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In this work, we analyse the comparison between using the periocular area

instead of the full face area for Presentation Attack Detection (PAD) in the visual

spectrum (RGB). The analysis was carried out by evaluating the performance of

five Convolutional Neural Networks (CNN) using both facial and periocular iris

images for PAD with two di�erent attack instruments. Additionally, we improved

the CNN results by integrating the ArcFace loss function instead of the traditional

categorical cross-entropy loss, highlighting that the ArcFace function enhances

the performance of the models for both regions of interest, facial and iris

periocular areas. We conducted Binary and Multiclass comparisons, followed

by cross-database validation to assess the generalization capabilities of the

trained models. Our study also addresses some of the current challenges in

PAD research, such as the limited availability of high-quality face datasets in

the desired spectrum (RGB), which impacts the quality of Presentation Attack

Instruments (PAI) examples used in training and evaluation. Our goal was

to address the challenge of detecting Iris periocular presentation attacks by

leveraging the ArcFace function. The results demonstrate the e�ectiveness of

our approach and provide valuable insights for improving PAD systems using

periocular areas in the visual spectrum.
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1 Introduction

Biometric systems for personal authentication have gained significant attention in

recent years due to the need for secure identification and access control. However, the

vulnerability of these systems to detect presentation attacks, in which an attacker tries to

bypass the system by presenting fake biometric traits, poses a significant threat to their

security. Facial and periocular recognition systems (Minaee and Abdolrashidi, 2019; Hu

et al., 2015; Tapia et al., 2022) have been widely used modalities due to their non-intrusive

nature and ease of use. However, these systems are also susceptible to presentation attacks,

such as printed photos, video replay, contact lenses, and masks. The development of

effective PADmethods (Ramachandra and Busch, 2017) has thus become crucial to ensure

the security and reliability of biometric authentication systems.

Nowadays, PAD is a very active research area. Several databases are constituted in

the state-of-the-art using images extracted from videos (Zhang et al., 2012; Chingovska

et al., 2012; Wen et al., 2015). One of the main challenges identified is that many databases

present a low-quality, small image size and do not represent an operational scenario in

an actual remote biometric system. Currently, the images are captured from smartphones
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with high-quality and higher resolutions. This previous condition

allows exploring other face areas to detect fake images, such as

periocular iris images.

One of the challenges in developing PADmethods is the limited

availability of high-quality face datasets in the desired spectrum

(NIR or RGB) for research, which in turn affects the quality of

PAI examples used for training and evaluation. In addition, deep

learning models have been widely used for PAD, with several

networks being employed, such as MobileNet (Sandler et al.,

2018; Howard et al., 2019), DenseNet (Huang et al., 2017), and

EfficientNet (Tan and Le, 2019).

The choice of network architecture and its hyperparameters

can significantly impact the performance of the PAD system.

Furthermore, the selection of the loss function in training deep

learning models also plays an important role in the performance

of the PAD system. CNN commonly uses Categorical Cross-

Entropy (CCE) loss and has been shown to be effective in

many deep-learning applications. Today, the ArcFace (Deng et al.,

2019) loss has been shown to improve the performance of face

recognition tasks. ArcFace is a margin-based penalty that enhances

the discriminative power of the learned features and may have

potential applications in the PAD domain.

In this article, we provide a comprehensive assessment for

detecting presentation attacks using the face and periocular iris

in the visual spectrum, focusing on the instruments employed for

these attacks and the challenges posed by the limited availability

of high-resolution bona fide and attack images. We also explored

various CNNs proposed, including loss functions for PAD, and

compared their performance. The metrics used for evaluation will

follow the definitions of the ISO 30.107-3 standard (ISO/IEC JTC

1/SC 37 Biometrics, 2021).

The main contributions of this work can be summarized as

follows:

• A comprehensive comparison between face and periocular iris

images in the visual spectrum was reported.

• A benchmark of five different deep learning-based network

architectures for PAD was performed.

• An assessment of the effectiveness of two different loss

functions, CCE and ArcFace loss, in PAD models was

reported.

• An analysis of the challenges and potential solutions for

improving the performance of PAD methods is proposed.

• A new iris periocular dataset in the visual spectrum was

presented and will be available for further research (upon

acceptance).

By highlighting the strengths and limitations of existing

methods and discussing potential solutions and future research

directions, we aim to advance the field of biometric security further

and ensure the reliability of PAD methods in real-world scenarios.

The remaining sections of this article are structured as follows:

Section 2 summarizes the relevant studies on PAD. Section 3,

elaborates on the description of the database used. Section 4,

explains the metrics employed. The methodology is presented in

Section 5, followed by the experiment and results in Section 6.

Finally, Section 9 describes the conclusions.

2 Related work

Numerous PAD systems have been introduced in the literature

for face and iris, as the utilization of these systems has grown

in different applications in many biometric modalities, leading to

a higher risk of attacks on these systems due to their sensitivity

(Czajka and Bowyer, 2018; Tolosana et al., 2019; Tapia et al., 2021;

Dhar et al., 2022). However, only a few of them are focussing on the

iris periocular area using the visual spectrum for PAD.

2.1 Face PAD

Pasmino et al. (2023) addressed the need for improved PAD

databases by introducing a new database called “F-PAD”. Existing

databases often suffer from low-quality, small-sized images that

do not accurately represent real-world scenarios, such as remote

biometric systems. In contrast, the F-PAD database is based on

high-quality images sourced from the Face-HQ Dataset, offering

a more comprehensive range of image quality and resolution.

The database consists of 3,000 bona fide face images and 11,000

attack images. The bona fide images were carefully selected,

focusing on portrait and selfie-like photos with evident facial

biometric characteristics such as open eyes and a full mouth,

while the attack images were created by dividing the bona fide

images into three groups of Presentation Attack Instruments

(PAIs) such as paper matte, glossy, and bond. Several devices,

including screens from laptops, smartphones (e.g., iPhone-XI,

LG, Huawei), and tablets (e.g., iPad, Microsoft Surface), were

used to capture the attack images. Three deep learning models

were implemented to evaluate PAD performance: MobileNet-V3

(small and large) and EfficientNet-B0. These models were trained

and evaluated using the F-PAD database as well as four state-

of-the-art datasets. All the evaluations were performed using

full-face images.

Yu et al. (2020) proposed an algorithm based on a frame-

level face anti-spoofing method with a Central Difference

Convolution (CDC), which can capture intrinsic detailed

patterns via aggregating both intensity and gradient information.

Furthermore, over a specifically designed CDC search space,

Neural Architecture Search (NAS) is utilized to discover a more

robust network structure (CDCN++), which can be assembled

with a Multiscale Attention Fusion Module (MAFM) for further

boosting performance. The author evaluated their model on

CASIA-MFSD (Zhang et al., 2012), MSU-MFSD (Wen et al., 2015),

and Replay-Attack (Chingovska et al., 2012) datasets using full-face

images in different resolutions.

Fang et al. (2023) proposed the Competition on Face

Presentation Attack Detection Based on Privacy-aware Synthetic

Training Data (SynFacePAD 2023) held at the 2023 International

Joint Conference on Biometrics (IJCB 2023). The solutions

were evaluated on four publicly available authentic face PAD

benchmarks. The competition showcased various innovative

approaches, resulting in improved performance compared to

the baseline methods. The Solutions using transformer-based

architecture as the base network generally exhibited higher
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PA detectability compared to CNNs. All the evaluations were

performed using full-face images.

Gonzalez-Soler et al. (2023) explored the utility of using

different facial regions for PAD. In this context, a new metric,

Face Region Utility, was proposed, which indicates the usefulness

of a particular test region in spotting an attack attempt based on

another training region. The left and the right eyes are explored

separately in the visual spectrum. The full face was identified

as the most helpful part compared with the face’s left and right

sides and other different areas. The central region of the faces

could outperform the results achieved by the full face on a

masked database.

2.2 Periocular iris PAD

Upon reviewing the state-of-the-art, it stands out that the

vast majority of works report results using databases in the Near-

InfraRed spectrum (NIR), while only a few (Pasmino et al., 2023)

in the visual spectrum (RGB) use databases of intermediate or

low quality. This fact highlights the need to explore and improve

the capability of PAD models to operate in a high-quality visual

spectrum. Additionally, only results using faces (Pasmino et al.,

2023; Gonzalez-Soler et al., 2023) andmonocular zones (Tapia et al.,

2021, 2022) has been reported.

Dhar et al. (2022) introduced a multitask dual system called

EyePAD++, which performs eye authentication and PAD using

periocular images in the Near InfraRed spectrum based on ND-

LivDet (2013-2017) databases (Yambay et al., 2017). This work

proposes a whole system that employs a teacher-student framework

with Multitask Learning Networks, where the teacher network

is trained only for Eye Authentication (EA) and the student

network is specialized in detecting Presentation Attacks (PA). The

EyePAD++ system demonstrates effectiveness in combining both

tasks (Face and iris), but it relies on datasets captured in the

NIR spectrum, which are primarily in low resolution. This may

present challenges when detecting fine-grained details that are

critical for high-precision PAD systems. Although the approach

works well in controlled environments, the dependence on low-

resolution datasets limits the performance of the system in real-

world scenarios where images with higher resolution may be

required to ensure a high-quality Presentation Attack Detection.

Hoffman et al. (2019) proposed an iris plus ocular PAD

using Multiple CNNs. This work extracted multiple patches from

different eye positions. Three different solutions were proposed

based on the region that is input to the CNN. The first solution,

which they call the Iris CNN (I-CNN), looks primarily at the

iris region. The second solution, called the Full image CNN (F-

CNN), looks at the full ocular image, whereas the third solution,

called Sampled Ocular CNN (S-CNN), looks at a subset of patches

sampled from the ocular region. All the images are also in the

NIR spectrum.

In our previous work (Tapia et al., 2021), we also explored the

influence of iris periocular images for selfie-biometric using images

in the visual spectrum captured in “the wild condition” based on a

smartphone App and applying a Super-Resolution algorithm. The

iris images were captured in a selfie mode with three different

distances based on arm extension (Tapia et al., 2019). No PAD

exploration was reported.

Motivated by challenges previously identified in PAD methods

for both the NIR and VIS spectrum, we propose a novel approach

focused on the visual spectrum (RGB) using high-resolution

images and diverse presentation attack instruments (PAIs). Our

method compares the performance of PAD systems when using

the full face versus the iris periocular area. Through the use of

different deep learning models, we demonstrate that training with

these high-resolution bona fide and attack images significantly

increases the discriminative power of the models. In alignment

with recent advancements in PAD research (Yu et al., 2022),

we conducted cross-validation to check the generalizability of

our models, showing that the performance drops when tested

on previously unseen databases. In this way, we highlight the

well-known challenge of dataset variability in PAD, emphasizing

the need for robust models that generalize well across different

conditions. Our work builds upon the existing state of the art by

exploring alternative regions of interest, integrating different loss

functions, and using high-resolution RGB datasets that contribute

to the ongoing development of more reliable PAD systems in the

visual spectrum.

3 Databases

Two different datasets that accomplish our requirement of

high-resolution were used for this work: F-PAD (Pasmino et al.,

2023), and we also created from scratch a Private PAD dataset

(P-PAD), which was developed with the support of a Biometric

company only for research purposes and will be available for

other researchers. In line with the problem identified by Pasmino

et al. (2023) referring to the low availability of high-resolution

datasets, we focused on using high-quality image datasets (F-PAD

and P-PAD) to improve the generalizability of PAD models across

different attack scenarios. Also, it has been highlighted in the

state-of-the-art (Yu et al., 2022) that PAD methods obtain good

results in intra-dataset scenarios, whichmeans that test images were

created under the exact conditions as the training set. However,

these models tend to decrease their performance noticeably when

inferring from other databases on cross-dataset scenarios or

unknown attacks with attacks not previously considered. It is

essential to highlight that most of the datasets in the literature

present low-resolution images.

Therefore, high-resolution images of 1, 280 × 720 pixels were

needed and used for this study, and images for the print and screen

classes with a resolution of 5, 120× 3, 840. These images were then

cropped to the periocular regions and resized to the input size of

each CNN to be trained.

It is essential to consider that an image’s quality and level

of detail are closely related to its resolution. An image with a

higher resolution will have more pixels, which translates to more

outstanding sharpness and detail. In this context, the original

high-resolution images were used to generate printed and screen

images manually.

For the first scenario, the original images were printed on glossy

paper and photographed with a high-end mobile device. Different

collaborators captured the original images from different computer
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FIGURE 1

Examples of facial and periocular images with corresponding printed and screen classes.

TABLE 1 Database summary for bona fide and attack.

Classes F-PAD P-PAD Total

Databases

Bona fide 3,000 5,200 8,200

Printed 6,000 10,000 16,000

Screen 5,000 9,998 14,998

Total 14,000 25,198 39,198

screens for the screen image scenario. The database provided High-

Definition (HD) images of 1280 × 720 pixels for capturing selfie

images and creating presentation attacks with high-end mobile

devices by four collaborators tasked with manual work. As a result

of using these high-end devices, the generated images have four

times the resolution of the original ones, giving them a much

higher level of detail and sharpness. The F-PAD and the P-PAD

periocular test set datasets will be available only by request for

research purposes. Figure 1 shows examples of images.

Table 1 shows the number of images per class for both

mentioned databases.

Furthermore, the datasets were split into training, validation,

and test sets while maintaining a balanced distribution of 60%,

20%, 20% for each class, as illustrated in Tables 2, 3. Alongside

the aforementioned process, three text files were generated to

retain a record of the corresponding image lists for each dataset

split, ensuring consistency throughout the experiments and results.

These files will also become publicly available to ensure the

reproducibility of this work.

TABLE 2 Summary of data sampling for F-PAD database.

Classes Train 60% Test 20% Val 20% Total

F-PAD binary splits

Bona fide 1,783 606 604 2,993

Attack 6,585 2,189 2,194 10,968

Total 8,368 2,795 2,798 13,961

F-PAD multiclass splits

Bona fide 1,783 606 604 2,993

Printed 3,590 1,193 1,196 5,979

Screen 2,995 996 998 4,989

Total 8,368 2,795 2,798 13,961

3.1 Preprocessing

All the selfie images were preprocessed, and the face was

detected and cropped using theMTCNN face detector (Zhang et al.,

2016). Each image’s key points of the regions of interest were used

to crop the periocular area. In the case of MTCNN, the detected key

points are those of the eyes, nose, mouth corners, and face location.

Further, the MTCNN network only delivers key points of the

mentioned face parts but not of the desired element (periocular

area). To crop this area, the Euclidean distance between the pairs

of points (eyes–nose) and (eyes–face upper limit) was calculated to

obtain the midpoint of the periocular area and thus crop it.

Another challenge that arose while creating the databases was

the presence of images with too large dimensions, which led to a

significant increase in the MTCNN network’s inference time. To

improve that, the images were reduced by a factor of 5, and the face
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TABLE 3 Summary of data sampling for P-PAD database.

Classes Train 60% Test 20% Val 20% Total

P-PAD binary splits

Bona fide 3,598 1,218 1,200 6,016

Attack 11,360 3,768 3,787 18,915

Total 14,958 4,986 4,987 24,931

P-PAD multiclass splits

Bona fide 3,598 1,218 1,200 6,016

Printed 5,986 1,997 1,996 9,979

Screen 5,374 1,771 1,791 8,936

Total 14,958 4,986 4,987 24,931

and landmark were inferred from these small images. Afterwards,

the key points were interpolated or scaled to the original image.

This way, all the necessary information for detection could be used

without affecting the image resolution.

Despite the solutions applied, the challenge of undetected face

images arose, where the MTCNN detector failed to detect regions

of interest in some images. Thus, it is essential to mention that the

number of examples was reduced from 14,000 to 13,961 for the

F-PAD database and from 25,198 to 24,931 for the P-PAD database.

Figure 2 visually represents the face detection steps, while

Figure 1 shows a compilation of the resulting images using the facial

and periocular detection method previously described.

4 Metrics

The ISO/IEC 30.107-31 standard provides guidelines for

evaluating the performance of PAD algorithms in biometric

systems. The Attack Presentation Classification Error Rate

(APCER) metric measures the proportion of attack presentations

that are incorrectly classified as bona fide presentations for each

type of Presentation Attack Instrument (PAI). This metric is

calculated separately for each PAI, and the worst-case scenario

is considered. Equation 1 outlines how to compute the APCER

metric. In this equation, the value of NPAIS represents the number

of attack presentation images, where RESi for the ith image is 1 if

the algorithm classifies it as a spoofed image, and 0 if it is classified

as a bona fide presentation.

APCER = 1−

(

1

NPAIS

) NPAIS
∑

i=1

Resi (1)

In addition, the Bona fide Presentation Classification Error

Rate (BPCER) metric evaluates the proportion of bona fide (live)

presentations that are incorrectly classified as attacks to the

biometric capture device or the ratio between false rejections and

total bona fide attempts. The BPCER metric is calculated using

Equation 2, where NBF represents the number of bona fide (live)

1 https://www.iso.org/standard/79520.html

presentation images, and RESi takes the same values as those used

in the APCER metric.

BPCER =

(

1

NBF

) NPAIS
∑

i=1

Resi (2)

The experiments included a Detection Error Trade-off (DET)

curve, which shows the relationship between the false acceptance

rate (APCER) and the false rejection rate (BPCER). The Equal Error

Rate (EER) value is the point where the APCER and BPCER are

equal. The results included two operational points based on the

ISO/IEC 30.107 standard: BPCER10, which is the BPCER when the

APCER is fixed at 10%, and BPCER20, which is the BPCER when

the APCER is fixed at 5%.

5 Methodology

This section outlines the methodology employed to train

CNNs for face and periocular presentation attack classification and

the application of data augmentation techniques. Additionally, it

describes the utilization of the ArcFace loss function for improved

performance in PAD classification tasks. The experiments

conducted involve the following key steps.

5.1 Training of CNN architectures

Four state-of-the-art methods were explored including

MobileNet V2 (Sandler et al., 2018), MobileNet V3 (Howard et al.,

2019) (small and large versions), EfficientNetB0 (Tan and Le,

2019), and DenseNet121 (Huang et al., 2017). These architectures

were trained on the face and periocular databases separately to

explore the optimal set of hyperparameters through grid search

tuning. The experiments consisted of four distinct trials, outlined

as follows:

• Exp 01: Facial images were used, and the CCE loss function

was applied.

• Exp 02: Periocular images were used, and the CCE loss

function was applied.

• Exp 03: Facial images were used, and the ArcFace loss function

was applied.

• Exp 04: Periocular images were used, and the ArcFace loss

function was applied.

Table 4 presents the hyperparameters selected based on the

training process for the CNN architectures.

5.2 Data augmentation techniques

Data augmentation techniques were employed during training

to enhance the model’s robustness and generalization capabilities.

Specifically, data augmentation was applied only to the training

set, while the validation and test sets retained the original

images. This step is crucial when training these CNN’s models,

particularly for tasks like Presentation Attack Detection (PAD).
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FIGURE 2

Face and periocular detection flow using MTCNN (Zhang et al., 2016).

TABLE 4 Summary of hyperparameters used for each model.

Test ID Model arch # params Epochs Batch size Input size Optimizer LR

Hyperparameters

01 MobileNet V2 2.260.546 200 16 224× 224 RMSProp 10e-4

02 MobileNet V3 Small 940.274 200 16 224× 224 Adam 10e-4

03 MobileNet V3 Large 2.999.232 200 16 224× 224 RMSProp 10e-4

04 EfficientNet B0 4.052.133 200 16 224× 224 SGD 10e-3

05 DenseNet121 7.039.554 200 16 224× 224 SGD 10e-4

For both bona fide and presentation attack images, augmentation

helped to improve the model’s ability to generalize across severe

conditions and attack types. The following table defines the

different augmentators used, which include horizontal and vertical

image flipping, Gaussian andmedian filter blurring, and brightness,

contrast, and color adjustments. Additional transformations, such

as perspective changes, were also applied. Table 5 describes the

details of DA applied.

5.3 Categorical cross entropy loss (CCE)

A set of models was trained with the CCE loss function to assess

performance improvement in PAD classification tasks. In the CCE

function, the entropy of each class is calculated as the sum of the

probability of the ground truth class multiplied by the logarithm of

the predicted probability for that class. This dissimilarity shows the

difference between the predicted class and the ground truth, as is

depicted in Equations 3, 4:

− (y log(p)+ (1− y) log(1− p)) (3)

In the case of multiple classes, the function can be represented

by the following equation:

−

M
∑

c=1

yo,c log(po,c) (4)

Where M corresponds to the number of classes, log is the

natural logarithm, p is the probability of the predicted class, and

y is the binary indicator (1 or 0) depending on whether the class

was correctly classified or not.

5.4 ArcFace loss function

A set of models trained with the state-of-the-art ArcFace

loss function was employed to assess performance improvement

in PAD classification tasks. This loss function enhances the

network’s discrimination ability by learning relevant features in the

embedding space. It is widely used in deep learning to improve the

accuracy of data classification tasks. This loss function compares
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TABLE 5 Summary parameters applied for DA.

Transformation Description Probability/range

Flipping Randomly apply horizontal or vertical flipping to the image. 75% chance for each flip

Coarse dropout Randomly removes parts of the image by dropping pixels. 25% chance

Brightness adjustments Randomly adds or subtracts values from pixel intensity, changing brightnesfrom Range: -30 to +30

Grayscale Converts the image to grayscale by adjusting the color channels. Alpha range: 0.0–1.0

Contrast adjustment Modifies the contrast by increasing or decreasing it randomly. Contrast range: 0.25–2.0

Noise addition Adds Gaussian, Laplace, or Poisson noise to the image. Noise intensity range: 0.01 * 255–0.1 * 255

Blurring Applies different blur types: Gaussian, average, or motion blur. Blur range: Sigma (0.01–2.5), Kernel size (1 to 5)

Gamma contrast Adjusts the gamma contrast levels to enhance contrast. Gamma range: 0.01–1.0

FIGURE 3

Visual representation of class separation in a vector space.

the input images with their respective projections and quantifies

the amount of information lost during the projection process.

The models were trained using the designated databases, and

their performance in PAD classification was evaluated following the

ISO 30.107-3 standard.

The ArcFace function can be represented mathematically as:

LArcFace(x) = − log
es(cos(θyi+m))

es(cos(θyi+m)) +
∑N

j=1,j6=yi
escos(θj)

Where:

• x: is an input image representing a class.

• s: is a scaling factor used to control the magnitude of the

loss function. A high value of s means that the loss will be

larger and, therefore, the separation between classes will be

more significant.

• m: an angular margin added to increase the separation

between classes. This margin is used to force a clearer

separation between classes, which in turn helps to reduce the

probability of error in classification.

• θy: is the angle between the input images x and the

desired output y. This angle represents the similarity between

the images.

• θj: is the angle between the input image x and another image

or class j other than the desired output. This angle represents

the similarity between the input image and other classes.

The ArcFace function2 combines these parameters to produce a

measure of information loss when classifying images into different

classes. The idea is to maximize the separation between the classes

(positive and negative) and minimize the information loss to

improve classification accuracy. In summary, the function ArcFace

is a state-of-the-art loss function that is used to calculate and

maximize the separation angle between two or more datasets (see

Figure 3), in addition to applying a separationmargin between their

classes. In contrast, the classical CCE loss function only measures

the discrepancy between the probability distributions of the classes.

6 Experiments and results

6.1 Experiment 01—Facial and categorical
cross entropy

For this experiment, five different CNNswere trained to explore

different optimiser and learning rate parameters. The parameter

2 https://github.com/yinguobing/arcface/blob/main/train.py
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TABLE 6 Exp. 01. Results of models trained with face images and CCE.

Test ID Model EER (%) APCER (%) BPCER (%) BPCER10 (%) BPCER20 (%)

01 MobileNet V2 10.72 10.69 10.72 11.07 17.64

02 MobileNet V3 Small 26.47 26.43 26.47 46.88 61.24

03 MobileNet V3 Large 8.82 8.79 8.82 7.09 15.74

04 EfficientNetB0 23.52 23.50 23.52 48.44 65.57

05 DenseNet121 19.55 19.53 19.55 31.31 46.88

The best result is highlighted with bold text.

TABLE 7 Exp. 02. Results of models trained with periocular images and CCE.

Test ID Model EER (%) APCER (%) BPCER (%) BPCER10 (%) BPCER20 (%)

01 MobileNet V2 2.42 2.39 2.42 0.86 1.21

02 MobileNet V3 Small 18.85 18.85 18.85 33.56 45.67

03 MobileNet V3 Large 2.59 2.57 2.59 0.86 1.73

04 EfficientNetB0 26.12 26.11 26.12 42.90 60.38

05 DenseNet121 19.20 19.17 19.20 34.42 52.07

The best result is highlighted with bold text.

TABLE 8 Exp. 03. Results of models trained with facial images and ArcFace loss function.

Test ID Model EER (%) APCER (%) BPCER (%) BPCER10 (%) BPCER20 (%)

01 MobileNet V2 11.41 11.41 11.41 11.59 21.45

02 MobileNet V3 Small 17.54 17.54 17.64 50.51 90.86

03 MobileNet V3 Large 18.67 18.67 18.85 42.56 83.06

04 EfficientNetB0 14.87 14.83 14.87 16.78 24.74

05 DenseNet121 15.91 15.87 15.91 24.74 36.67

The best result is highlighted with bold text.

TABLE 9 Exp. 04. Results of models trained with periocular images and ArcFace function.

Test ID Model EER (%) APCER (%) BPCER (%) BPCER10 (%) BPCER20 (%)

01 MobileNet V2 1.90 1.89 1.90 0.86 1.21

02 MobileNet V3 Small 11.59 11.59 11.76 14.01 64.53

03 MobileNet V3 Large 1.21 1.17 1.21 1.21 1.21

04 EfficientNetB0 2.43 2.43 2.59 2.07 2.07

05 DenseNet121 8.47 8.43 8.47 8.13 12.80

The best result is highlighted with bold text.

numbers were also explored in order to look for a trade-off between

a lower EER and a reduced number of parameters. Table 4 shows a

summary of hyperparameters for each CNN trained and the input

sizes, learning rate, epochs and optimisers used for each.

Table 6 lists the results obtained by each model for Experiment

1. In this experiment, a full-face image was used as input and

using CCE. This table reported EER, APCER, BPCER, BPCER10

and BPCER20.

6.2 Experiment 02—Periocular and
categorical cross entropy

In this experiment, the CNNs model training is similar

to Experiment 01, but this time, it uses the periocular areas

of the faces as an input to the network using CCE. The

training parameters are reported in Tables 4, 7 lists the results

obtained. This table reported EER, APCER, BPCER, BPCER10

and BPCER20.

6.3 Experiment 03—Facial and ArcFace

We propose replacing the CCE with the ArcFace function in

the classification framework to improve the results. The ArcFace

is a loss function that measures the information loss when data is

projected into a lower-dimensional subspace. This experiment used

a full-face image as input, and the training parameters are reported

in Table 4.
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Table 8 lists the results of each training, separated by model and

using the ArcFace loss function. This table reported EER, APCER,

BPCER, BPCER10 and BPCER20.

6.4 Experiment 04—Periocular and ArcFace

In experiment 04, the CNN models are trained using the

periocular areas of the faces and the ArcFace loss function. The

training parameters are reported in Table 4.

Table 9 lists the obtained results. This table reported EER,

APCER, BPCER, BPCER10, and BPCER20.

6.5 Results

This section analyses and compares the results obtained in each

experiment carried out. TheMobileNetV3-Large andMobileNetV2

networks stand out above the others in terms of performance.

Specifically, in Experiment 01 Section 6, the MobileNetV3-Large

network achieves an EER of 8.82%, an APCER of 8.79%, and a

BPCER of 8.82% when using the combination of Face and CCE

loss function. Then, when switching the region of interest to the

periocular area in Experiment 02 (Section 6.2), the MobileNetV2

network achieves better results, with an EER of 2.42%, an APCER of

2.39%, and a BPCER of 2.42% (see Tables 6, 7) which are better than

the results reported by Pasmino et al. (2023). The improvement in

performance between using periocular regions over face regions

becomes more evident when we compare the improvements in

the EER, APCER and BPCER metrics. All three metrics show a

performance increase of 6.4% points in each of them. Thus, the

models trained with periocular regions are observed to outperform

those trained with full-face images.

Even so, when using the ArcFace loss function instead of

CCE, the combination of the periocular region and ArcFace

function proved to be competitive with the state of the art.

In Experiment 04, the MobileNetV2 network achieved an EER

of 1.90%, an APCER of 1.89%, and a BPCER of 1.90%, and

the MobileNetV3-Large network achieved an EER of 1.21%, an

APCER of 1.17%, and a BPCER of 1.21% (see Tables 8, 9). Both

networks demonstrated a significant improvement when switching

to the ArcFace loss function. Specifically, MobileNetV2 showed an

average improvement of 0.5 percentage points across all metrics,

while MobileNetV3-Large achieved a greater improvement with a

1.38 percentage points reduction in error rates across EER, APCER

and BPCER (see Tables 6, 9).

These results indicate that the periocular region is more

discriminative than the full-face images for Presentation Attack

Detection (PAD), allowing the networks to distinguish between

bona fide and attack samples more effectively. Moreover, when

TABLE 10 Results obtained frommulticlass model evaluation for facial

and periocular modalities.

Test set

Facial Periocular

Threshold 0.21 Threshold 0.23

DEER 12.65 % DEER 1.98 %

APCER(τ ) 12.65 % APCER(τ ) 1.90 %

BPCER(τ ) 12.70 % BPCER(τ ) 1.98 %

BPCER10 15.18 % BPCER10 1.15 %

BPCER20 26.56 % BPCER20 1.32 %

Bold indicates BPCER10, which is the BPCERwhen the APCER is fixed at 10%, and BPCER20,

which is the BPCER when the APCER is fixed at 5%.

FIGURE 4

Confusion matrix (left) and DET curves (right) of multiclass evaluation using facial modality. This curve shows that the network’s predictions have a

high error rate, with the screen class performing the worst. In parentheses, EER is reported in percentages.
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FIGURE 5

Confusion matrix (left) and DET curves (right) of multiclass evaluation using periocular modality. In this curve, both classes have a lower error rate

than the facial modality, translating to a better classification of presentation attacks. In parentheses, EER is reported in percentages.

TABLE 11 Cross-validation results on the test dataset from the P-PAD

database.

P-PAD test set

Facial Periocular

Threshold 0.21 Threshold 0.23

DEER 24.71 % DEER 10.58 %

APCER(τ ) 24.67 % APCER(τ ) 3.10 %

BPCER(τ ) 24.71 % BPCER(τ ) 17.40 %

BPCER10 33.00 % BPCER10 10.59 %

BPCER20 54.84 % BPCER20 12.23 %

Bold indicates BPCER10, which is the BPCERwhen the APCER is fixed at 10%, and BPCER20,

which is the BPCER when the APCER is fixed at 5%.

complementing the training with a more advanced loss function

such as ArcFace, both networks exhibited further improvements

in all metrics. This highlights the importance of selecting the

correct region of interest (periocular) and using a loss function that

enhances feature discrimination, leading to superior performance

in terms of EER, APCER, and BPCER.

This section analyses and compares the results obtained in each

experiment carried out. TheMobileNetV3-Large andMobileNetV2

networks stand out above the others in terms of performance.

Specifically, the MobileNetV3-Large network achieves an EER

of 8.82%, an APCER of 8.79%, and a BPCER of 8.82%. The

MobileNetV2 network achieves an EER of 2.42%, an APCER of

2.39%, and a BPCER of 2.42% (see Tables 6, 7) which are better than

the results reported by Pasmino et al. (2023).

Moreover, the models trained with periocular regions are

observed to outperform those trained with full faces. On the

other hand, when using the ArcFace function instead of CCE,

the combination of the periocular region and ArcFace function

proved to be competitive with the state of the art. TheMobileNetV2

network achieved an EER of 1.90%, an APCER of 1.89%, and a

BPCER of 1.90%. The MobileNetV3-Large network achieved an

EER of 1.21%, an APCER of 1.17%, and a BPCER of 1.21% (see

Tables 8, 9).

Although the results are satisfactory, it is important to consider

that the complexity and limitations of evaluating RGB-PAD

systems differ significantly from those associated with detecting

attacks in NIR spectrum images.

7 Multi-class validation

To perform a more detailed analysis of the previous results, the

class “attack” was divided into two subclasses: printed and screen.

Then, the parameters of the best experiment (MobileNetV2, see

Tables 8, 9) were replicated to train a multi-class classifier and

compare the results between the facial and periocular modalities

using the ArcFace loss function.

As stated above, Table 10 shows the metrics results obtained

for each modality, while Figures 4, 5 show the confusion matrix

and DET curves obtained from the multi-class evaluation for each

modality. It can be observed from both Table 10 and both figures

that the use of the periocular region again shows an improvement

trend in the results.

The DET curve shown in Figure 4 indicates that the most

challenging facial attack instrument to predict is the screen

class with an EER of 12.65%. In contrast, the DET curve

in Figure 5 indicates that switching to periocular modality

substantially improves the results, achieving EER of 1.98% for

the screen class. It is also worth noting that the confusion

matrices reflect the performance improvement for the bona

fide and screen classes when switching between facial and

periocular modalities.
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FIGURE 6

Confusion matrix (left) and DET curves (right) of multiclass cross dataset evaluation with facial modality. Both curves represent a high error rate,

which is reflected in the number of errors made in the confusion matrix.

FIGURE 7

Confusion matrix (left) and DET curves (right) of multiclass cross dataset evaluation with periocular modality. Both curves represent a high error rate,

but it is twice as low compared to the error rates obtained with the facial modality. In parentheses, EER is reported in percentages.

8 Cross dataset validation

To ensure comprehensive results, the best experiment’s

parameters (MobileNetV2, as shown in Tables 8, 9) were used

throughout this section.

The training was performed on the F-PAD database, while the

P-PAD database was utilized for cross-validation, as indicated in

Tables 2, 3.

The results presented in Table 11 are aligned with the

state of the art, exhibiting a decrease in performance for

both facial and periocular modalities. The EER obtained

were 24.71% for facial modality and 10.58% for periocular

modality, both percentages being higher than those reported in

Tables 8, 9.

Figures 6, 7 show the confusion matrix and DET curves

obtained from the cross-dataset evaluation for each modality.

Then, final cross-validation is performed corresponding to

training with the P-PAD database and evaluation with the F-PAD

database (see Tables 2, 3). Table 12 shows the results of the final

cross-validation evaluation.

It is worth noting that the results using the periocular area and

the ArcFace function significantly improve due to the fact that the
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P-PAD database has 10,000 more images than the F-PAD database.

This is referenced in Tables 2, 3.

Table 12 presents the results of the cross-validation evaluation

on the F-PAD database, showing a significant decrease in the

performance of both methods. The EER of 38.95% and 8.88% were

obtained for facial and periocular modalities, respectively.

Only facial results are higher compared to those obtained in

Table 11, while periocular modality obtained a lower EER and

BPCER but higher APCER.

Figures 8, 9 display the confusion matrix and DET curves

obtained from the multiclass evaluation for each modality

(facial/periocular), also showing graphically the model

performance for each presentation attack class.

9 Conclusion

Previous studies on presentation attack detection (PAD)

for the iris and face have primarily concentrated on specific

TABLE 12 Cross-validation results on the test dataset from the F-PAD

database.

F-PAD test set

Facial Periocular

Threshold 0.13 Threshold 0.28

DEER 38.95 % DEER 8.88 %

ACER(τ ) 38.91 % ACER(τ ) 8.89 %

APCER(τ ) 38.89 % APCER(τ ) 8.88 %

BPCER(τ ) 38.94 % BPCER(τ ) 8.91 %

BPCER10 41.41 % BPCER10 8.58 %

BPCER20 41.58 % BPCER20 9.40 %

Bold indicates BPCER10, which is the BPCERwhen the APCER is fixed at 10%, and BPCER20,

which is the BPCER when the APCER is fixed at 5%.

presentation attack instruments (PAIs) using traditional state-of-

the-art datasets. These datasets often reflect operational conditions

characterized by low-resolution and controlled environments. To

address this issue, we introduce the P-PAD dataset, as discussed

in Section 3, which is captured in the visual spectrum (RGB).

This dataset comprizes high-resolution images and a diverse range

of PAIs, allowing for a more comprehensive evaluation of PAD

systems under real-world conditions. This enhances the robustness

of these systems against both known and unknown types of attacks.

It’s important to emphasize that the P-PAD database created in

this study differs from existing state-of-the-art databases in terms

of resolution, capture spectrum (utilizing visible light instead of

infrared), and the inclusion of high-resolution presentation attacks.

Most databases noted in the literature have lower resolution and/or

a limited variety of presentation attacks.

In addition to the dataset, we explored the impact of two loss

functions on the performance of PAD models and the use of the

periocular area instead of the full-face image. Our results showed

that the use of the ArcFace loss function, when combined with the

periocular region, outperforms the BPCER score of the traditional

Categorical Cross Entropy (CCE) loss function. This improvement

highlights the importance of employing an advanced loss function

to enhance the feature discrimination, particularly in regions of

interest like the periocular area, which consistently demonstrated

superior performance over full-face images (see Tables 6–9).

When the proposed models (see Table 4) for this study are

trained using periocular images and the ArcFace function, better

results were obtained compared to training with facial images

and the same loss function. Additionally, through the conducted

experimental search and the evaluation of the obtained results,

it was identified that the MobileNetV2 network achieves the

best performance obtaining an EER of 1.90%, an APCER of

1.89%, a BPCER of 1.90% and a BPCER10 of 0.86% (see Table 9).

These metrics highlight the network’s effectiveness in accurately

FIGURE 8

Confusion matrix (left) and DET curves (right) of multiclass cross dataset evaluation with facial modality. The curve for the “printed” class indicates

that it is the attack instrument class with the higher error. In parentheses, EER is reported in percentages.
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FIGURE 9

Confusion matrix (left) and DET curves (right) of multiclass cross dataset evaluation with periocular modality. Compared to the facial modality, both

curves indicate a lower error rate. The “printed” class has a higher error percentage compared to the “screen” class. In parentheses, EER is reported in

percentages.

classifying both bona fide and attack presentations, demonstrating

its superior performance compared to other models evaluated in

the study.

In conclusion, we placed significant emphasis on the cross-

validation evaluations we conducted (see Tables 11, 12). These

evaluations reveal the impact of different datasets on model

performance, as previously discussed in the state-of-the-art (Yu

et al., 2022). Our experiments demonstrate the effectiveness of

focusing on the periocular region and show that the performance

of Presentation Attack Detection (PAD) models can be further

enhanced by using advanced loss functions like ArcFace. While

Categorical Cross Entropy (CCE) and ArcFace are commonly

employed, we propose exploring other loss functions in future

work, such as Triplet Loss or Angular Margin Loss. These

alternatives may improve feature separation and classification

accuracy. Additionally, they could enhance the robustness of

PAD systems by emphasizing the discriminative power of

features, especially in complex scenarios involving unknown

attack types.
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