of motion superimposed; red, green, and blue
correspond to the xx′-, yy′-, and zz′-axes, respectively. This camera
faces the target surface perpendicularly. The device is used to
methodically acquire images across the surface region (xx′- and
yy′-axes) and at different distances, or elevations, (zz′-axis) from
the surface. In Figure 1 (right), the characteristic elements of the
proposed image acquisition are illustrated. Shown is the camera at
viewpoints a, b, and c. Viewpoints a and b are at the same elevation
and exhibit lateral overlap. Viewpoint c is at a higher elevation
and images a surface region that includes the regions imaged from
viewpoints a and b; this type of overlap across layers is referred to
as medial overlap.

This work brings the following novel characteristics: It
uses auxiliary images from multiple distances to create more
accurate surface reconstructions. It furthermore uses tracking
of the features across images at multiple distances to enhance
accuracy. Furthermore, it uses a Cartesian motorized platform
for image acquisition (as opposed to the conventional turntable
configuration), which enables the scanning of wider areas. In
addition, it provides higher resolution than other methods reported
in the literature. Last but not least, it can be implemented in a
very cost-efficient manner, in terms of hardware, compared to other
approaches. To the best of our knowledge, it is the first method that
utilizes images at multiple distances to improve the accuracy of the
surface reconstruction result.

The imaging resolution for surface scanning is denoted as
measured by the number of pixels, or points, per unit area in metric
units, that is, p/mm2. To ease the comparison with off-the-shelf
scanners, the equivalent of dots per inch, that is, points per inch
(ppi), is also used. The ppi is a 1Dmetric that denotes the resolution
of points across a line, and thus, a resolution of 100 ppimeans that
in the scanned image, 100 × 100 = 10 Kp would be devoted for a

Abbreviations: b, byte; c, cent; CNC, Computer Numerical Control;

CPU, Central Processing Unit; €, Euro; FoV, Field of View; G-code,

Geometric Code; GHz, gigahertz; GPU, Graphics Processing Unit; JPEG,

Joint Photographic Experts Group; Mp, megapixel; NeRF, Neural Radiance

Field; p, pixel(s); ppi, points per inch; PNG, Portable Network Graphics; PLA,

Polylactic acid; PLY, Polygon File Format; RAM, Random-Access Memory.

surface area of 1 in× 1 in = 1 in2. It is equivalent to saying that the
scanned image has a resolution of 10 Kp/in2 (number of points/per
square inch).

2 Related work

As reviewed in the following, the vast majority of close-
range photogrammetric methods use a turntable to acquire images
around the scanned object. Although this configuration is suitable
for 3D objects, it is constraining for surfaces in terms of the spatial
extent that can be reconstructed. The reason is that as the size of
the object becomes larger, the central locations of the object occur
farther away from the camera and are imaged in lower resolution.
Thus, when using a turntable, the target object is required to
be imaged from multiple angles that comprise a hypothetical
hemisphere above the scanned target. This requirement adds to
the constraints of the imaging apparatus, making it cumbersome
and increasing its cost. The conditions required for surface
scanning have been explored in more depth in aerial, far-range
photogrammetry, for the digitization of Earth surfaces. In these
cases, images are acquired from locations that form a Cartesian
grid. The reconstruction is aided by GPS coordinates and gyroscope
measurements available during image acquisition, which aid the
accuracy of extrinsic camera parameter estimation.

In the remainder of this section, we first review the cost
and applicability benefits of photogrammetry compared to other
modalities for highly detailed surface scanning. Then close-range
photogrammetric methods are reviewed in terms of the hardware
they employ to motorise camera motion, the optics they use, and
the illumination that they adopt. Next, the methods in the literature
are reviewed as to the data acquisition specifications that they offer
and the reconstruction methods they employ. Afterward, the ways
that the scale factor is estimated for close-range photogrammetric
methods are outlined. Next, recent variants and uses of close-range
photogrammetry are reviewed. Finally, the contributions of this
work are outlined.

2.1 Comparison with other modalities for
surface scanning

Besides photogrammetry, other modalities for surface scanning
in large detail are the following: Computed tomography (CT) uses
X-rays to provide volumetric scans of objects and their surfaces
and has been used for the digitisation of small objects (Illerhaus
et al., 2002). Magnetic resonance (MR) tomography has been also
used for detailed volumetric scans of small objects (Semendeferi
et al., 1997). Laser scanning uses the time-of-flight principle
to measure distances and reconstruct surfaces. Structured light
scanners project light patterns onto surfaces, capture the deformed
patterns using a camera, and from these deformations, estimate
surface structure. Other close-range photogrammetric approaches
exhibit significant constraints as to the scanning area and hardware
requirements and are reviewed in Section 2.

Although highly accurate, tomographic methods (CT, MR)
exhibit severe costs and can be applied only in specialized
laboratories. Moreover, they provide volumetric and accurate
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FIGURE 1

The computer numerical control device (left) and illustration of image acquisition across distances (right).

structure reconstruction but do not reconstruct surface appearance
(texture). Laser scanning and structured light scanning capture
surface appearance, are marginally less accurate, and are more cost-
efficient because they require less equipment. Photogrammetry is
even more affordable and widely available, as it relies on standard
cameras only. Moreover, photogrammetry excels in capturing the
appearance of surfaces because it images surfaces without the effects
of active illumination. Photogrammetry produces high-resolution
and highly detailed textured models that accurately represent visual
appearance. Compared to laser and structured light methods,
photogrammetry can be less accurate but is passive in that it does
require the projection of energy in the form of radiation (e.g.,
light, X-rays, etc.) upon the scanned surface. This is important for
light-sensitive materials, encountered in historical, archaeological,
biological, and cultural contexts.

2.2 Close-range photogrammetry

2.2.1 Motorisation
The motorization of camera movement has been used in

photogrammetric reconstruction to alleviate user effort and acquire
images at numerous prescribed viewpoints. The main strategies of
motion are either circular around the target, using a turntable, or in
a Cartesian lattice of viewpoints (Lavecchia et al., 2017). Cartesian
approaches exhibit the advantages of being unconstrained of the
turntable size and that the camera can be moved arbitrarily close
to the scanning target. This work follows the latter approach to
scan wider surface areas and avoid the occurrence of shadows
and illumination artifacts. The most relevant motorized scanning
apparatus to this work is presented by Gallo et al. (2014), which
also uses CNC to move the camera.

2.2.2 Optics
In the millimeter and submillimetre range, zoom and

microscopic, or “tube,” lenses have been used (González et al.,
2015; Percoco and Salmerón, 2015; Lavecchia et al., 2017),
employing tedious calibration procedures and relatively inaccurate
results (Shortis et al., 2006). Instead, macro lenses are more
widely used in the photogrammetric reconstruction of such small

structures (Galantucci et al., 2018). Both lens types exhibit a very
limited depth of field.

To compensate for the limited depth of field, focus
stacking (Davies, 2012), an image-processing technique
for the enhancement of the depth of field, is widely used
in macro photography and, subsequently, in close-range
photogrammetry (Galantucci et al., 2013; Mathys and Brecko,
2018). Focused-stacking techniques capture a scene in a series of
images, each focused at a gradually different depth, and combine
them in a composite image with an extended depth of field. Focus
stacking is often embedded in the hardware of consumer-grade
macro cameras.

2.2.3 Lighting
Lighting configuration is essential in photogrammetry. The

main goal is to prevent shadows and highlights, both of which
hinder the establishment of correspondences. In the close-range
photogrammetry of objects and surfaces, set-ups have been used
that insulate the target object from environmental illumination
and use a specific light source in conjunction with illumination
diffusers to prevent the formation of shadows. More recently, ring-
shaped light sources around the lens are often employed to provide
(approximately) even and shadow-free illumination. In close-range
photogrammetry, the latter approach is adopted, and some systems
use light sources that move along with the camera (Galantucci et al.,
2015; Percoco et al., 2017a,b).

2.2.4 Structured lighting
Purposefully designed illumination is used by some

photogrammetric methods to facilitate the establishment of stereo
correspondences. This technique is known as “active illumination,”
“active photogrammetry,” or “structured light” (Percoco et al.,
2017a; Sims-Waterhouse et al., 2017a,b). Pertinent methods project
patterns of light to artificially create reference points on surfaces
that can be matched across images. The main disadvantage is
that the projected light either alters the visual appearance of the
reconstructed surfaces or is in the infrared domain and detected
by an additional camera. In both cases, additional hardware
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and/or image acquisitions are needed to obtain photorealistic
reconstructions.

2.2.5 Scanning area and resolution
Reported apparatuses for close-range photogrammetry vary

depending on imaging specifications.
Studies that report scanning areas fall in the range of

approximately [0.14, 158.7] cm2. Specifically, the maximum area
reported from these studies is (approximately) as follows:
0.14 cm2 (González et al., 2015), 10 cm2 (Sims-Waterhouse et al.,
2017b), 15 cm2 (Percoco et al., 2017a), 22.5 cm2 (Marziali and
Dionisio, 2017), 25 cm2 (Lavecchia et al., 2018), 32 cm2 (Gallo et al.,
2014), 40 cm2 (Galantucci et al., 2015), 57.6 cm2 (Galantucci et al.,
2016), 60 cm2 (Gajski et al., 2016), 91.5m2 (Percoco and Salmerón,
2015), 93.4 cm2 (González et al., 2015), and 158.7 cm2 (Galantucci
et al., 2016). Out of these studies, only González et al. (2015) report
the achieved resolution, which is 3, 745 p/mm2.

Studies that report the number of images and pixels processed
fall in the range of [9.6, 3, 590.0] Mp. The data load is calculated
as the number of utilized images times the resolution of each
image. Specifically, the maximum number of pixels reported from
these studies is (approximately), in Mp, as follows: 16 × 0.6 =

9.6 (Percoco and Salmerón, 2015), 7 × 10.1 = 70.7 (Percoco et al.,
2017b), 12 × 10.1 = 121.2 (Lavecchia et al., 2018), 30 × 24 =

720.0 (Sims-Waterhouse et al., 2017a), 72 × 12.3 = 885.6 (Gallo
et al., 2014), 40 × 36.3 = 1, 452.0 (Marziali and Dionisio, 2017),
245 × 10.2 = 2, 499.0 (Fau et al., 2016), and 359 × 10 =

3, 590.0 (Galantucci et al., 2015).

2.2.6 Reconstruction
Some of the reviewed approaches perform partial

reconstructions, which result in individual point clouds, and
then merge them using point-cloud registration methods.
These methods are mainly based on the iterative closest point
algorithm (Besl and McKay, 1992; Yang and Medioni, 1992), either
implemented by the authors or provided by software utilities, such
as CloudCompare and MeshLab. The disadvantages of merging
partial reconstructions are the error of the registration algorithm
and the duplication of surface points that are reconstructed by
more than one view. These disadvantages impact the accuracy and
efficacy of the reconstruction result, respectively.

2.2.7 Scale factor estimation
Several methods have been proposed for generating metric

reconstructions. One way is to place markers at known distances
so that when they are reconstructed, they yield estimates of the
absolute scale. However, this method is prone to the localization
accuracy of said markers. An improvement to this approach
comes from Percoco et al. (2017b), who used the ratio of the
reconstructed objects over their actual size, which is manually
measured. However, it requires the careful selection of the reference
points to estimate the size of the object both in the real and the
reconstructed objects and is, thus, prone to human error. This can
be a difficult task for free-form artworks as they may not exhibit
well-defined reference points, that is, as opposed to industrially

manufactured objects. Therefore, the accuracy of this approach is
dependent on the accuracy of manual measurements of the actual
object and its reconstruction.

Another way to achieve metric reconstruction is to include
objects of known size in the reconstructed scene, such as printed
2D or 3D markers (Galantucci et al., 2015; Percoco et al., 2017b;
Lavecchia et al., 2018). This method does not involve human
interaction and is not related to the structure of the reconstructed
objects. The main disadvantage of this approach is the production
of these markers, as printing markers at a micrometer scale is not
achievable by off-the-shelf 2D or 3D printers.

One way to estimate the scale factor is based solely on the
reprojection error of the correspondences of a stereo pair (Lourakis
and Zabulis, 2013). This approach is independent of the shape
of the target object and does not require human interaction.
However, this approach is formulated for a stereo pair and not for
a single camera.

2.3 Recent adaptations and variants of
close-range photogrammetry

The theory of photogrammetry has been studied in depth
over the last three decades, with most of its aspects being well-
covered by a staggering number of studies. As a result, several
off-the-shelf products nowadays exist and are being used in several
applications, with Agisoft, Pix4D, 3DF Zephyr, and PhotoCatch
reported most widely. More recent works in the field of close-
range photogrammetry focus on image acquisition protocols,
complementary steps, parameter optimization, and the utilization
of domain-specific knowledge. In the following, some recent and
characteristic examples are reviewed.

A recent algorithmic improvement relevant to the application
of close-range photogrammetry can be found in Eldefrawy et al.
(2022), where an independent preprocessing step is introduced
in the conventional structure-from-motion (SfM) pipeline for
detecting and tracking of multiple objects in the scene into isolated
subscenes. The approach uses a turntable and is not relevant to
surface scanning, which is the focus of this work.

The approach detailed by Paixão et al. (2022) uses conventional
photogrammetry to reconstruct a rock surface. It uses a turntable
to collect images from multiple views and two elevation levels.
The method is reported to handle up to 72 images and achieve
a maximum resolution of 22.5 p/mm2. It employs manual effort
in cleaning noise from the reconstruction using the MeshLab
3D editor. Lauria et al. (2022) used a turntable and a 30-cm
imaging distance to create photogrammetric reconstructions of
human crania. The proposed approach elaborates on the imaging
conditions to provide a guide of the photo acquisition protocol
and the photogrammetric workflow while using conventional SfM
single-camera photogrammetry.

Close-range photogrammetry is employed in the detailed
analysis of geological structures. Conventional photogrammetry
was used by Jiang et al. (2022) to reconstruct soil surfaces and
assess rill erosion. Harbowo et al. (2022) used close-range (1-cm)
photogrammetry to reconstruct meteorite rock structures. Fang
et al. (2023) used a turntable and conventional photogrammetry
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are used to measure the size and shape of small (≈5-mm)
rock particles.

An application domain of close-range photogrammetry regards
dental structures, which often exhibit shiny reflectance properties.
The method used by Furtner and Brophy (2023) reconstructs small
and shiny dental structures, using the Agisoft photogrammetry
suite; in this case, specular reflections and shadows are manually
removed using post-processing of the acquired images in Adobe
Photoshop Elements. The approach Yang et al. (2023) used
included a PhotoCatch photogrammetric application for mobile
phones to create a 3D reconstruction of dental structures; specular
reflections were blocked using two custom light-blocking filters
and two circular polarisers. Scaggion et al. (2022) used the
3DF Zephyr photogrammetric suite to reconstruct individual
teeth; in this case, the structures were highly diagenized and
were not shiny. Kurniawan et al. (2023) used conventional SfM-
based photogrammetry for the forensic evaluation of human
bite marks in matte wax surfaces. Dealing with shiny surfaces
was also considered in the approach used by Petruccioli et al.
(2022), but they utillized an application of matting spray while
using conventional turntable photogrammetry in combination with
highly controlled illumination.

Guidi et al. (2020) investigated the relation between the amount
of image overlap in the acquisition of photogrammetric data and
reconstruction accuracy, leading to the conclusion that a larger
overlap is required in close-range photogrammetry (>80%) than
that in conventional photogrammetry (40–60%). The experiments
performed in this work required a turntable, manual intervention,
and incorporating imaging distances of 20 cm. The results of this
study coincide with those of the proposed approach in which a large
overlap is employed.

Context domain knowledge was employed by Dong et al.
(2021), which uses the Pix4D photogrammetric suite to reconstruct
tree structures; the approach is characterized as close range
compared to aerial photogrammetry, although the imaging
distance is several meters. Themethod further uses domain-specific
knowledge (tree structure) to optimize the reconstruction of tree
trunks and is not a generic photogrammetric method. Lösler et al.
(2022) used conventional photogrammetry and bundle adjustment
to estimate the pose of a telescope by reconstructing markers at
known locations.

2.4 This work

This work puts forward a photogrammetric approach powered
by a motorized apparatus and implemented by a modest computer
and a conventional CNC device. The photogrammetric approach is
characterized by two novel characteristics. First, a tailored image
acquisition is implemented using said apparatus that acquires
an image of the target surface at multiple elevations (distances).
Second, key point features are tracked across multiple views
and at multiple distances instead of only being corresponded in
neighboring images.

The aforementioned algorithmic characteristics are deemed
necessary to increase the scanned area as well as reconstruct the
surface with accuracy and precision. The main problem that they

solve stems from the large number of images required to cover
a relatively wide area in high resolution. When the number of
images grows large, that is, tens of thousands, problems that
are less pronounced when using fewer images become quite
intense. Specifically, when the number of images is large, even
minute camera pose estimation errors accumulate in significantly
inaccurate reconstruction results.

The proposed approach combines two elements that increase its
robustness against hardware and camera motion estimation errors
and, thereby, obtain more accurate reconstructions:

1. Auxiliary images are acquired at larger distances (>α) than the
distance at which the surface is photographed. These images
are fewer in number than the images acquired at distance
α. The auxiliary images are not used in the texturing of
the reconstructed surface. They are used to ensure that the
mosaicing of partial scans into a larger one is consistent
with the overall structure of the surface as overviewed from
larger distances.

2. Tracking of features across images. Usually, photogrammetric
methods find and reconstruct correspondences only in
neighboring views. From these, stereo-correspondent partial
3D reconstructions are obtained, which are, in turn, registered
into a composite reconstruction. This work tracks features
that belong to the same physical point across multiple views
and distances. The constraints obtained from this tracking
are utilized to reduce spurious feature correspondences and,
thereby, increase reconstruction accuracy.

To the best of our knowledge, this work improves state of
the art in the following ways: First, a qualitative comparison with
the state of the art indicates that conventional photogrammetry
exhibits distortions in the conditions of interest and that are the
conditions we are testing. Second, the proposed approach exhibits
a significantly lower cost and ease of use compared to close-
range photogrammetry methods found in the literature, which
require high-end cameras and highly controlled illumination. The
proposed approach deals with shiny surfaces without needing
additional optical filters and without requiring setting up the
illumination conditions. In addition, the proposed approach is
fully automatic without the need for human intervention, which
is the case in many of the studies reported in the literature. Third,
due to the Cartesian approach to image acquisition, the proposed
approach can reconstruct wider areas than works reported in
the literature.

3 Method

The proposed method consists of the following steps.

3.1 Camera calibration

Photogrammetric reconstruction requires estimates of intrinsic
and extrinsic camera parameters. Intrinsic parameters include the
resolution and optical properties of the visual sensor. Extrinsic
parameters include its position and orientation in space and
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represent the estimation of camera motion relative to the
target surface.

3.1.1 Intrinsic parameters
The camera is calibrated to estimate its intrinsic parameters and

its lens distortion, using the methods used by Heikkila and Silven
(1997) and Zhang (1999). The intrinsic parameters represent the
location of the optical center, the skew of the optical axis, and the
focal length of the camera. The FoV of the camera is also derived
from these parameters. In addition, lens distortion is also estimated
in this step. The aforementioned parameters are independent of
the camera location and, thus, are estimated once before mounting
the camera.

3.1.2 Extrinsic parameters
Extrinsic parameters represent the orientation and the location

of the camera, as a rotation and translation of the camera
concerning some world coordinate system.

An initial estimate of extrinsic camera parameters is provided
by the CNC device and specifically from the readings of the stepper
motor controllers that move the camera. The area of the scan
table and the elevation range are measured to estimate the motor
step length per dimension, given that these motors produce equal
motion steps. The number of horizontal and vertical steps are
denoted as nx and ny, while the length of the horizontal and vertical
steps sx and sy, respectively.

Steps sx and sy, are defined in metric units. Thereby, the
obtained initial estimate of the extrinsic parameters is also in
metric units. This initial estimate of camera locations is refined in
Section 3.5.2.

3.2 Image acquisition

Although the CNC apparatus acquires all images in one pass,
the acquired images are conceptually classified in layers of elevation
from the scanned surface.

Within each layer, viewpoints are organized in a lattice, as
illustrated in the example of Figure 2 (left). In the example, nx = 4
and ny = 5. Solid lines mark the surface regions imaged by the
camera. Dots mark camera center locations. The horizontal and
vertical distances between camera centers are denoted as sx and
sy, respectively. Transparent regions indicate the lateral overlap
between neighboring images of the same layer. The FoV of the
camera and the required amounts of lateral and medial overlaps
determine the values of sx and sy and the distances between layers.
The same proportion of lateral overlap is used for both horizontal
and vertical dimensions, τo.

Across elevation layers, viewpoint locations are configured
hierarchically, so that the images from “parent” viewpoints at
higher layers medially overlap with “child” viewpoints at lower
layers by a factor of τm. This is illustrated in Figure 2 (right), where
viewpoint A overviews the area imaged by viewpoints A1, A2, A3,
and A4. When τm = 25%, as in the example, the hierarchical
structure has the form of a quad-tree. The top layer, indicating the
upper end of this frustum, is user-determined.

The camera centers are pre-computed and saved in a file, which
is called the “scan plan”. These locations are then converted to
scanner coordinates, and a corresponding segment of G-code1 is
generated. This code is transmitted to the CNC, and images are
acquired using the software interface from Zabulis et al. (2021).
The image file names are associated with the camera locations in
the scan plan. To reduce the scanning time and mechanical drift,
each layer is scanned in boustrophedon order.

3.3 Feature detection and matching

Key point features with content descriptions are detected
in all images. In the implementation, scale-invariant feature
transform (Lowe, 2004) features are employed, but any other type
of key point features can be used. Matching takes place between all
pairs of laterally or medially neighboring images. These pairs are
found from the scan plan and denoted as (Ii, Ij) for neighboring
images I1 and Ij.

3.3.1 Cascade hashing
To accelerate feature matching, the cascade hashing method

used by Cheng et al. (2014) is employed. Cascade hashing
significantly reduces the feature search space by discarding non-
matching features early and at a low cost. The method creates
multiple hash tables, each capturing a different aspect of the feature
descriptor. A global hash table captures high-level information
about the descriptor. This table helps quickly eliminate many non-
matching candidates. At lower levels, more specific hash tables
capture increasingly detailed information about the descriptors. By
descending through the levels, the number of potential candidates
decreases, and the matching becomes more precise.

3.3.2 Fundamental matrices
The fundamental matrix F is defined for a pair of images and

defines the geometric constraints that exist between points in the
first image and their corresponding epipolar lines in the other
image (Hartley and Zisserman, 2003) and vice versa for its inverse
matrix. In this step, the fundamental matrices, Fi,j, for all pairs of
laterally and medially neighboring images are computed, where Fi,j
denotes the fundamental matrix for image pair (Ii, Ij).

Matrices Fi,j are estimated from the available correspondences
between pairs of neighboring images (Ii, Ij). Initially, spurious
correspondences (“outliers”) are discarded using random sample
consensus (RANSAC; Fischler and Bolles, 1981). The remaining
“inlier” correspondences are used to estimate Fi,j, using least
squares fitting.

The estimated matrices Fi,j are stored and are used in
the next steps to implement “epipolar constraints” and discard
spurious correspondences. The epipolar constraint is implemented
as follows: Let homogeneous coordinates pi and pj represent the
2D locations where the same physical point appears in Ii and Ij,
respectively. The epipolar constraint is expressed as pTj ·Fi,j ·pi < τc,

1 G-code, or RS-274, is a programming language for numerical control,

standardized by ISO 6983.
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FIGURE 2

Illustrations of the computer numerical computer motion parameterization for one layer (left) and image acquisition across layers (right).

where threshold τc is a distance (scalar). This distance expresses
howwell the correspondence complies with epipolar constraint and
is the distance of the projection of pi to Ij (using F) from its epipolar
line in Ij. The smaller the τc the better the compliance and the more
reliable the correspondence. Threshold τc is defined as an input
parameter relevant to imaging factors such as image resolution and
imaging distance.

It ought to be noted that, theoretically, F could be calculated
for each image pair using the intrinsic parameters of the
camera and the relative poses of camera pairs from the scan
plan instead of the aforementioned procedure. In practice,
however, it was found that the small mechanical inaccuracies
of the CNC lead to erroneous F estimates. The resulting error
is large enough to render the estimated F overly inaccurate
for outlier elimination making the previously mentioned
task necessary.

3.3.3 Left-to-right check
To filter erroneous correspondences a symmetric, or left-to-

right check (Fua, 1993) is employed. The goal of this check is to
ensure that correspondences are consistent for both images, which
helps filter out incorrect matches. For each correspondence pair,
the epipolar constraint is calculated two times: once for image pair
(Ii, Ij) and once for image pair (Ij, Ii). In practice, the equations for
each part of the check are pTj ·Fi,j·pi < τc and pTi ·F

T
i,j·pj < τc. If both

constraints are not satisfied, then the correspondence is discarded.
In other words, to establish a feature correspondence, it is

required that the same key point feature pair is found both
when features of Ii are matched against Ij and vice versa.
Conventionally, to avoid doubling the computational cost, when
establishing matches in one direction, key point similarities could
be recorded and utilized when scanning in the opposite order.
Unfortunately, our graphics processing unit (GPU) random-access
memory (RAM) is not sufficient to record this information, for
large targets. Thus, {Ii, Ij} and {Ij, Ii} are treated independently, and
the doubling of computational cost is not avoided. If a GPU with
larger memory were available, the aforementioned method could
be employed to halve the computational cost of this task.

3.4 Feature tracking

Despite the action of the check-in (Section 3.3.3), the
correspondences found at this stage still contain errors. This step
detects and further reduces spurious correspondences, aiming at a
more accurate reconstruction result.

Features are tracked across images, as follows. Let N key point
features that corresponded in N images. Let ui, i ∈ [1,N] their
locations in these images. Points ui comprise a “feature track.” If
the track contains spurious correspondences, then some of ui shall
not image the same physical point. No specific order is imposed
on the elements of the feature track. Feature tracks are not only
constrained in laterally neighboring images but are also established
using correspondences across layers as well. This is central to
achieving overall consistency in surface reconstruction. The reason
is that the spatial arrangement of features in images of greater
distance to the surface constrains the potential correspondences in
images at closer distances.

Each track is evaluated as follows: Let F′1,N = F1,2 · F2,3 ·

. . . FN−1,N a composite fundamental matrix of the pair of images
that contain u1 and uN , that is, the first and last elements of the
track. Images I1 and IN may not be direct neighbors. Even if they
are, still F′1,N is used instead of the F1,N computed in Section 3.3.2.
The reason is to involve all correspondences referenced in the
feature track and, in this way, detect whether any of them
is spurious.

Using F′1,N , image location u1 is projected to image IN , which
contains location uN . The location of this projection is up =

F′1,N · u1, and the distance of these two points is δ = |up −

uN |. If the correspondences in the feature track are correct, then
these points should approximately coincide as only calibration
inaccuracy should account for δ. However, if the track contains
erroneous correspondences, then the two locations are expected
to be grossly inconsistent and δ to be greater than the distance
threshold τp. Thus, if δ > τp, then the feature track and all of its
correspondences are discarded.

The memory requirements for the succeeding tasks depend on
the number of tracked features found. Depending on the number of
input images the requirements for memory capacity may be large. It
is possible to reduce thememory capacity requirements at this stage
by discarding some of the feature tracks. If this is required, then it
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is recommended to discard the tracks with the fewest features. The
reason is that they carry less information and are, typically, much
larger in number.

3.5 Reconstruction

Using the obtained correspondences, the scanned surface is
reconstructed as a textured mesh of triangles.

3.5.1 Initialization
Using the obtained feature tracks as a connectivity relation, a

connected-component labeling of the input images is performed.
After this operation, the largest connected component is selected.
The rest of the images, which belong to smaller components,
are discarded. The discarded components correspond to groups
of images that are not linked, through fundamental matrices,
to the rest. As such, they cannot contribute to the main
reconstruction. They are, thus, discarded to reduce the memory
capacity requirements.

The reconstruction method requires an image pair, (i′, j′), as
the basis for the surface reconstruction. This pair is selected to
exhibit a wide baseline to reduce reconstruction uncertainty and
error (Csurka et al., 1997). The reason is that wider baselines result
in more separation between the optical rays, reducing ambiguity in
the 3D reconstruction. At the same time, the reliability of this pair
depends on the number of feature correspondences existing in this
pair. Thus, the initial pair is selected as the product of baseline with
the number of correspondences, or (i′, j′) = argmaxi,j(bi,j · ki,j),
where bi,j is the baseline of pair (i, j) and ki,j is the number of feature
correspondences between Ii and Ij.

3.5.2 Sparse reconstruction
A sparse reconstruction is first performed, using the camera

poses in the scan plan of the correspondences obtained from
Section 3.2. The purpose of this reconstruction is to refine
these pose estimates. Open Multiple View Geometry (Moulon
et al., 2016) is utilized to obtain a sparse point cloud, which
includes implementations of the incremental structure-from-
motion pipeline (Moulon et al., 2013) and AC-RANSAC (Espuny
et al., 2014).

The purpose of the far-range images is encountered in this
step. The large number of images, that is, tens of thousands,
required to photogrammetrically cover wide surfaces in large
detail, pose accuracy problems that are not intensely pronounced
when reconstruction involves a few hundred images. In the
context of thousands of images, even small registration errors
may accumulate, leading to globally inconsistent surface structures.
As correspondences include pairs of points across layers, the
reconstruction process is guided to produce a structure that is
consistent with far-range views. In the experiments (Section 4), it is
observed that these additional constraints reduce global distortion
errors in the final result.

A bundle adjustment, used by Lourakis and Argyros (2009), is
then performed in the end. This operation is adapted to optimize
only the lens distortion and the extrinsic parameters for each
image. The reason is to ease the convergence of the bundle

Require: internal camera calibration (matrix K)

Require: pairwise geometry consistent point

correspondences

Ensure: 3D point cloud

Ensure: camera poses

compute correspondence tracks t

compute connectivity graph G (1 node per view, 1

edge when enough matches)

pick an edge e in G with sufficient baseline

(compare F and H)

robustly estimate essential matrix from images of e

(AC-RANSAC)

triangulate t ∩ e, which provides an initial

reconstruction

contract edge e

while G contains an edge do

pick edge e in G that maximizes track(e) ∩ {3D

points}

robustly estimate pose (external

orientation/resection) (AC-RANSAC)

triangulate new tracks

contract edge e

perform bundle adjustment (uses our initial

estimation from scan plan)

end while

Algorithm 1. Incremental structure frommotion.

adjustment optimization, as the intrinsic camera parameters have
been accurately estimated in Section 3.1.

The method is formulated in Algorithm 1.
Finally, the scale factor is estimated at this step. In contrast to

the methods in Section 2.2.7, this work estimates scale factor using
the extrinsic parameters of the camera. This accuracy is relatively
high because they are founded on the accurate motorization of
CNC devices. The initial estimates of camera locations obtained
from the scan plan are already in metric units and, thus, are the
refined ones.

3.5.3 Dense and textured reconstruction
A mesh of triangles is computed based on the obtained

sparse point cloud from Section 3.5.2. In the implementation, the
OpenMVS (Cernea, 2008) library is utilized.

The “Z-buffering technique” (Catmull, 1974) is employed to
obtain depth maps, Di. These maps are images that have the same
dimensions as Ii, imaging the scene from the same viewpoint as Ii
and with the same intrinsic parameters. In Di(u), each depth map
stores the distance of the surface point imaged at Ii(u) from the
optical center that Ii was acquired. Given the camera extrinsics,
the pixels of the depth map are converted into a point cloud in
world coordinates. In this way, depth maps Di are aggregated in
a dense point cloud, using the procedure from Barnes et al. (2009).
Following Jancosek and Pajdla (2014), a global mesh surface that
best explains the dense point cloud is generated. Afterwards, this
mesh is refined via the variational method used by Hiep et al.
(2011).
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Next, index maps Ti are computed, which store at each pixel
the identification of the mesh triangle, imaged at that pixel; that
is, in Ti(u), the identification of the triangle that is imaged at u is
encoded. Using maps Di and Ti, texturing the mesh considers the
visibility of the triangle in each Ii. When a triangle is imaged in
multiple views, then several choices can be made as to which view
to select to acquire the texture or how to combine these multiple
images of the same surface regions into a better texture (Gal et al.,
2010; Wang et al., 2018).

Despite the accuracy improvements, the mesh and the camera
pose still contain residual errors. Although these errors are
relatively small, they are well noticed by the human visual
system as texture discontinuities. The phenomenon is more
particularly pronounced when a large number of images is utilized.
To address these inaccuracies, multiple views are combined,
following Waechter et al. (2014), which is a method designed for
large numbers of images, as in this case. The generated texture is
efficiently packed in a “texture atlas” (or texture image) as indicated
in Jylänki (2010).

3.6 Output

The resultant reconstruction is a textured mesh of triangles.
This mesh consists of three lists and one texture image. The first is
a list of 3D floating point locations that represent the mesh nodes.
The second is a list of integer triplets that contain indices to the first
list and indicate the formation of triangles through the represented
nodes. The third is a list of floating point 2D coordinates in the
texture image, one for each node.

The result is stored in Polygon File Format (PLY),2 in two
files. The first file contains the mesh representation and uses the
binary representation of the format to save disk space. The second
file contains the texture, in the Joint Photographic Experts Group
(JPEG) or Portable Network Graphic (PNG) image file format.

4 Results

The materials and methods used for the implementation of
the proposed approach are reported, followed by experimental
results. These results are qualitative and quantitative. Qualitative
results report the applicability of the proposed approach compared
to conventional photogrammetric methods. Quantitative results
measure the computational performance and the accuracy of
surface reconstruction. All of the surface reconstructions shown in
this section are provided as Supplementary material to this article.

4.1 Materials and data

The specifications of the computer used in the experiments
were as follows: central processing unit (CPU) ×64 Intel i7 8-
core 3 GHz, RAM 64 Gb, GPU Nvidia RTX 8 Gb RAM (RTX2060
SUPER), solid-state drive (SSD) 256 Gb, and hard disk drive

2 PLY, or Stanford Triangle Format, is a format to store 3D data from

scanners.

2 Tb. The critical parameters are CPU and GPU RAM as they
determine the number of correspondences that can be processed
and, therefore, the area that can be reconstructed.

The camera was an Olympus Tough TG-5, with a minimum
focus distance of 2 mm, a depth of focus of 1 cm, resolution
of 4,000 × 3,000 p, and a FoV of 16.07◦ × 12.09◦. The critical
parameters are (a) the depth of focus, which determines the limit
of the surface elevation variability that this system configuration
can digitize (1 cm), and (b) the minimum focus distance, which
determines the closest imaging distance (2 mm).

The implementation of the scanning device is described in
detail by Zabulis et al. (2021), along with information for its
reproduction through a 3D printer. The apparatus implements
translations on the xx′- and zz′-axes by moving the camera.
Translations on the yy′-axis are implemented through substrate
motion. The maximum elevation is 30 cm; however, in this work,
only up to 1.6, cm of elevation are utilized.

Illumination was produced by the sensor’s flash. The flash
moves along with the camera, as in Galantucci et al. (2015) and
Percoco et al. (2017a,b) (see Section 2.2.3). A ring flash was
employed to provide even and shadow-free illumination.

Sensor brightness, contrast, and color balance were set to
automatic. To enhance the depth of field to 1 cm, each image is
acquired using focus stacking. Focused stacking is implemented by
the sensor hardware and firmware. The utilized sensor provides
images encoded in JPEG format. The average size of the image file
is 2.4Mb. Image acquisition and image file retrieval details, as well
as CNC, are provided by Zabulis et al. (2021).

A textured substrate is recommended to assist reconstruction
because it gives rise to more feature points and, thus, potential
stereo correspondences.

4.2 Reconstruction data and resolution

Scanning area limitations stem from the memory capacity of
the computer. Using the computational means in Section 4.1 the
maximum scanning area achieved was 5 cm2.

In all experiments, the following parameter values were utilized:
τo = 90%, τm = 25%, τp = 50 pixels, and τc = 25 pixels. Moreover,
four elevation layers were used. Given that medial overlap is τm =

25% and that the smallest elevation is at the minimum focus
distance of the camera (2 mm), the elevations were 2mm, 4mm,
8mm, and 16mm.

For the reconstruction of a 2.5–cm2 surface area, 3,348 images
were acquired whose dimension was 4,000 × 3,000 pixels. In these
images, 7.52·107 key point features were detected. The computation
lasted 3.55 h, and the amounts of RAMutilized were 21 Gb and 3.29
Gb for the CPU and the GPU, respectively. The result consisted of
a mesh with 371,589 nodes and 741,885 triangles and a texture map
of 16,384× 16,384 pixels. The obtained resolution for the geometry
of the reconstruction (mesh nodes) is approximately 714 p/mm2

or approximately 679 ppi, while for its texture is approximately
257Kp/mm2 or approximately 13 Kdpi. These measurements can
be verified in the euro coin reconstructions in the Supplementary
material (see Section 4.4).
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An example of the scanning dimensions is provided for a 24-×
28-cm2 artwork. In Figure 3, the artwork is left and is marked with a
rectangle, which indicates the scanned area. The four images to the
right of it are original images, one from each elevation layer, starting
from top to bottom and shown in left-to-right order, respectively.

4.3 Qualitative

The purpose of qualitative experiments is twofold: first to test
the applicability of the proposed approach in a diverse set of surface
materials; second, to investigate the overall consistency of this
approach concerning the large number of images utilized; and,
third, to assess the limitations of the method due to the geometry of
the target surfaces.

4.3.1 Structure and composition
Exploratory experiments with surfaces made from different

types of materials are presented. The rationale of this experiment
is to assess the capability of the scanning method in materials of
different reflectance properties.

4.3.1.1 Materials

The following surfaces were scanned, ranging in levels of
shininess and texture. In all cases, the scanner area was 4× 3 cm2.

Two pieces of medium-density fiber (MDF) wood board, g1 and
g2, with carvings each made with a Dremel rotary tool mounted
with a 2-mm cutting disk. In addition, piece g2 has a coarser
marking made by dragging the rotating tool across the surface. Part
g2 had some scribbles done with a blue ballpoint pen at its top-right
corner. The cuts were up to 2.5 mm deep. Both pieces were matte.
The texture was light but sufficient; the ballpoint pen markings
enhanced it (see Figure 4, second from left).

An integrated circuit board, g3, is made from mainly shiny
materials, that is, copper, solder, silkscreen, and glass fiber.
The highest parts of the board were 1.5 mm from the glass
fiber surface of the board. As evidenced in the middle column
of Figure 4, the board was shiny in general and specifically
at the regions of the flat, highly reflective glass fiber board.
Texture was available in general but absent in some regions of
the board.

An artwork (painting) made from 1.75-mm threads of
polylactic acid,3 g4; this is the same object as in Figure 3. For
the application of the thermoplastic on the artwork surface, a
3D pen with a 0.7-mm nozzle was used. The height variability
was approximately 3 mm, but a couple of individual threads
extended up to 8 mm from the surface. Most importantly,
this target was not a surface but an assembly of PLA threads;
in some cases, one thread could be suspended above others
at a height of a few millimeters. The texture is dense, but
the top of the plastic filament is shiny at all ranges, even the
closest ones.

A composite surface, g5, made from a piece of aluminum and a
piece of synthetic leather, the latter embossed. The synthetic leather

3 Polylactic acid (PLA) is an easy-to-process biocompatible, biodegradable

plastic, used as 3D printer filament.

material was moderately shiny and textured. The height variability
was approximately 3 mm. The aluminum was shiny and with poor
texture. Original images from the top and bottom layers are shown
in Figure 4, along with corresponding reconstruction results.

No post-processing (e.g., smoothing, hole filling, normal
correction, etc.) was applied in the results shown in the following
discussion.

4.3.1.2 Observations

The reconstruction of g1 and g2 did not exhibit issues. Despite
the MDF surface appearing textureless to the eye in far-range
images, in close-range imaging, the faint structure shown in
Figure 4 gives rise to feature detection.

The reconstruction of g3 exhibited a hole at the location of
a region that contained solely fiber glass. At the corresponding
region, the sparse reconstruction has a relatively lower density of
feature points. Similarly, at the same region, the original images
exhibit a lack of texture and aperture problems compared to the rest
of the image. In the top row of Figure 5, shown are five images that
assist this observation, from left to right. The left is a 2D mosaic
of images overviewing the surface, computed as by Zabulis et al.
(2021); it is shown as a reference. The second is the top view of the
surface reconstruction. The third shows the reconstructed reference
points in the sparse reconstruction; the hole region is indicated with
a dashed rectangle. The fourth image is a magnification of the third
in the area of the dashed rectangle. The fifth is an original image
from the closest layer, centered above the hole region.

Although the reconstruction of g4 appears complete from
the top, in Figure 6, missing surface texture and gross geometric
inaccuracies are visible when the reconstruction is viewed laterally.
The reason is that the scanned structure is more complex to be
characterized than a surface because it contains filament threads
suspended one above the other, leaving void space between them.
As such, there are artifact locations that are not visible to the
camera. Such an occasion is shown in Figure 6, where a pink thread
is suspended above a green thread. In the figure, the same detail of
the reconstruction is shown from a top and a lateral viewpoint in
two pairs of images. The left pair shows the reconstruction detailed,
textured, and untextured, from a top view. The right pair shows
the same detail, from a lateral view, textured, and untextured. In
the lateral view, it is observed that the void between the bottom
and the suspended filament is reconstructed. The structure however
at regions not visible to the camera (underside of the suspended
filament) is grossly inaccurate. The same regions are textured with
black, as they do not appear in any image in the data.

In g5, the shiny aluminum surface gives rise to texture, due to
the minute surface structure that is visible at that close range.

4.3.1.3 Discussion

Automated scanning and close-range photogrammetry are
sufficient for the photorealistic and fairly accurate reconstruction
at very high detail.

4.3.1.3.1 Close-range imaging

When imaged in close range, surfaces exhibit less
specularities and reveal texture, due to natural wear or
inherent structure. Systematic image acquisition makes more
probable the imaging of structure without specular artifacts,
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FIGURE 3

An artwork and original images, one from each elevation layer.

FIGURE 4

Rows, top to bottom: original images of targets g1 to g5, respectively, from left to right, from the top elevation layers; original images of targets g1 to

g5 from the bottom elevation layers, in the same order; textured reconstructions of targets g1 to g5, respectively, from left to right; untextured

reconstructions of targets g1 to g5, in the same order.

FIGURE 5

Left to right: two-dimensional mosaic of scanned surface; parse reconstruction of g3; detail at the hole region; original image centered at the hole

region.

such as in the case of aluminum in g5. Still, in g3, the
impeccability of the industrial and coated fiber glass hinders
the method.

4.3.1.3.2 Lack of texture and visibility

The shortcomings in g3 and g4 are known limitations of
photogrammetry. Conventional methods for their solution require
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FIGURE 6

Details of the reconstruction of g4, from a top (left) and lateral view (right).

the photogrammetric measurement of such regions and structured
lighting to create texture and the acquisition of more views to fully
cover the structure. The first is possible as a source of structured
light can be mounted on the implemented set-up. The second
would require a more flexible motorization mechanism. They are
both left for future work.

4.3.1.3.3 Scope

The image acquisition locations in this work are unable to
reach surface regions that are not visible from top views, as in the
example of g4. Although some of the structure is reconstructed this
approach cannot guarantee the coverage of structures that are more
complex than anaglyphs. As such, the recommended domain of the
proposed approach is set in surface scanning. This is the reason that
the approach is characterized as a surface scanning method in the
title of this article.

4.3.2 Global consistency
This experiment indicates the contribution of far-range images

to the accuracy of the reconstruction result. As discussed in
Section 3.5.2, photogrammetry with large numbers of images
is prone to camera pose estimate error accumulation, resulting
in reconstruction inaccuracies. To illustrate this point, this
experiment uses the same images, as acquired by the proposed
method, but in two basic conditions and an additional one. In
the first condition (C1), the proposed method is utilized. In the
second condition (C2), the same images were inputted to the Pix4D
photogrammetric suite. In the additional condition (C3), we used a
state-of-the-art variant (Kerbl et al., 2023) of the neural radiance
fields (NeRFs) method (Mildenhall et al., 2020), which was also fed
with the same images. Indeed, NeRFs are targeted at learning the
radiance field, rather than achieving a geometric reconstruction.
That is, NeRFs are not destined for measurements but for view
synthesis. Still, they are quite useful when 3D visualization is the
application goal.

The reconstruction target was a handcrafted engraving at the
end of the handle of a silver spoon. The engraving occupies an area
of 45 × 25mm2. In Figure 7 (top row), this item is shown from a
top and a side view. It is observed that the spoon is undamaged and
that its handle at the location of the engraving is straight.

In Figure 7, indicative original images and the obtained
reconstructions are shown. The second row of Figure 7 shows one
image from each elevation layer. The third and fourth rows show
the result of C1 and C2, respectively, and in the following way: The

left column shows the frontal views of the textured reconstructions.
The rest of the columns show only their geometrical, untextured
structure. Specifically, the second column from the left shows
frontal views. The second column from the right shows slanted
views (30◦). The right column shows side views (90◦).

Global accuracy improvements are observed in the side views,
as in C2; the surface appears spuriously curved, while the original
artifact is straight; see Figure 7 (top row, right). In C1, this effect
is reduced. This improvement is attributed to the utilization of
feature tracks over the far-range images and their contribution to
better camera pose estimation, which leads to a more consistent
reconstruction. This is attributed to the contribution of the
far-range views constraint the accumulation of camera pose
estimation errors.

The comparison between the two reconstruction approaches
is not entirely fair, as different pre- and post-processing pipelines
are followed in C1 and C2. To add to this unfairness, C2 is
not programmed to search for medial correspondences as the
proposed image acquisition approach is not guaranteed in generic
photogrammetry implemented by off-the-shelf photogrammetric
suites. The experiment provides the finding that the additional
constraints provided by tracking features across distances are to the
benefit of reconstruction quality.

The result of C3 is shown in Figure 8. As expected, the
photometric appearance of the NeRF reconstruction; that is, the
colors in the reconstruction look more vivid. However, when its
structure is inspected, it is observed that the surface structure
is only coarsely captured. In defense of the NeRF method, the
recommended image acquisition for its optimal use is different
from ours and requires the acquisition of views around the object.
However, this would require a significant change in the hardware
and increase the cost of the devices while still not providing fine
structural measurements.

4.3.3 Shiny, curved, and sharp surfaces
Stereo vision and photogrammetry are usually incapable of

reconstructing even moderately shiny surfaces. The reason is
that they reflect different parts of the environment from each
viewpoint, and thereby, the “uniqueness constraint” (Marr and
Poggio, 1976) is not met. This incapability has been countered
by the employment of additional algorithmic methods, such as
photometric stereo (Karami et al., 2022), which requires additional
and high-end hardware and illumination, the application of
matting spray (Petruccioli et al., 2022), or manual editing (Nicolae
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FIGURE 7

Rows, top to bottom: top and side views of a handcrafted silver spoon, on the left and right column, respectively; original images, one from each

elevation later, from left to right; reconstruction using proposed method (C1); reconstruction using an o�-the-shelf photogrammetric suite (C2).

FIGURE 8

Reconstruction results of the artifact in Figure 7, using the methods from Kerbl et al. (2023), for condition C3. Left: top view of the textured

reconstruction. Right: top view of the untextured reconstruction.

et al., 2014). A study demonstrating the problems caused by
highly reflective surfaces in multiple 3D reconstruction modalities,
including photogrammetry, can be found in Michel et al. (2014).
However, when the imaging range is very close, even shiny surfaces
contain some texture. The purpose of the experiment is to assess
reconstruction quality for metallic surfaces and find the limits of
the proposed configuration of this type of surface.

Shiny metallic nuts and screws were scanned because they
feature multiple orientations and curvatures. These structural
features are susceptible to illumination artifacts because they reflect
light from multiple directions. Some of these structures are higher
than the depth-of-focus range of the camera. For this reason,
coarse sand was used as a substrate and the targets were partially

submerged in it to study the upper surface of these structures.
Original images are shown in the top two rows of Figure 9.

The images exhibit specular reflectances that are reduced with
imaging distance. Surface regions that contain such reflectances
are constrained to the high curvature parts of the surface such
as the creases of the bolts and the railings of the screws. In
the images, these specularities are expressed as saturated (white)
regions of pixels at the high curvature regions. Still, small
imperfections, dust particles, and structural features give rise to
some feature correspondences.

The obtained reconstructions are shown, in the same order,
in the four bottom rows of Figure 9. It is observed that the
reconstructions do not suffer from gross structural errors. It is
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FIGURE 9

Top two rows: original images of metallic nuts and screws from the top layer. Middle two rows: textured reconstructions of the metallic nuts and

screws in the top two rows. Bottom two rows: untextured renderings of the reconstructions in the two middle rows.

furthermore observed that surface patterns are reconstructed, such
as screw threads and bolt markings. However, when specular
reflections are systematic over broad regions of pixels, the
reconstruction exhibits artifacts that occur exactly at the high-
curvature regions of the surface.

To compare against conventional photogrammetry, we have
reconstructed the same scene using the Pix4D software and present
the results in Figure 10 (left). As can be observed, very little of the
scene is reconstructed. To indicate the difference with the proposed
method in Figure 10 (right), the sparse reconstruction of the scene
using the proposed method, from the same viewpoint, is also
shown. It is observed that the reconstruction obtained using Pix4D

is poor and manages to reconstruct only a few parts of the scene.
The reason is the lack of correspondences and the establishment
of many erroneous correspondences due to the shiny material of
the targets.

4.4 Quantitative

To measure the accuracy of reconstruction, targets of
known size and structural features are utilized. To the
best of our knowledge, there exists no benchmark for
close-range photogrammetry at the scale dealt with by
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FIGURE 10

Left: reconstruction of a scene with shiny objects using Pix4D. Right: sparse reconstruction of the same scene using the proposed method.

FIGURE 11

Original images of circular coins. The top couple of rows shows an original image of the target from the top layer. The bottom couple of rows shows

an original image from the closest layer to the target.

this work in general and in particular for the specific
image acquisition approach proposed. Therefore, we
have used coins as reference targets so that other works

can compare the same or analogous structures. Two
experiments are reported that assess metric errors and
global distortions.

Frontiers in Imaging 15 frontiersin.org

https://doi.org/10.3389/fimag.2024.1341343
https://www.frontiersin.org/journals/imaging
https://www.frontiersin.org


Koutlemanis et al. 10.3389/fimag.2024.1341343

FIGURE 12

Reconstructions of the circular coins shown in Figure 11. The top couple of rows shows the textured reconstructions. The bottom couple of rows

shows the untextured reconstructions from the same viewpoints.

TABLE 1 Coin dimensions (diameter × thickness): nominal, measured,

and reconstruction errors.

Currency Nominal
(mm)

Measured
(mm)

Measurement
(mm)

Error
(%)

1c 16.25×1.67 16.25× 1.66 16.51× 1.70 1.58× 2.19

2c 18.75×1.67 18.76× 1.66 19.45× 1.68 3.69× 1.50

5c 21.25×1.67 21.26× 1.67 20.21× 1.73 4.95× 3.58

10c 19.75×1.93 19.76× 1.91 19.06× 1.96 3.56× 2.87

20c 22.25×2.14 22.27× 2.14 21.51× 2.23 3.40× 4.00

50c 24.25×2.38 24.27× 2.38 25.41× 2.26 4.70× 4.97

€1 23.25×2.33 23.32× 2.34 22.90× 2.31 1.80× 1.43

€2 25.75×2.20 25.75× 2.19 26.06× 2.16 1.19× 1.24

4.4.1 Dimensions
The purpose of the experiment was to measure reconstructed

dimensions and compare them with the ground truth.
State-manufactured coins were used because they are

of standard size and very accurately manufactured to avoid
counterfeiting. The scanned coins belong to the euro currency. All
eight coins from this family were scanned and placed on a planar
and textured surface. In addition, to the nominal dimensions
provided by the manufacturer, the coins were measured with
an electronic caliper. No larger than a 0.01-mm difference was

found in these measurements. The measured dimensions were
considered ground truth as the coins were used and may have
suffered distortions. The digital models are in metric units, and
their dimensions were compared to the ground-truth dimensions
of the coins. Their discrepancy is the measurement error.

Original images are shown in Figure 11. The top two rows
show images from the highest elevation layer and the other two
images from the lowest layer. The corresponding reconstructions
are shown, in the same order, in Figure 12.

The dimensions and errors are reported in Table 1. The first
column notes the currency value. The column “Nominal” reports
the dimensions provided by the manufacturer (European Central
Bank), the column “Measured” reports our caliper measurements
(ground truth), the column “Measurement” reports the dimensions
of the digital model, and the column “Error” is the percentage error.
The thickness of the coins was measured as the distance of the
supporting plane to the top face of the reconstruction. The average
measurement error is approximately 2.91%.

4.4.2 Aspect ratio
The purpose of this experiment is to measure any deviation

from the circular shape of coin edges to assess global distortions
in the reconstruction.

To assess global distortions in the reconstruction, the
orthoimages of the coin reconstructions were used. These
orthoimages are perpendicular projections of the reconstruction
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FIGURE 13

Orthoimages of textured reconstructions superimposed with the depth edges employed in the assessment of reconstruction distortions.

upon a hypothetical plane parallel to the surface. These images are
“map-accurate” in that they do not contain perspective distortions
included in the original photographs. Depth maps computed for
orthophotos share also this property.

The depth map for an orthophoto of a frontal view of the
reconstruction was computed using z-buffering (Catmull, 1974).
Canny edge detection (Canny, 1986) was performed in that map,
detecting depth discontinuities. Circles were robustly detected
using RANSAC to eliminate outlier edges. The inlier edges, Ein,
were used to fit circles, using least squares. In Figure 13, shown are
the inlier depth edges Ein superimposed on the orthoimages of the
textured reconstructions.

In Table 2, deviations of the detected edges from the fitted circle
are reported as the mean distance of these edges from the fitted
circle and their standard deviation. The small deviations and the
visual results indicate that the circles were appropriately fitted. The
average error is approximately 0.58 pixels.

Given the representativeness of the circle, the aspect ratio of the
detected points is computed to assess whether the reconstruction
is isotropic. To compute this the leftmost (p1), rightmost (p2),
top (p3), and bottom (p4) points of inliers Ein were found. Then,
aspect ratio |p2 − p1|/|p4 − p3| is an indicator of anisotropy over
the horizontal and vertical surface dimensions. The last column of
Table 2 reports these ratios, indicating a mean aspect ratio of 0.998
or a 0.0018% deviation from isotropy.

4.4.3 Surface structure
The purpose of this experiment is to assess the accuracy of

the reconstruction of surface structure. To achieve this, we used

TABLE 2 Radius, mean circle fit error, and standard deviation for each

measured coin.

Currency Radius (p) Error, std (p) Aspect ratio, (%)

1c 224.58 0.49 (0.38) 0.995

2c 243.45 0.69 (0.41) 1.000

5c 232.66 0.48 (0.35) 1.000

10c 234.63 0.67 (0.41) 1.008

20c 238.50 0.66 (0.43) 0.985

50c 248.21 0.51 (0.37) 0.997

€1 231.52 0.71 (0.40) 0.997

€2 237.88 0.41 (0.33) 1.000

the digitisation of a coin by a scanner, which is more accurate
than photogrammetry, and used that digitisation as ground truth.
By comparing this higher accuracy model, we obtain a measure
of the accuracy of our method. To quantify the error of the
proposed method, we used cross-correlation to measure the
similarity between two depth maps. To measure the similarity
of the depth edges in these maps, we have used the Hausdorff
distance (Hausdorff, 1914), which is a metric that quantifies the
similarity between two sets of points or shapes.

The proposed method and the Pix4D reconstruction of a €2
coin were compared to a higher-quality scan of the coin. This
higher-quality scan was produced by the TetraVision company
using an elaborate scanning technique that involved binocular
(stereo) imaging and structured light, using the “Atos III Triple
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FIGURE 14

Top: surface reconstructions of a €2 coin. Bottom: edge detections on the depth maps of the reconstructions. Left to right: proposed method,

Pix4D, and ground truth.

Scan” 3D scanner manufactured by the GOM company. This data
set is available from TetraVision (2024). The coin was clamped in
a fixture with reference points to ease the registration of partial
scans, and the scanning mechanism included an automated tilt-
and-swivel unit to image the coin from different angles. In addition,
the coin was covered in a water-based transparent anti-reflex spray.
The three scans were named S1 for the proposed method, S2 for the
Pix4D reconstruction, and S3 for the TetraVision reconstruction.4

The depth maps of the three scans were produced and
the top surface region of the coin was isolated to compare
the same surface regions. In these maps, the following
measurements were acquired. First, we computed the cross-
correlation between image pairs (S1, S3) and (S2, S3), which
were 99.84% and 86.43%, respectively. Second, we performed
Canny edge detection (Canny, 1986) on all three maps using
the same parameters. The spatial arrangements of the obtained
edges were compared using the Haussdorf distance for the
same image pairs. The results were 73.53 p and 110.63 p for
image pairs (S1, S3) and (S2, S3), respectively. In Figure 14,
the textureless reconstructions and the edge detection results
are shown.

Qualitatively, the comparison of S1 with S2 offers similar
observations as those obtained in Section 4.3.2; that is, S2 exhibits
significant levels of noise. This is also observed by the structure
of edges in Figure 14 (bottom, middle). Quantitatively, both the
correlation and theHaussdorfmeasures of dissimilarity indicate the
greater accuracy of the proposedmethod as it providesmore similar
results to S3.

4 S1 is the same reconstruction with that presented in Figure 12.

4.5 Discussion

4.5.1 Scope and specifications
The proposed approach was evaluated in a wide range of

materials. As expected, the accuracy of the method is best in
textured and matte surfaces. The proposed approach exhibits
robustness to moderately shiny surfaces but less robustness to lack
of texture—a problem that is common to all photogrammetric
methods. The proposed approach is not suitable for the
reconstruction of reflective, transparent, or translucent surfaces.

The obtained resolutions are approximately 714 p/mm2

or approximately 679 ppi for the geometry and
approximately 257Kp/mm2 or approximately 13Kdpi
for texture.

4.5.2 Limitations
The limits of the proposed scanner lie within the depth of field

of the camera and the memory capacity of the utilized computer.
The proposed approach is limited by the depth of field

of the visual sensor, which for consumer-grade cameras
is 1 cm. Images of scenes that contain depth variability
exceeding this limit are not fully focused. Thereby, unfocused
areas will not be accurately reconstructed or reconstructed
at all.

Memory capacity is pertinent to the surface area that can
be reconstructed as the wider this area is, the more images
are required and more key point features need to be stored in
memory. Using a modest computer, the scanning area achieved
is 5 cm2, which is wider than the approaches presented in
Section 4.2, which achieve scanning areas in the range of

Frontiers in Imaging 18 frontiersin.org

https://doi.org/10.3389/fimag.2024.1341343
https://www.frontiersin.org/journals/imaging
https://www.frontiersin.org


Koutlemanis et al. 10.3389/fimag.2024.1341343

approximately 1-2 cm2. It ought to be noted that the limits
of the approaches in Section 4.2 were due to motorization,
algorithmic, or optical constraints. In contrast, wider areas can
be reconstructed using the proposed approach if more memory
is available.

5 Conclusion

A surface reconstruction approach and its implementation
are proposed in the form of a surface scanning modality. The
proposed approach employs image acquisition atmultiple distances
and feature tracking to increase reconstruction accuracy. The
resultant device and approach offer a generic surface reconstruction
modality that is robust to illumination specularities, is useful for
several applications, and is cost-efficient.

This work can be improved in two ways: first, by using
structured lighting to counter the lack of texture, which would
necessitate the use of additional hardware or images (see Section
2.2.4), and, second, by relaxing the limitation imposed by the
restricted depth of focus range (1 cm in our case) of the optical
sensor. By revisiting the focused sstacking method described in
Section 4.1, it is possible to acquire images at several distances and
use the depth from focus visual cue (Grossmann, 1987) to coarsely
approximate the elevation map of the surface. This approximation
can be then used to scan the surface in a second pass, guiding the
camera elevation appropriately so that the surface occurs within its
depth of focus.

Data availability statement

The datasets presented in this study can be found in
online repositories. The names of the repository/repositories and
accession number(s) can be found in the article/supplementary
material. The surface reconstructions presented in this work can be
found at https://doi.org/10.5281/zenodo.8163498 and https://doi.
org/10.5281/zenodo.8359465.

Author contributions

PK: Methodology, Software, Validation, Visualization,
Writing – original draft. XZ: Conceptualization, Funding
acquisition, Methodology, Project administration, Supervision,
Visualization, Writing – original draft, Writing – review &
editing. NS: Conceptualization, Data curation, Methodology,
Software, Writing – original draft. NP: Funding acquisition,
Investigation, Methodology, Project administration, Supervision,
Writing – original draft. EZ: Investigation, Project administration,
Resources, Writing – original draft. ID: Formal analysis, Project
administration, Validation, Writing – review & editing.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. This work
was supported by the Research and Innovation Action, Craeft,
Grant No. 101094349, funded by the Horizon Europe Programme
of the European Commission.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Barnes, C., Shechtman, E., Finkelstein, A., and Goldman, D. B. (2009). Patchmatch:
a randomized correspondence algorithm for structural image editing. ACM Trans.
Graph. 28, 24. doi: 10.1145/1531326.1531330

Besl, P., and McKay, N. D. (1992). A method for registration of 3-D shapes. IEEE
Trans. Patt. Analy. Mach. Intell. 14, 239–256. doi: 10.1109/34.121791

Canny, J. (1986). A computational approach to edge-detection. IEEE Trans. Patt.
Analy. Mach. Intell. 8, 679–698. doi: 10.1109/TPAMI.1986.4767851

Catmull, E. (1974). A Subdivision Algorithm for Computer Display of Curved
Surfaces. Ann Arbor, MA: The University of Utah.

Cernea, D. (2008). OpenMVS: Multi-view stereo reconstruction library. Available
online at: https://cdcseacave.github.io/openMVS (accessed June 6, 2023).

Cheng, J., Leng, C., Wu, J., Cui, H., and Lu, H. (2014). “Fast and accurate
image matching with cascade hashing for 3D reconstruction,” in IEEE Conference on
Computer Vision and Pattern Recognition, 1–8. doi: 10.1109/CVPR.2014.8

Csurka, G., Zeller, C., Zhang, Z., and Faugeras, O. (1997). Characterizing the
uncertainty of the fundamental matrix. Comput. Vision Image Underst. 68, 18–36.
doi: 10.1006/cviu.1997.0531

Davies, A. (2012). Close-Up and Macro Photography. Boca Raton, FL: CRC Press.
doi: 10.4324/9780080959047

Dong, Y., Fan, G., Zhou, Z., Liu, J., Wang, Y., and Chen, F. (2021). Low cost
automatic reconstruction of tree structure by adqsm with terrestrial close-range
photogrammetry. Forests 12, 1020. doi: 10.3390/f12081020

Eldefrawy, M., King, S., and Starek, M. (2022). Partial scene reconstruction for close
range photogrammetry using deep learning pipeline for region masking. Rem. Sens. 14,
3199. doi: 10.3390/rs14133199

Espuny, F., Monasse, P., and Moisan, L. (2014). “A new a contrario
approach for the robust determination of the fundamental matrix,” in Image and
Video Technology-PSIVT 2013 Workshops (Berlin, Heidelberg: Springer), 181–192.
doi: 10.1007/978-3-642-53926-8_17

Fang, K., Zhang, J., Tang, H., Hu, X., Yuan, H., Wang, X., et al. (2023). A quick
and low-cost smartphone photogrammetry method for obtaining 3D particle size and
shape. Eng. Geol. 322, 107170. doi: 10.1016/j.enggeo.2023.107170

Fau, M., Cornette, R., and Houssaye, A. (2016). Photogrammetry for 3D digitizing
bones of mounted skeletons: potential and limits. Compt. Rendus Palevol. 15, 968–977.
doi: 10.1016/j.crpv.2016.08.003

Frontiers in Imaging 19 frontiersin.org

https://doi.org/10.3389/fimag.2024.1341343
https://doi.org/10.5281/zenodo.8163498
https://doi.org/10.5281/zenodo.8359465
https://doi.org/10.5281/zenodo.8359465
https://doi.org/10.1145/1531326.1531330
https://doi.org/10.1109/34.121791
https://doi.org/10.1109/TPAMI.1986.4767851
https://cdcseacave.github.io/openMVS
https://doi.org/10.1109/CVPR.2014.8
https://doi.org/10.1006/cviu.1997.0531
https://doi.org/10.4324/9780080959047
https://doi.org/10.3390/f12081020
https://doi.org/10.3390/rs14133199
https://doi.org/10.1007/978-3-642-53926-8_17
https://doi.org/10.1016/j.enggeo.2023.107170
https://doi.org/10.1016/j.crpv.2016.08.003
https://www.frontiersin.org/journals/imaging
https://www.frontiersin.org


Koutlemanis et al. 10.3389/fimag.2024.1341343

Fernández-Lozano, J., Gutiérrez-Alonso, G., Ruiz-Tejada, M., Á., and Criado-
Valdés, M. (2017). 3D digital documentation and image enhancement integration into
schematic rock art analysis and preservation: the castrocontrigo neolithic rock art (NW
Spain). J. Cult. Herit. 26, 160–166. doi: 10.1016/j.culher.2017.01.008

Fischler,M., and Bolles, R. (1981). Random sample consensus: a paradigm formodel
fitting with applications to image analysis and automated cartography. Commun. ACM
24, 381–395. doi: 10.1145/358669.358692

Fua, P. (1993). A parallel stereo algorithm that produces dense depth maps and
preserves image features.Mach. Vis. Applic. 6, 35–49. doi: 10.1007/BF01212430

Furtner, M., and Brophy, J. (2023). Preliminary comparison of close-
range photogrammetric and microct scanning: surface deviation analysis of
3D digital models of hominin molar crowns. J. Archaeol. Sci. 47, 103762.
doi: 10.1016/j.jasrep.2022.103762

Gajski, D., Solter, A., and Gašparovic, M. (2016). Applications of macro
photogrammetry in archaeology. Int. Arch. Photogr. Rem. Sens. Spatial Inf. Sci. 41,
263–266. doi: 10.5194/isprsarchives-XLI-B5-263-2016

Gal, R., Wexler, Y., Ofek, E., Hoppe, H., and Cohen-Or, D. (2010).
Seamless montage for texturing models. Comput. Graph. Forum 29, 479–486.
doi: 10.1111/j.1467-8659.2009.01617.x

Galantucci, L., Guerra, M., and Lavecchia, F. (2018). “Photogrammetry applied to
small and micro scaled objects: a review,” in International Conference on the Industry
4.0 Model for Advanced Manufacturing, eds. J. Ni, V. Majstorovic, and D. Djurdjanovic
(Cham: Springer International Publishing), 57–77. doi: 10.1007/978-3-319-89563-5_4

Galantucci, L., Lavecchia, F., and Percoco, G. (2013). Multistack close range
photogrammetry for low cost submillimeter metrology. J. Comput. Inform. Sci. Eng.
13, 044501. doi: 10.1115/1.4024973

Galantucci, L., Pesce, M., and Lavecchia, F. (2015). A stereo photogrammetry
scanning methodology, for precise and accurate 3D digitization of small parts with
sub-millimeter sized features. CIRP Ann. 64, 507–510. doi: 10.1016/j.cirp.2015.04.016

Galantucci, L., Pesce, M., and Lavecchia, F. (2016). A powerful scanning
methodology for 3D measurements of small parts with complex surfaces and sub
millimeter-sized features, based on close range photogrammetry. Prec. Eng. 43,
211–219. doi: 10.1016/j.precisioneng.2015.07.010

Gallo, A., Muzzupappa, M., and Bruno, F. (2014). 3D reconstruction of small
sized objects from a sequence of multi-focused images. J. Cult. Herit. 15, 173–182.
doi: 10.1016/j.culher.2013.04.009

González, M., Yravedra, J., González-Aguilera, D., Palomeque-González, J., and
Domínguez-Rodrigo, M. (2015). Micro-photogrammetric characterization of cut
marks on bones. J. Archaeol. Sci. 62, 128–142. doi: 10.1016/j.jas.2015.08.006

Grossmann, P. (1987). Depth from focus. Patt. Recogn. Lett. 5, 63–69.
doi: 10.1016/0167-8655(87)90026-2

Guidi, G., and Shafqat, M., U., and M., L. L. (2020). Optimal lateral displacement in
automatic close-range photogrammetry. Sensors 20, 6280. doi: 10.3390/s20216280

Harbowo, D., Sitorus, J., Agustina, L., Muztaba, R., Julian, T., and Malasan, H.
(2022). “3D modelling of meteorite from astomulyo village, lampung, indonesia by
close range photogrammetry (crp) methods,” in IOP Conference Series: Earth and
Environmental Science, 12003. doi: 10.1088/1755-1315/1047/1/012003

Hartley, R., and Zisserman, A. (2003).Multiple View Geometry in Computer Vision.
New York, NY, USA: Cambridge University Press. doi: 10.1017/CBO9780511811685

Hassett, B., and Lewis-Bale, T. (2017). Comparison of 3D landmark and 3D dense
cloud approaches to hominin mandible morphometrics using structure-from-motion.
Archaeometry 59, 191–203. doi: 10.1111/arcm.12229

Hausdorff, F. (1914).Grundzüge derMengenlehre. Leipzig: Verlag vonViet & Comp.

Heikkila, J., and Silven, O. (1997). “A four-step camera calibration procedure
with implicit image correction,” in IEEE Conference on Computer Vision and Pattern
Recognition, 1106–1112.

Hiep, V., Labatut, P., Pons, J., and Keriven, R. (2011). High accuracy and visibility-
consistent dense multiview stereo. IEEE Trans. Patt. Analy. Mach. Intell. 34, 889–901.
doi: 10.1109/TPAMI.2011.172

Illerhaus, B., Jasiuniene, E., Goebbels, J., and Loethman, P. (2002).
“Investigation and image processing of cellular metals with highly resolving 3D
microtomography (uCT),” in Developments in X-Ray Tomography III, ed. U. Bonse
(International Society for Optics and Photonics, SPIE), 201–204. doi: 10.1117/12.
452846

Inzerillo, L. (2017). Smart sfm: salinas archaeological
museum. Int. Arch. Photogram. Rem. Sens. Spatial Inform.
Sci. 42, 369–374. doi: 10.5194/isprs-archives-XLII-2-W5-3
69-2017

Jancosek, M., and Pajdla, T. (2014). Exploiting visibility information in surface
reconstruction to preserve weakly supported surfaces. Int. Schol. Res. Not. 2014, 98595.
doi: 10.1155/2014/798595

Jiang, Y., Shi, H., Wen, Z., Guo, M., Zhao, J., Cao, X., et al. (2022). A
comparative experimental study of rill erosion on loess soil and clay loam soil based
on a digital close-range photogrammetry technology. Geomorphology 419, 108487.
doi: 10.1016/j.geomorph.2022.108487

Jylänki, J. (2010). A thousand ways to pack the bin-a practical approach to
two-dimensional rectangle bin packing. Available online at: https://github.com/juj/
RectangleBinPack/blob/master/Readme.txt (accessed December 6, 2023).

Karami, A., Menna, F., and Remondino, F. (2022). Combining photogrammetry
and photometric stereo to achieve precise and complete 3D reconstruction. Sensors 22,
8172. doi: 10.3390/s22218172

Kerbl, B., Kopanas, G., Leimkühler, T., and Drettakis, G. (2023). 3D gaussian
splatting for real-time radiance field rendering. ACM Trans. Graph. 42, 1–14.
doi: 10.1145/3592433

Kurniawan, A., Chusida, A., Utomo, H., Marini, M., Rizky, B., Prakoeswa, B.,
et al. (2023). 3D bitemark analysis in forensic odontology utilizing a smartphone
camera and open-source monoscopic photogrammetry surface scanning. Pesquisa
Brasil. Odontopediatr. Clín. Integr. 23, e220087. doi: 10.1590/pboci.2023.001

Lauria, G., Sineo, L., and Ficarra, S. (2022). A detailed method for creating digital
3D models of human crania: an example of close-range photogrammetry based on the
use of structure-from-motion (sfm) in virtual anthropology. Archaeol. Anthropol. Sci.
14, 42. doi: 10.1007/s12520-022-01502-9

Lavecchia, F., Guerra, M., and Galantucci, L. (2017). The influence of software
algorithms on photogrammetric micro-feature measurement’s uncertainty. Int. J.
Advanced Manufact. Technol. 93, 3991–4005. doi: 10.1007/s00170-017-0786-z

Lavecchia, F., Guerra, M., and Galantucci, L. (2018). Performance verification
of a photogrammetric scanning system for micro-parts using a three-dimensional
artifact: adjustment and calibration. Int. J. AdvancedManufact. Technol. 96, 4267–4279.
doi: 10.1007/s00170-018-1806-3

Lösler, M., Eschelbach, C., and Klügel, T. (2022). Close range
photogrammetry for high-precision reference point determination. Cham: Springer.
doi: 10.1007/1345_2022_141

Lourakis, M., and Argyros, A. (2009). SBA: a software package for
generic sparse bundle adjustment. ACM Trans. Mathem. Softw. 36, 1–30.
doi: 10.1145/1486525.1486527

Lourakis, M., and Zabulis, X. (2013). “Accurate scale factor estimation
in 3D reconstruction,” in International Conference on Computer Analysis
of Images and Patterns (Berlin, Heidelberg: Springer-Verlag), 498–506.
doi: 10.1007/978-3-642-40261-6_60

Lowe, D. (2004). Distinctive image features from scale-invariant keypoints. Int. J.
Comput. Vis. 60, 91–110. doi: 10.1023/B:VISI.0000029664.99615.94

Luhmann, T. (2010). Close range photogrammetry for industrial applications.
ISPRS J. Photogr. Rem. Sens. 65, 558–569. doi: 10.1016/j.isprsjprs.2010.06.003

Lussu, P., and Marini, E. (2020). Ultra close-range digital photogrammetry
in skeletal anthropology: a systematic review. PLoS ONE 15, e0230948.
doi: 10.1371/journal.pone.0230948

Marr, D., and Poggio, T. (1976). Cooperative computation of stereo disparity.
Science 194, 283–287. doi: 10.1126/science.968482

Marziali, S., and Dionisio, G. (2017). Photogrammetry and macro photography.
the experience of the MUSINT II project in the 3D digitizing process of small size
archaeological artifacts. Stud. Dig. Herit. 1, 298–309. doi: 10.14434/sdh.v1i2.23250

Mathys, A., and Brecko, J. (2018). Focus Stacking. Amsterdam: Amsterdam
University Press, 213–216. doi: 10.2307/j.ctt1xp3w16.22

Michel, D., Zabulis, X., and Argyros, A. (2014). Shape from interaction. Mach. Vis.
Applic. 25, 1077–1087. doi: 10.1007/s00138-014-0602-9

Mildenhall, B., Srinivasan, P., Tancik, M., Barron, J., Ramamoorthi, R.,
and Ng, R. (2020). “Nerf: representing scenes as neural radiance fields for
view synthesis,” in European Cconference in Computer Vision, 405–421.
doi: 10.1007/978-3-030-58452-8_24

Moulon, P., Monasse, P., and Marlet, R. (2013). “Adaptive structure from
motion with a contrario model estimation,” in Asian Conference in Computer
Vision, eds. K. Lee, Y. Matsushita, J. Rehg, and Z. Hu (Cham: Springer), 257–270.
doi: 10.1007/978-3-642-37447-0_20

Moulon, P., Monasse, P., Perrot, R., and Marlet, R. (2016). “OpenMVG:
Open multiple view geometry,” in International Workshop on Reproducible
Research in Pattern Recognition (New York, NY: Springer), 60–74.
doi: 10.1007/978-3-319-56414-2_5

Nicolae, C., Nocerino, E., Menna, F., and Remondino, F. (2014). Photogrammetry
applied to problematic artefacts. Int. Arch. Photogr. Rem. Sens. Spat. Inf. Sci. 40,
451–456. doi: 10.5194/isprsarchives-XL-5-451-2014

Paixão, A., Muralha, J., Resende, R., and Fortunato, E. (2022). Close-range
photogrammetry for 3D rock joint roughness evaluation. Rock Mech. Rock Eng. 55,
3213–3233. doi: 10.1007/s00603-022-02789-9

Percoco, G., Guerra, M., S., S., and Galantucci, L. M. (2017a). Experimental
investigation on camera calibration for 3D photogrammetric scanning of micro-
features for micrometric resolution. Int. J. Adv. Manuf. Technol. 91, 2935–2947.
doi: 10.1007/s00170-016-9949-6

Percoco, G., Modica, F., and Fanelli, S. (2017b). Image analysis for 3D
micro-features: A new hybrid measurement method. Prec. Eng. 48, 123–132.
doi: 10.1016/j.precisioneng.2016.11.012

Frontiers in Imaging 20 frontiersin.org

https://doi.org/10.3389/fimag.2024.1341343
https://doi.org/10.1016/j.culher.2017.01.008
https://doi.org/10.1145/358669.358692
https://doi.org/10.1007/BF01212430
https://doi.org/10.1016/j.jasrep.2022.103762
https://doi.org/10.5194/isprsarchives-XLI-B5-263-2016
https://doi.org/10.1111/j.1467-8659.2009.01617.x
https://doi.org/10.1007/978-3-319-89563-5_4
https://doi.org/10.1115/1.4024973
https://doi.org/10.1016/j.cirp.2015.04.016
https://doi.org/10.1016/j.precisioneng.2015.07.010
https://doi.org/10.1016/j.culher.2013.04.009
https://doi.org/10.1016/j.jas.2015.08.006
https://doi.org/10.1016/0167-8655(87)90026-2
https://doi.org/10.3390/s20216280
https://doi.org/10.1088/1755-1315/1047/1/012003
https://doi.org/10.1017/CBO9780511811685
https://doi.org/10.1111/arcm.12229
https://doi.org/10.1109/TPAMI.2011.172
https://doi.org/10.1117/12.452846
https://doi.org/10.5194/isprs-archives-XLII-2-W5-369-2017
https://doi.org/10.1155/2014/798595
https://doi.org/10.1016/j.geomorph.2022.108487
https://github.com/juj/RectangleBinPack/blob/master/Readme.txt
https://github.com/juj/RectangleBinPack/blob/master/Readme.txt
https://doi.org/10.3390/s22218172
https://doi.org/10.1145/3592433
https://doi.org/10.1590/pboci.2023.001
https://doi.org/10.1007/s12520-022-01502-9
https://doi.org/10.1007/s00170-017-0786-z
https://doi.org/10.1007/s00170-018-1806-3
https://doi.org/10.1007/1345_2022_141
https://doi.org/10.1145/1486525.1486527
https://doi.org/10.1007/978-3-642-40261-6_60
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1016/j.isprsjprs.2010.06.003
https://doi.org/10.1371/journal.pone.0230948
https://doi.org/10.1126/science.968482
https://doi.org/10.14434/sdh.v1i2.23250
https://doi.org/10.2307/j.ctt1xp3w16.22
https://doi.org/10.1007/s00138-014-0602-9
https://doi.org/10.1007/978-3-030-58452-8_24
https://doi.org/10.1007/978-3-642-37447-0_20
https://doi.org/10.1007/978-3-319-56414-2_5
https://doi.org/10.5194/isprsarchives-XL-5-451-2014
https://doi.org/10.1007/s00603-022-02789-9
https://doi.org/10.1007/s00170-016-9949-6
https://doi.org/10.1016/j.precisioneng.2016.11.012
https://www.frontiersin.org/journals/imaging
https://www.frontiersin.org


Koutlemanis et al. 10.3389/fimag.2024.1341343

Percoco, G., and Salmerón, A. (2015). Photogrammetric measurement of 3D
freeformmillimetre-sized objects withmicro features: an experimental validation of the
close-range camera calibration model for narrow angles of view.Measur. Sci. Technol.
26, 095203. doi: 10.1088/0957-0233/26/9/095203

Petruccioli, A., Gherardini, F., and Leali, F. (2022). Assessment of close-range
photogrammetry for the low cost development of 3D models of car bodywork
components. Int. J. Inter. Des. Manuf. 16, 703–713. doi: 10.1007/s12008-022-00865-6

Rodríguez-Martín, M., and Rodríguez-Gonzálvez, P. (2019). Learning methodology
based onweld virtualmodels in themechanical engineering classroom.Comput. Applic.
Eng. Educ. 27, 1113–1125. doi: 10.1002/cae.22140

Rodríguez-Martín, M., and Rodríuez-Gonzalvez, P. (2018). “Learning based
on 3D photogrammetry models to evaluate the competences in visual testing
of welds,” in IEEE Global Engineering Education Conference, 1576–1581.
doi: 10.1109/EDUCON.2018.8363422

Scaggion, C., Castelli, S., Usai, D., and Artioli, G. (2022). 3D digital
dental models’ accuracy for anthropological study: Comparing close-range
photogrammetry to µ-ct scanning. Digit. Applic. Archaeol. Cult. Herit. 27, e00245.
doi: 10.1016/j.daach.2022.e00245

Semendeferi, K., Damasio, H., Frank, R., and Van Hoesen, G. (1997). The evolution
of the frontal lobes: a volumetric analysis based on three-dimensional reconstructions
of magnetic resonance scans of human and ape brains. J. Hum. Evol. 32, 375–388.
doi: 10.1006/jhev.1996.0099

Shortis, M., Bellman, C., Robson, S., Johnston, G., and Johnson, G. (2006). “Stability
of zoom and fixed lenses used with digital slr cameras,” in ISPRS Symposium of Image
Engineering and Vision Metrology, 285–290.

Sims-Waterhouse, D., Bointon, P., Piano, S., and Leach, R. (2017a). “Experimental
comparison of photogrammetry for additive manufactured parts with and without

laser speckle projection,” in Optical Measurement Systems for Industrial Inspection X
(International Society for Optics and Photonics, SPIE), 103290W. doi: 10.1117/12.22
69507

Sims-Waterhouse, D., Piano, S., and Leach, R. (2017b). Verification of micro-
scale photogrammetry for smooth three-dimensional object measurement.Measur. Sci.
Technol. 28, 055010. doi: 10.1088/1361-6501/aa6364

TetraVision (2024). 3D scan of a 2 euro coin. Available online at: https://
www.tetravision.be/portfolio-item/3d-scan-of-a-2-euro-coin/ (accessed December 6,
2023).

Waechter, M., Moehrle, N., and Goesele, M. (2014). “Let there be color! large-scale
texturing of 3D reconstructions,” in European Conference on Computer Vision (Cham:
Springer International Publishing), 836–850. doi: 10.1007/978-3-319-10602-1_54

Wang, B., Pan, P., Xiao, Q., Luo, L., Ren, X., Jin, R., et al. (2018).
“Seamless color mapping for 3D reconstruction with consumer-grade scanning
devices,” in European Conference on Computer Vision Workshops 633–648.
doi: 10.1007/978-3-030-11009-3_39

Yang, B., Schinke, J., Rastegar, A., Tanyeri, M., and Viator, J. (2023). Cost-effective
full-color 3D dental imaging based on close-range photogrammetry. Bioengineering 10,
1268. doi: 10.3390/bioengineering10111268

Yang, C., andMedioni, G. (1992). Object modelling by registration of multiple range
images. Image Vis. Comput. 10, 145–155. doi: 10.1016/0262-8856(92)90066-C

Zabulis, X., Koutlemanis, P., Stivaktakis, N., and Partarakis, N. (2021). A
low-cost contactless overhead micrometer surface scanner. Appl. Sci. 11, 6274.
doi: 10.3390/app11146274

Zhang, Z. (1999). “Flexible camera calibration by viewing a plane from unknown
orientations,” in IEEE International Conference on Computer Vision, 666–673.

Frontiers in Imaging 21 frontiersin.org

https://doi.org/10.3389/fimag.2024.1341343
https://doi.org/10.1088/0957-0233/26/9/095203
https://doi.org/10.1007/s12008-022-00865-6
https://doi.org/10.1002/cae.22140
https://doi.org/10.1109/EDUCON.2018.8363422
https://doi.org/10.1016/j.daach.2022.e00245
https://doi.org/10.1006/jhev.1996.0099
https://doi.org/10.1117/12.2269507
https://doi.org/10.1088/1361-6501/aa6364
https://www.tetravision.be/portfolio-item/3d-scan-of-a-2-euro-coin/
https://www.tetravision.be/portfolio-item/3d-scan-of-a-2-euro-coin/
https://doi.org/10.1007/978-3-319-10602-1_54
https://doi.org/10.1007/978-3-030-11009-3_39
https://doi.org/10.3390/bioengineering10111268
https://doi.org/10.1016/0262-8856(92)90066-C
https://doi.org/10.3390/app11146274
https://www.frontiersin.org/journals/imaging
https://www.frontiersin.org

	A low-cost close-range photogrammetric surface scanner
	1 Introduction
	2 Related work
	2.1 Comparison with other modalities for surface scanning
	2.2 Close-range photogrammetry
	2.2.1 Motorisation
	2.2.2 Optics
	2.2.3 Lighting
	2.2.4 Structured lighting
	2.2.5 Scanning area and resolution
	2.2.6 Reconstruction
	2.2.7 Scale factor estimation

	2.3 Recent adaptations and variants of close-range photogrammetry
	2.4 This work

	3 Method
	3.1 Camera calibration
	3.1.1 Intrinsic parameters
	3.1.2 Extrinsic parameters

	3.2 Image acquisition
	3.3 Feature detection and matching
	3.3.1 Cascade hashing
	3.3.2 Fundamental matrices
	3.3.3 Left-to-right check

	3.4 Feature tracking
	3.5 Reconstruction
	3.5.1 Initialization
	3.5.2 Sparse reconstruction
	3.5.3 Dense and textured reconstruction

	3.6 Output

	4 Results
	4.1 Materials and data
	4.2 Reconstruction data and resolution
	4.3 Qualitative
	4.3.1 Structure and composition
	4.3.1.1 Materials
	4.3.1.2 Observations
	4.3.1.3 Discussion
	4.3.1.3.1 Close-range imaging
	4.3.1.3.2 Lack of texture and visibility
	4.3.1.3.3 Scope


	4.3.2 Global consistency
	4.3.3 Shiny, curved, and sharp surfaces

	4.4 Quantitative
	4.4.1 Dimensions
	4.4.2 Aspect ratio
	4.4.3 Surface structure

	4.5 Discussion
	4.5.1 Scope and specifications
	4.5.2 Limitations


	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


