
TYPE Original Research

PUBLISHED 20 June 2024

DOI 10.3389/fimag.2024.1416114

OPEN ACCESS

EDITED BY

Sandeep Kumar Mishra,

Yale University, United States

REVIEWED BY

Aili Wang,

Harbin University of Science and Technology,

China

Junxiang Huang,

Boston College, United States

*CORRESPONDENCE

Blake VanBerlo

bvanberl@uwaterloo.ca

RECEIVED 11 April 2024

ACCEPTED 04 June 2024

PUBLISHED 20 June 2024

CITATION

VanBerlo B, Wong A, Hoey J and Arntfield R

(2024) Intra-video positive pairs in

self-supervised learning for ultrasound.

Front. Imaging. 3:1416114.

doi: 10.3389/fimag.2024.1416114

COPYRIGHT

© 2024 VanBerlo, Wong, Hoey and Arntfield.

This is an open-access article distributed

under the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited,

in accordance with accepted academic

practice. No use, distribution or reproduction

is permitted which does not comply with

these terms.

Intra-video positive pairs in
self-supervised learning for
ultrasound

Blake VanBerlo1*, Alexander Wong2, Jesse Hoey1 and

Robert Arntfield3

1Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, Canada, 2Department

of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada, 3Schulich School of

Medicine and Dentistry, Western University, London, ON, Canada

Introduction: Self-supervised learning (SSL) is a strategy for addressing the

paucity of labelled data in medical imaging by learning representations from

unlabelled images. Contrastive and non-contrastive SSL methods produce

learned representations that are similar for pairs of related images. Such pairs

are commonly constructed by randomly distorting the same image twice. The

videographic nature of ultrasound o�ers flexibility for defining the similarity

relationship between pairs of images.

Methods: We investigated the e�ect of utilizing proximal, distinct images from

the same B-mode ultrasound video as pairs for SSL. Additionally, we introduced

a sample weighting scheme that increases the weight of closer image pairs and

demonstrated how it can be integrated into SSL objectives.

Results: Named Intra-Video Positive Pairs (IVPP), themethod surpassed previous

ultrasound-specific contrastive learning methods’ average test accuracy on

COVID-19 classification with the POCUS dataset by ≥ 1.3%. Detailed

investigations of IVPP’s hyperparameters revealed that some combinations

of IVPP hyperparameters can lead to improved or worsened performance,

depending on the downstream task.

Discussion: Guidelines for practitioners were synthesized based on the

results, such as the merit of IVPP with task-specific hyperparameters, and the

improved performance of contrastive methods for ultrasound compared to

non-contrastive counterparts.

KEYWORDS

self-supervised learning, ultrasound, contrastive learning, non-contrastive learning,

representation learning

1 Introduction

Medical ultrasound (US) is a modality of imaging that uses the amplitude of

ultrasonic reflections from tissues to compose a pixel map. With the advent of point-

of-care ultrasound devices, ultrasound has been increasingly applied in a variety of

diagnostic clinical settings, such as emergency care, intensive care, oncology, and sports

medicine (Yim and Corrado, 2012; Whitson and Mayo, 2016; Sood et al., 2019; Soni

et al., 2020; Lau and See, 2022). It possesses several qualities that distinguish it from

other radiological modalities, including its portability, lack of ionizing radiation, and

affordability. Despite morphological distortion of the anatomy, ultrasound has been shown

to be comparable to radiological alternatives, such as chest X-ray and CT, for several

diagnostic tasks (van Randen et al., 2011; Alrajhi et al., 2012; Nazerian et al., 2015).
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Deep learning has been extensively studied as a means to

automate diagnostic tasks in ultrasound. As with most medical

imaging tasks, the lack of open access to large datasets is a

barrier to the development of such systems, since large training

sets are required for deep computer vision models. Organizations

that have privileged access to large datasets are also faced

with the problem of labeling ultrasound data. Indeed, many

point-of-care ultrasound examinations in acute care settings are

not archived or documented (Hall et al., 2016; Kessler et al.,

2016).

When unlabeled examinations are abundant, researchers turn

to unsupervised representation learning to produce pretrained

deep learning models that can be fine-tuned using labeled data.

Self-supervised learning (SSL) is a broad category of methods that

has been explored for problems in diagnostic ultrasound imaging.

Broadly, SSL refers to the supervised pretraining of a machine

learning model for a task that does not require labels for the task

of interest. The pretraining task (i.e., pretext task) is a supervised

learning task where the target is a quantity that is computed from

unlabeled data. After optimizing the model’s performance on the

pretext task, the weights are recast as initial weights for a new

model that is trained to solve the task of interest (referred to as the

downstream task). If the pretrained model has learned to produce

representations of salient information in ultrasound images, then

it is likely that it can be fine-tuned to perform the downstream task

more proficiently than had it been randomly initialized. Contrastive

learning is a type of pretext task in SSL that involves predicting

whether two inputs are related (i.e., positive pairs) or unrelated

(i.e., negative pairs). In computer vision, a common way to define

positive pairs is to apply two randomly defined transformations to

an image, producing two distorted views of the image with similar

content. Positive pairs satisfy a pairwise relationship that indicate

semantic similarity. All other pairs of images are regarded as

negative pairs. Non-contrastive methods disregard negative pairs,

focusing only on reducing the differences between representations

of positive pairs.

Unlike other forms of medical imaging, US is a dynamic

modality acquired as a stream of frames, resulting in a video.

Despite this, there are several US interpretation tasks that can be

performed by assessing a still US image. Previous studies exploring

SSL in US have exploited the temporal nature of US by defining

contrastive learning tasks with intra-video positive pairs – positive

pairs comprised of images derived from the same video (Chen et al.,

2021; Basu et al., 2022). Recent theoretical results indicate that the

pairwise relationship must align with the labels of the downstream

task in order to guarantee that self-supervised pretraining leads

to non-inferior performance on the downstream task (Balestriero

and LeCun, 2022). For classification tasks, this means that positive

pairs must have the same class label. Due to the dynamic nature

of US, one cannot assume that all frames in a US video possess

the same label for all downstream US interpretation tasks. As a

result, it may be problematic to indiscriminately designate any pair

of images originating from the same US video as a positive pair.

Moreover, since US videos are often taken sequentially as a part

of the same examination or from follow-up studies of the same

patient, different US videos may bear a striking resemblance to each

other. It follows that designating images from different US videos

as negative pairs may result in negative pairs that closely resemble

positive pairs.

In this study, we aimed to examine the effect of proximity

and sample weighting of intra-video positive pairs for common

SSL methods. We also intended to determine if non-contrastive

methods are more suitable for classification tasks in ultrasound.

Since non-contrastive methods do not require the specification

of negative pairs, we conjectured that non-contrastive methods

would alleviate the issue of cross-video similarity and yield stronger

representations for downstream tasks. Our contributions and

results are summarized as follows:

• A method for sampling intra-video positive pairs for joint

embedding SSL with ultrasound.

• A sample weighting scheme for joint embedding SSL methods

that weighs positive pairs according to the temporal or spatial

distance between them in their video of origin.

• A comprehensive assessment of intra-video positive pairs

integrated with SSL pretraining methods, as measured by

downstream performance in B-mode and M-mode lung US

classification tasks. We found that, with proper downstream

task-specific hyperparameters, intra-video positive pairs can

improve performance compared to the standard practice of

producing two distortions of the same image.

• An comparison of contrastive and non-contrastive learning

for multiple lung US classification tasks. Contrary to our

initial belief, a contrastive method outperformed multiple

non-contrastive methods on multiple lung US downstream

tasks.

Figure 1 encapsulates the novel methods proposed in this

study. To the authors’ knowledge, there are no preceding studies

that systematically investigate the effect of sampling multiple

images from the same US video in non-contrastive learning. More

generally, we believe that this study is the first to integrate sample

weights into non-contrastive objectives.

2 Background

2.1 Joint embedding self-supervised
learning

Having gained popularity in recent years in multiple imaging

modalities, joint embedding SSL refers to a family of methods

where the pretext task is to produce output vectors (i.e.,

embeddings) that are close for examples satisfying a similarity

pairwise relationship. Pairs of images satisfying this relationship

are known as positive pairs, and they assumed to share semantic

content with respect to the downstream task. For example, positive

pairs could belong to the same class in a downstream supervised

learning classification task. On the other hand, negative pairs are

pairs of images that do not satisfy the pairwise relationship. In the

label-free context of SSL, positive pairs are often constructed by

sampling distorted versions of a single image (Chen et al., 2020;

Grill et al., 2020; Zbontar et al., 2021; Bardes et al., 2022). The

distortions are sampled from a distribution of sequentially applied
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B

FIGURE 1

An overview of the methods introduced in this study. Positive pairs of images separated by no more than a threshold are sampled from the same

B-mode video (1). Sample weights inversely proportional to the separation between each image (red bars) are calculated for each pair (2). Random

transformations are applied to each image (3). Images are sent to a neural network consisting of a feature extractor (4) and a projector (5) connected

in series. The outputs are used to calculate the objective LSSL (6). The trained feature extractor is retained for downstream supervised learning tasks.

(A) For B-mode ultrasound, positive pairs are temporally separated images from the same video. (B) For M-mode ultrasound, positive pairs are

spatially separated images from the same video.

transformations that are designed to preserve the semantic content

of the image. Horizontal reflection is a common example of a

transformation that meets this criterion in many forms of imaging.

The architecture of joint embeddingmodels commonly consists

of two modules connected in series: a feature extractor and

a projector. The feature extractor is typically a convolutional

neural network (CNN) or a variant of a vision transformer, while

the projector is a multi-layer perceptron. After pretraining, the

projector is discarded and the feature extractor is retained for

weight initialization for the downstream task.

Contrastive learning and non-contrastive learning are twomajor

categories of joint embedding methods. Contrastive methods rely

on objectives that explicitly attract positive pairs and repel negative

pairs in embedding space. Many of these methods adopt the

InfoNCE objective (Oh Song et al., 2016), which may be viewed

as cross-entropy for predicting which combination of embeddings

in a batch correspond to a positive pair. In most contrastive

methods, positive pairs and negative pairs are distorted versions

of the same image and different images, respectively. MoCo is a

contrastive method that computes pairs of embeddings using two
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feature extractors: a “query” encoder and a “key” encoder (He

et al., 2020). The key encoder, which is an exponentially moving

average of the query encoder, operates on negative examples

Its output embeddings are queued to avoid recomputation of

negative embeddings. SimCLR (Chen et al., 2020) is a widely used

contrastive method that employs a variant of the InfoNCE objective

that does not include the embedding of the positive pair in the

demoninator (Oh Song et al., 2016). It does not queue negative

embeddings, relying instead on large batches of negative examples.

Non-contrastive methods dispense with negative pairs

altogether, limiting their focus to reducing the difference between

embeddings of positive pairs. By design, they address the

information collapse problem – a degenerate solution wherein

all examples map to a null representation vector. Self-distillation

non-contrastive methods use architectural and asymmetrical

training strategies to avoid collapse [e.g., BYOL (Grill et al., 2020)].

Information maximization non-contrastive methods address

collapse by employing objectives that maximize the information

content of the embedding dimensions. For instance, the Barlow

Twins method is a composite objective that contains a term for

penalizing dimensional redundancy for batches of embeddings,

in addition to a term for the distances between embeddings of

individual positive pairs (Zbontar et al., 2021). VICReg introduced

an additional term that explicitly maximizes variance across

dimensions for batches of embeddings (Bardes et al., 2022).

Despite a common belief that contrastive methods need much

larger batch sizes than non-contrastive methods, recent evidence

showed that hyperparameter tuning can boost the former’s

performance with smaller batch sizes (Bordes et al., 2023). Non-

contrastive methods have been criticized for requiring embeddings

with greater dimensionality than the representations outputted by

the feature extractor; however, a recent study suggested that the

difference may be alleviated through hyperparameter and design

choices (Garrido et al., 2022).

Theoretical works have attempted to unify contrastive and

non-contrastive methods. Balestriero and LeCun (2022) found

that SimCLR, VICReg, and Barlow Twins are all manifestations

of spectral embedding methods. Based on their results, they

recommended that practitioners define a pairwise relationship

that aligns with the downstream task. For example, if the

downstream task is classification, then positive pairs should have

the same class. Garrido et al. (2022) challenged the widely held

assumptions that non-contrastive methods perform better than

contrastive methods and that non-contrastive methods rely on

large embedding dimensions. They showed that the methods

perform comparatively on benchmark tasks after hyperparameter

tuning and that VICReg can be modified to reduce the dependence

on large embeddings (Garrido et al., 2022).

2.2 Joint embedding methods for B-mode
lung ultrasound

Ultrasound is a dynamic imaging modality that is typically

captured as a sequence of images and stored as a video. As such,

images originating from the same video are highly correlated and

are likely to share semantic content. Accordingly, recent works have

developed US-specific contrastive learning methods that construct

positive pairs from the same video. The Ultrasound Contrastive

Learning (USCL) method (Chen et al., 2021) is a derivative of

SimCLR in which positive pairs are weighted sums of random

images within the same video [i.e., the mixup operation (Zhang

et al., 2017)], while negative pairs are images from different

videos. They reported an improvement on the downstream task

of COVID-19 classification with the POCUS dataset (Born et al.,

2020). Improving on USCL, Meta-USCL concurrently trains a

separate network that learns to weigh positive pairs (Chen et al.,

2022). The work was inspired by the observation that the intra-

video positive pairs may exhibit a wide range of semantic similarity

or dissimilarity. Basu et al. (2022) proposed a MoCo-inspired

solution where positive pairs are images that are temporally close

within a video, while negative pairs consist of either pairs from

different videos or pairs from the same video that are separated

temporally by a no less than a gradually decreasing threshold.

Lastly, the HiCo method’s objective is the sum of a softened

InfoNCE loss calculated for the feature maps outputted by various

model blocks (Zhang et al., 2022). The authors reported greatly

improved performance with respect to USCL.

Standard non-contrastive methods have been applied for

various tasks in US imaging. In addition to assessing contrastive

methods, Anand et al. (2022) conducted pretraining with two self-

distillation non-contrastive methods [BYOL (Grill et al., 2020) and

DINO (Caron et al., 2021)] on a large dataset of echocardiograms.

BYOL pretraining has also been applied in anatomical tracking

tasks (Liang et al., 2023). Information maximization methods

have been investigated for artifact detection tasks in M-mode

and B-mode lung ultrasound (VanBerlo et al., 2023a,b). To our

best knowledge, no studies have trialed non-contrastive learning

methods for B-mode ultrasound with intra-video positive pairs.

The present study seeks to address this gap in the literature by

investigating the effect of sampling positive pairs from the same

video on the efficacy of non-contrastive pretraining for tasks in

ultrasound.

3 Methods

3.1 Joint embedding methods for
ultrasound with intra-video positive pairs

3.1.1 Setup
We consider the standard joint embedding scenario where

unlabeled data are provided and the goal is to maximize the

similarity between embeddings of positive pairs. In contrastive

learning, the goal is augmented by maximizing the dissimilarity of

negative pairs. Let x1 and x2 denote a positive pair of US images.

Self-supervised pretraining results in a feature extractor f (x) that

outputs representation vector h. The goal of SSL is to produce

a feature extractor that is a better starting point for learning the

downstream task than random initialization.

In this study, we propose a simple method for sampling

and weighing positive pairs in the joint embedding setting that

can be adopted for any joint embedding SSL method. We adopt

SimCLR (Chen et al., 2020), Barlow Twins (Zbontar et al., 2021)

and VICReg (Bardes et al., 2022) for our experiments. In these

methods, a MLP projector is appended to the feature extractor

during pretraining. z = g(h) = g(f (x)) is the embedding vector
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outputted by the projector. The SSL objective is then computed in

embedding space.

3.1.2 Intra-video positive pairs: (IVPP)
Recall that positive pairs are images that are semantically

related. Previous work in contrastive SSL for US has explored

the use of intra-video positive pairs (Chen et al., 2021, 2022;

Basu et al., 2022; Zhang et al., 2022). A problem with naively

sampling intra-video positive pairs is that it rests on the assumption

that all images in the video are sufficiently similar. However,

clinically relevant signs commonly surface and disappear within

the same US video as the US probe and/or the patient move. For

example, B-lines are an artifact in lung US that signify diseased

lung parenchyma (Soni et al., 2020). B-lines may disappear and

reappear as the patient breathes or as the sonographer moves

the probe. The A-line artifact appears in the absence of B-lines,

indicating normal lung parenchyma. In the absence of patient

context, an image containing A-lines and an image containing

B-lines from the same video convey very different impressions.

While most previous methods only considered inter-video images

to be negative pairs, Basu et al. (2022) argued that that temporally

distant intra-video pairs of US images are more likely to be

dissimilar, which inspired their method that treats such instances

as negative pairs. Despite this, we argue that distant intra-video

images may sometimes exhibit similar content. For example, the

patient and probe may remain stationary throughout the video, or

the probe may return to its original position and/or orientation.

Moreover, periodic physiological processes such as the respiratory

cycle may result in temporally distant yet semantically similar

images. Without further knowledge of the US examinations in

a dataset, we conjectured that it may be safest to only assume

that positive pairs are intra-video images that are close to each

other. Closer pairs are likely to contain similar semantic content,

yet they harbor different noise samples that models should be

invariant to. In summary, this method distinguishes itself from

prior work by only considering proximal frames to be positive

pairs and treating distant pairs as neither positive nor negative

pairs.

For B-mode US videos, we define positive pairs as intra-video

images x1 and x2 that are temporally separated by no more than

δmax seconds. To accomplish this, x1 is randomly drawn from the

video’s images, and x2 is randomly drawn from the set of images

that are within δt seconds of x1. The frame rate of the videos must

be known in order to determine which images are sufficiently close

to x1. Note that videos with higher frame rates will provide more

candidates for positive pairs, potentially increasing the diversity of

pairs with respect to naturally occurring noise.

A similar sampling scheme is applied for M-mode US images.

Like previous studies, we define M-mode images as vertical slices

through time of a B-mode video, taken at a specific x-coordinate

in the video (Jasčǔr et al., 2021; VanBerlo et al., 2022b, 2023b). The

x-axis of an M-mode image is time, and its y-axis is the vertical

dimension of the B-mode video. We define positive pairs to be M-

mode images whose x-coordinates differ by no more than δx pixels.

To avoid resolution differences, all B-mode videos are resized to

the same width and height prior to sampling M-mode images. The

positive pair sampling process for B-mode and M-mode images is

depicted in Figure 2.

As is customary in joint embedding methods, stochastic

data augmentation is applied to each image, encouraging the

feature extractor to become invariant to semantically insignificant

differences. Any data augmentation pipeline may be adopted

for this formulation of intra-video positive pairs; however,

we recommend careful selection of transformations and the

distributions of their parameters to ensure that the pairwise

relationship continues to be consistent with the downstream US

task.

3.1.3 Sample weights
The chance that intra-video images are semantically related

decreases as temporal or spatial separation increases. To temper

the effect of unrelated positive pairs, we apply sample weights to

positive pairs in the SSL objective according to their temporal or

spatial distance. Distant pairs are weighed less than closer pairs. For

a positive pair of B-mode images occurring at times t1 and t2 or M-

mode images occurring at positions x1 and x2, the sample weight is

calculated using Equation 1:

w =
δt − |t2 − t1| + 1

δt + 1
w =

δx − |x2 − x1| + 1

δx + 1
(1)

Sample weights were incorporated into each SSL objective

trialed in this study. Accordingly, we modified the objective

functions for SimCLR, Barlow Twins, and VICReg in order to

weigh the contribution to the loss differently based on sample

weights. Appendix 1 describes the revised objective functions. To

the authors’ knowledge, this study is the first to propose sample

weighting schemes for the aforementioned self-supervised learning

methods.

3.2 Ultrasound classification tasks

3.2.1 COVID-19 classification (COVID)
As was done in previous studies on on US-specific joint

embedding methods (Chen et al., 2021, 2022; Basu et al., 2022;

Zhang et al., 2022), we evaluate IVPP on the public POCUS

lung US dataset (Born et al., 2020). This dataset contains 140

publicly sourced US videos (2116 images) labeled for three classes:

COVID-19 pneumonia, non-COVID-19 pneumonia, and normal

lung.1 When evaluating on POCUS, we pretrain on the public

Butterfly dataset, which contains 22 unlabeled lung ultrasound

videos (Butterfly Network, 2020).2

3.2.2 A-line vs. B-line classification (AB)
A-lines and B-lines are two cardinal artifact in B-mode lung

US that can provide quick information on the status of a patient’s

1 See dataset details at the public POCUS repository (Born et al., 2020):

https://github.com/jannisborn/covid19_ultrasound.

2 Accessed via a URL available at the public USCL repository (Chen et al.,

2021): https://github.com/983632847/USCL.
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A B

FIGURE 2

Illustration of intra-video positive pairs. Positive pairs are considered images that are no more than a threshold apart from each other within the same

ultrasound video. (A) For B-mode ultrasound, positive pairs are frames in the same video that are within δt seconds of each other. (B) For M-mode

ultrasound, positive pairs are M-mode images originating from the same B-video that are located within δx pixels from each other. In the context of

lung ultrasound, M-mode images should intersect the pleural line (outlined in mauve).

lung tissue. A-lines are reverberation artifacts that are indicative of

normal, clear lung parenchyma (Soni et al., 2020). On lung US, they

as horizontal lines deep to the pleural line. Conversely, B-lines are

indicative of diseased lung tissue (Soni et al., 2020). Generally, the

two are mutually exclusive. We evaluate on the binary classification

task of A-lines versus B-lines on lung US, as was done in previous

work benchmarking joint embedding SSL methods for lung US

tasks (VanBerlo et al., 2023a).

We use a private dataset of 25917 parenchymal lung US videos

(5.9e6 images), hereafter referred to as ParenchymalLUS. It is a

subset of a larger database of de-identified lung US videos that

was partially labeled for previous work (Arntfield et al., 2021;

VanBerlo et al., 2022b). Access to this database was permitted

via ethical approval by Western University (REB 116838). Before

experimentation, we split the labeled portion of ParenchymalLUS

by anonymous patient identifier into training, validation, and test

sets. The unlabeled portion of ParenchymalLUS was assembled by

gathering 20000 videos from the unlabeled pool of videos in the

database that were predicted to contain a parenchymal view of the

lungs by a previously trained lung US view classifier (VanBerlo

et al., 2022a). All videos from the same patient were in either

the labeled or the unlabeled subset. Table 1 provides further

information on the membership of ParenchymalLUS.

3.2.3 Lung sliding classification (LS)
Lung sliding is a dynamic artifact that, when observed on

a parenchymal lung US view, rules out the possibility of a

pneumothorax at the site of the probe (Lichtenstein and Menu,

1995). The absence of lung sliding is suggestive of pneumothorax,

warranting further investigation. On B-mode US, lung sliding

manifests as a shimmering of the pleural line (Lichtenstein and

Menu, 1995). The presence or absence of lung sliding is also

appreciable on M-mode lung US images that intersect the pleural

line (Lichtenstein et al., 2005; Lichtenstein, 2010). We evaluate on

the binary lung sliding classification task, where positive pairs are

M-mode images originating from the same B-mode video.

ParenchymalLUS is adopted for the lung sliding classification

task. We use the same train/validation/test partition as described

above. Following prior studies, we estimate the horizontal bounds

of the pleural line using a previously trained object detection

model (VanBerlo et al., 2022b) and use the top half of qualifying M-

mode images, in decreasing order of total pixel intensity (VanBerlo

et al., 2023b).

4 Results

4.1 Training protocols

Unless otherwise stated, all feature extractors are initialized

with ImageNet-pretrained weights. Similar studies concentrating

on medical imaging have observed that this practice improves

downstream performance when compared to random

initialization (Azizi et al., 2021; VanBerlo et al., 2023b). Moreover,

we designate fully supervised classifiers initialized with ImageNet-

pretrained weights as a baseline against which to compare models

pretrained with SSL.

Evaluation on POCUS follows a similar protocol employed in

prior works (Chen et al., 2021; Basu et al., 2022). Feature extractors

with the ResNet18 architecture (He et al., 2016) are pretrained on

the Butterfly dataset. Prior to training on the POCUS dataset, a 3-

node fully connected layer with softmax activation was appended

to the pretrained feature extractor. Five-fold cross validation is

conducted with POCUS by fine-tuning the final three layers of

the pretrained feature extractor. Unlike prior works, we adopt

the average across-folds validation accuracy, instead of taking the

accuracy of the combined set of validation set predictions across

folds. Presenting the results in this manner revealed the high
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TABLE 1 Breakdown of ParenchymalLUS at the video and image level.

Unlabeled Labeled

Train Validation Test

Total

Patients 5, 204 1, 540 330 329

Videos 20,000 4123 858 936

Images 4,611,063 927,889 191,437 208,648

A/B line labels
Videos − 2, 100 / 998 441 / 197 512 / 213

Images − 484,287 / 216,505 99,132 / 40,608 116,648 / 42,122

Lung sliding labels
Videos − 3, 169 / 477 631 /103 707 / 96

Images − 727,205 / 96,771 146,322 / 23,218 166,753 / 21,911

x/y indicates the number of negative and positive labeled examples available for each task, respectively. Video labels apply to each image within the video. Note that some videos were not labeled

for both tasks.

variance of model performance across folds, which may be due to

the benchmark dataset’s small video sample size.

All experiments with ParenchymalLUS utilize the

MobileNetV3-Small architecture as the feature extractor, which

outputs a 576-dimensional representation vector (Howard

et al., 2019). Feature extractors are pretrained on the union

of the unlabeled videos and labeled training set videos in

ParenchymalLUS. Performance is assessed via test set classification

metrics. Prior to training on the downstream task, a single-node

fully connected layer with sigmoid activation was appended to the

pretrained feature extractor. We report the performance of linear

classifiers trained on the frozen feature extractor’s representations,

along with classifiers that are fine-tuned end-to-end.

For each joint embedding method, the projectors were

multilayer perceptrons with two 768-node layers, outputting 768-

dimensional embeddings. Pretraining is conducted for 500 epochs

using the LARS optimizer (You et al., 2019) with a batch size of

384 and a learning rate schedule with warmup and cosine decay as

in Bardes et al. (2022).

The pretraining and training data augmentation pipelines

consist of random transformations, including random cropping,

horizontal reflection, brightness jitter, contrast jitter, and Gaussian

blurring. Additional data preprocessing details are available in

Appendix 2.

Source code will be made available upon publication.3

4.2 Performance

The two main proposed features of IVPP are intra-video

positive pairs and distance-based sample weights. Accordingly, we

assess the performance of IVPP across multiple assignments of the

maximum image separation. Separate trials were conducted for

SimCLR, Barlow Twins, and VICReg pretraining. For the COVID

and AB tasks, we explored the values δt ∈ {0, 0.5, 1, 1.5} seconds.

The LS task is defined for M-mode US, and so we explored δx ∈

{0, 5, 10, 15} pixels. The standardized width of B-mode US videos

should be considered when determining an appropriate range for

3 https://github.com/bvanberl/IVPP

FIGURE 3

Average test accuracy across 5-fold cross validation on the POCUS

dataset. Models were pretrained with a variety of intra-video positive

pair thresholds with and without sample weights. Error bars indicate

the standard deviation across folds. The dashed line indicates

initialization with ImageNet-pretrained weights.

δx. Note that when δ = 0, sample weights are all 1 and therefore do

not modify any of the SSL objectives investigated in this study.

Figure 3 summarizes the performance of IVPP on the public

POCUS dataset after pretraining on the Butterfly dataset, which

is measured by average test accuracy in 5-fold cross validation. In

most cases, pretrained models obtained equal or greater average

accuracy than the ImageNet-pretrained baseline, with the exception

of Barlow Twins with δt = 0 and δt = 0.5. The performance

of models pretrained with SimCLR, Barlow Twins, and VICReg

peaked at different nonzero values of δt (0.5, 1, and 1.5 respectively),

indicating a possible benefit of selecting temporally close yet

distinct intra-video positive pairs. It was also observed across all

three pretraining methods that the inclusion of sample weights

resulted in worsened test AUC when δ = 0.5, but improved test

AUC when δ = 1.0 and δ = 1.5.

Similar experiments were conducted with ParenchymalLUS for

the AB task and LS task, using B-mode and M-mode images

respectively as input. ParenchymalLUS represents a scenario

where there is an abundance of unlabeled data, which differs

greatly from the preceding evaluation on public, yet small,
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A B

C D

FIGURE 4

ParenchymalLUS test set AUC for the AB and LS binary classification tasks, calculated for models pretrained with a selection of contrastive and

non-contrastive learning methods and employing a variety of intra-video positive pair thresholds with and without sample weights (SW). The dashed

line indicates initialization with ImageNet-pretrained weights. (A) Linear classifiers for the AB task. (B) Fine-tuned classifiers for the AB task. (C) Linear

classifiers for the LS task. (D) Fine-tuned classifiers for the LS task.

datasets. The unlabeled and labeled portions of ParenchymalLUS

contained at least an order of magnitude more videos than

either the public Butterfly and POCUS datasets. B-mode and

M-mode feature extractors were pretrained on the union of

the unlabeled and training portions of ParenchymalLUS—one

for each value of δ, with and without sample weights. For

these evaluations, we use all training examples that have been

assigned a label for the downstream task. Figure 4 provides a

visual comparison of the test AUC obtained by linear feature

representation classifiers and fine-tuned models for the AB and

LS tasks. An immediate trend across both tasks and evaluation

types is that SimCLR consistently outperformed Barlow Twins and

VICReg, which are both non-contrastive methods. Furthermore,

pretraining with non-contrastive methods often resulted in worse

test AUC compared to initialization with ImageNet-pretrained

weights. Another observation across all experiments was that there

was no discernible trend for the effect of sample weights that was

consistent for any task, pretraining method, δt , or δx.

Focusing on AB, linear classifiers achieved the greatest

performance when δt > 0, with the exception of VICReg

(Figure 4A). The use of SimCLR compared to the other pretraining

methods appeared to be responsible for the greatest difference

in test performance. As shown in Figure 4A, SimCLR-pretrained

models outperformed non-contrastive methods, and were the only

models that outperformed ImageNet-pretrained weights. The use

of a nonzero δt resulted in slight improvement in combination with

SimCLR pretraining, but degraded performance of non-contrastive

methods.

Similar results were observed for the LSM-mode classification

task. Models pretrained with SimCLR were the only ones that

matched or surpassed fully supervised models. Nonzero δx

generally improved the performance of linear classifiers, with

δx = 5 pixels corresponding to the greatest test AUC for

SimCLR and VICReg, and δx = 15 for Barlow Twins. Inclusion

of sample weights appreciably improved the performance of

Barlow Twins-pretrained models. Fine-tuned models pretrained

with SimCLR performed similarly to fully supervised models, while

non-contrastive methods resulted in degradation of test AUC.

Table 2 compares the top-performing IVPP-pretrained models

for each SSL method with two prior US-specific contrastive

learning methods— USCL (Chen et al., 2021) and US UCL (Basu

et al., 2022). Of note is that all three self-supervised methods

pretrained with IVPP outperformed ImageNet-pretrained

initialization for POCUS, a task where very little pretraining and

training data were utilized. For the B-mode and M-mode tasks

assessed with ParenchymalLUS, a contrastive method (including

the baseline) outperformed non-contrastive methods. Appendix 4

provides additional results that exhibit a similar trend with

different pretraining batch sizes. Overall, the most salient result

from the above experiments is that SimCLR, a contrastive method,
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TABLE 2 Performance of fine-tuned models pretrained using IVPP compared to US-specific contrastive learning methods, USCL, and UCL, and to

baseline random and ImageNet initializations.

Dataset POCUS ParenchymalLUS

Pretraining method Mean (std) test accuracy A/B Test AUC LS Test AUC

Random initialization 0.881 (0.050) 0.954 0.790

ImageNet initialization 0.908 (0.043) 0.973 0.898

USCL (Chen et al., 2021) 0.905 (0.044) 0.979 0.874

US UCL (Basu et al., 2022) 0.901 (0.054) 0.967 0.809

IVPP [SimCLR] 0.926 (0.043) 0.980 0.903

IVPP [Barlow Twins] 0.921 (0.054) 0.969 0.887

IVPP [VICReg] 0.930 (0.046) 0.971 0.862

outperformed both non-contrastive methods when unlabeled data

is abundant.

4.3 Label e�ciency

ParenchymalLUS is much larger than public ultrasound

datasets for machine learning. Although the majority of its

videos are unlabeled, it contains a large number of labeled

examples. To simulate a scenario where the fraction of

examples that are labeled is much smaller, we investigated

the downstream performance of models that were pretrained

on all the unlabeled and training ParenchymalLUS examples

and then fine-tuned on a very small subset of the training

set.

Label efficiency investigations are typically conducted by fitting

a model for the downstream task using progressively smaller

fractions of training data to gauge how well self-supervised models

fare in low-label scenarios. The results of these experiments may be

unique to the particular training subset that is randomly selected.

We designed an experiment to determine if the choice of δt , δx,

or the introduction of sample weights influenced downstream

performance in low-label settings. To reduce the chance of biased

training subset sampling, we divided the training set into 20 subsets

and repeatedly performed fine-tuning experiments on each subset

for each pretraining method and δ value, with and without sample

weights. To ensure independence among the subsets, we split

the subsets by patient. Inspection of the central moments and

boxplots from each distribution indicated that the normality and

equal variance assumptions for ANOVA were not violated. For

each pretraining method, a two-way repeated-measures analysis

of variance (ANOVA) was performed to determine whether the

mean test AUC scores across values of δ and sample weight usage

were different. The independent variables were δ and the presence

of sample weights, while the dependent variable was test AUC.

Whenever the null hypothesis of the ANOVAwas rejected, post-hoc

paired t-tests were performed to compare the following:

• Pretraining with nonzero δ against standard positive pair

selection (δ = 0).

• For the same nonzero δ value, sample weights against no

sample weights.

For each group of post-hoc tests, the Bonferroni correction was

applied to establish a family-wise error rate of α = 0.05. To ensure

that each training subset was independent, we split the dataset by

anonymous patient identifier. This was a necessary step because

intra-video images are highly correlated, along with videos from

the same patient. As a result, the task became substantially more

difficult than naively sampling 5% of training images because the

volume and heterogeneity of training examples was reduced by

training on a small fraction of examples from a small set of patients.

The fine-tuning procedure was identical to that described in

Section 4.1, with the exception that the model’s weights at the end

of training were retained for evaluation, instead of restoring the

best-performing weights on the validation set. Figure 5 provides

boxplots for all trials that indicate the distributions of test AUC

under the varying conditions for both the AB and LS tasks. Again,

SimCLR performance appeared to be substantially higher than both

non-contrastive methods.

Table 3 gives the mean and standard deviation of each set of

trials, for each hyperparameter combination. For each task and each

pretraining method, the ANOVA revealed significant interaction

effects (p ≤ 0.05). Accordingly, all intended post-hoc t-tests were

performed to ascertain (1) which combinations of hyperparameters

were different from the baseline setting of augmenting the same

frame twice (δ = 0) and (2) values of δ where the addition of

sample weights changes the outcome. First, we note that SimCLR

was the only pretraining method that consistently outperformed

full supervision with ImageNet-pretrained weights. Barlow Twins

and VICReg pretraining – both non-contrastive methods – resulted

in worse performance.

For the AB task, no combination of intra-video positive pairs

or sample weights resulted in statistically significant improvements

compared to dual distortion of the same image (δt = 0).

For Barlow Twins and VICReg, several nonzero δt resulted in

significantly worse mean test AUC. Sample weights consistently

made a difference in Barlow Twins across δt values, but only

improved mean test AUC for δt = 1 and δt = 1.5.

Different trends were observed for the LS task. SimCLR with

δx = 5 and no sample weights improved mean test AUC

compared to the baseline where δx = 0. No other combination

of hyperparameters resulted in a significant improvement.

For Barlow Twins, multiple IVPP hyparameter combinations

resulted in improved mean test AUC over the baseline. No
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A B

FIGURE 5

Boxplots conveying the quartile ranges of test AUC distributions for each pretraining method and assignment to δ, with and without sample weights.

Each experiment is repeated 20 times on disjoint subsets of the training set, each containing all images from a group of patients. (A) AB task. (B) LS
task.

TABLE 3 ParenchymalLUS test AUC for the the AB and LS tasks when trained using examples from 5% of the patients in the training set.

AB LS

Pretrain method δt SW Mean (std) test AUC δx SW Mean (std) test AUC

SimCLR

0 ✗ 0.938 (0.007) 0 ✗ 0.812 (0.037)

0.5 ✗ 0.931 (0.010)∗ 5 ✗ 0.824 (0.030)∗

0.5 ✓ 0.936 (0.007)† 5 ✓ 0.820 (0.033)

1 ✗ 0.934 (0.011) 10 ✗ 0.815 (0.035)

1 ✓ 0.933 (0.011) 10 ✓ 0.816 (0.037)

1.5 ✗ 0.936 (0.013) 15 ✗ 0.819 (0.034)

1.5 ✓ 0.932 (0.012) 15 ✓ 0.798 (0.039)∗†

Barlow Twins

0 ✗ 0.914 (0.014) 0 ✗ 0.693 (0.044)

0.5 ✗ 0.914 (0.010)∗ 5 ✗ 0.694 (0.040)

0.5 ✓ 0.883 (0.017)∗† 5 ✓ 0.780 (0.040)∗†

1 ✗ 0.877 (0.022)∗ 10 ✗ 0.705 (0.051)

1 ✓ 0.891 (0.018)∗† 10 ✓ 0.706 (0.066)

1.5 ✗ 0.870 (0.024)∗ 15 ✗ 0.769 (0.037)∗

1.5 ✓ 0.892 (0.015)∗† 15 ✓ 0.707 (0.071)†

VICReg

0 ✗ 0.917 (0.011) 0 ✗ 0.690 (0.042)

0.5 ✗ 0.879 (0.024)∗ 5 ✗ 0.675 (0.036)

0.5 ✓ 0.879 (0.021)∗ 5 ✓ 0.679 (0.038)

1 ✗ 0.872 (0.023)∗ 10 ✗ 0.680 (0.039)

1 ✓ 0.876 (0.024)∗ 10 ✓ 0.675 (0.040)

1.5 ✗ 0.860 (0.026)∗ 15 ✗ 0.710 (0.036)

1.5 ✓ 0.870 (0.021)∗† 15 ✓ 0.685 (0.039)†

None (ImageNet-pretrained) 0.896 (0.017) 0.783 (0.028)

None (random initialization) 0.774 (0.051) 0.507 (0.022)

Twenty trials were performed for each pretraining method, value of δ, with and without sample weights (SW). Mean and standard deviation of the test AUC across trials are reported for

each condition. ∗Significantly different (p < 0.05) than baseline for the pretraining method where δ = 0. †Significantly different (p < 0.05) for particular δ when sample weights are applied,

compared to no sample weight.
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IVPP hyperparameter combinations significantly improved the

performance of VICReg.

5 Discussion

5.1 Guidelines for practitioners

Insights were derived to guide practitioners working with

deep learning for ultrasound interpretation. First, SimCLR was

observed to achieve the greatest performance consistently across

multiple tasks. With the exception of the data-scarce COVID-

19 classification task, SimCLR decisively outperformed Barlow

Twins and VICReg on the A/B and LS tasks. The results

provide evidence toward favoring contrastive learning over non-

contrastive learning for problems in ultrasound. It could be that

the non-contrastive methods studied may be less effective for lung

ultrasound examinations. We suspect that the lack of diversity in

parenchymal lung ultrasound and the fine-grained nature of the

classification tasks is problematic for non-contrastive methods, as

the objectives are attractive and focus on maximizing embedding

information. Perhaps explicit samples of negative pairs may be

needed to learn a meaningful embedding manifold for fine-grained

downstream tasks. Future work assessing non-contrastive methods

for tasks in different ultrasound examinations or alternative

imaging modalities altogether would shed light on the utility of

non-contrastive methods outside the typical evaluation setting of

photographic images.

While the experimental results do not support the existence of

overarching trends for hyperparameter assignments for intra-video

positive pairs across pretrainingmethods, it was observed that some

combinations improved performance on particular downstream

tasks. For example, each pretraining method’s downstream

performance on COVID-19 classification was improved by a

nonzero value of δt . Overall, the results indicated that the optimal

assignment for IVPP hyperparameters may be problem-specific.

Clinically, IVPP may improve performance on downstream

ultrasound interpretation tasks; however, practitioners are advised

to include a range of values of δ with and without sample weights

in their hyperparameter search.

5.2 Limitations

Themethods and experiments conducted in this study were not

without limitations. As is common in medical imaging datasets,

the ParenchymalLUS dataset was imbalanced. The image-wise

representation for the positive class was 30.0% for the AB task and

11.7% for the lung sliding task. Although some evidence exists

in support for self-supervised pretraining for alleviating the ill

effects of class imbalance in photographic images (Yang and Xu,

2020; Liu et al., 2021), computed tomography, and fundoscopy

images (Zhang et al., 2023), we found no such evidence for tasks

in medical ultrasound.

As outlined in the background, the pretraining objectives

employed in this study have been shown to improve downstream

performance when the pairwise relationship aligns with the

downstream task (Balestriero and LeCun, 2022). These guarantees

compare to the baseline case of random weight initialization.

While it was observed that all pretraining methods outperformed

full supervision with randomly initialized weights, ImageNet-

pretrained weights outperformed non-contrastive methods in

several of the experiments. ImageNet-pretrained weights are a

strong and meaningful baseline for medical imaging tasks, as

they have been shown to boost performance in several supervised

learning tasks acrossmedical imagingmodalities (Azizi et al., 2021).

It is possible that some extreme data augmentation transformations

and intra-positive pairs could jeopardize the class agreement of

positive pairs (as is likely in most pragmatic cases); however, near-

consistent alignment was achieved through data augmentation

design and small ranges of δ. Although there exists evidence

that VICReg and SimCLR can achieve similar performance

on ImageNet with judicious selection of hyperparameters (e.g.,

temperature, loss term weights, learning rate) (Garrido et al., 2022),

we used default hyperparameters. Due to limited computational

resources, we avoided expansion of the hyperparameter space by

only studying IVPP hyperparameters.

Lastly, M-mode images were designated by selecting x-

coordinates in B-mode videos that intersect a pleural line region

of interest, as predicted by an object detection model utilized in

previous work (VanBerlo et al., 2022b, 2023b). LUSM-mode images

must intersect the pleural line in order to appreciate the lung sliding

artifact.While wemitigated potential inaccuracies in localization by

limiting training and evaluation data to the brightest half of eligible

x-coordinates, it is possible that a small fraction of M-mode images

were utilized that did not intersect the pleural line.

5.3 Conclusion

Intra-video positive pairs have been proposed as a means of

improving the downsteam performance of ultrasound classifiers

pretrained with joint embedding self supervised learning. In

this study, we suggested a scheme for integrating such positive

pairs into common contrastive and non-contrastive SSL methods.

Applicable to both B-mode and M-mode ultrasound, the

proposed method (IVPP) consists of sampling positive pairs

that are separated temporally or spatially by no more than a

threshold, optionally applying sample weights to each pair in

the objective depending on the distance. Investigations revealed

that using nearby images from the same video for positive

pairs can lead to improved performance when compared to

composing positive pairs from the same image, but that IVPP

hyperparameter assignments yielding benefits may vary by the

downstream task. Another salient result was the persistent top

performance of SimCLR for key tasks in B-mode and M-

mode lung ultrasound, indicating that contrastive learning may

be more suitable than non-contrastive learning methods for

ultrasound imaging.

Future work could investigate IVPP for other types of medical

ultrasound exams. IVPP could also be integrated into other SSL

objectives. The sample weights formulation proposed in this study

could also be applied to SSL for non-US videos. Given the

high performance of SimCLR, subsequent work should perform

a comprehensive comparison contrastive and non-contrastive
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SSL methods for tasks in medical US. Lastly, future work

could evaluate US-specific data augmentation transformations that

preserve semantic content. As a natural source of differences

between positive pairs, IVPP could be studied in tandem with

US-specific augmentations.
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