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soft tissue sarcoma

Chenyang Zhao†, Yusen Zhang†, Heng Lv†, Nan Zhuang,

Guangyin Yu, Yuzhou Shen, Licong Dong, Wangjie Wu, Lu Xie,

Yun Tian, Zhaoling Yi, Desheng Sun, Xingen Wang* and

Haiqin Xie*

Shenzhen Hospital, Peking University, Shenzhen, China

Background: Presurgical evaluation of the histopathological grade of soft tissue

sarcoma (STS) is important for enacting treatment strategies. In this study, we

plan to investigate the correlation of high-output ultrasound (US) radiomic

features and the histopathological grade of STS.

Methods: Patients with STS were retrospectively enrolled. The radiomic features

were extracted from the US images of the STS lesions. The lesions were graded

according to the Fédération Nationale des Centers de Lutte Contre le Cancer

(FNCLCC) histopathological grading system. The correlation of the radiomic

features and the FNCLCC grades was evaluated. We used the features correlated

with the histopathological grades to build a model for predicting high-grade STS

(Grade II and III).

Results: A total of 79 patients with STS were enrolled. And 15 radiomic

features were found correlated with the FNCLCC grades of STSs, with the

correlation coe�cient ranging from 0.22 to 0.38. And 8 features showed

significant di�erence among the three grades. The model for predicting high-

grade STS based on the 8 radiomic features had an AUC value of 0.80, a sensitivity

of 0.73, and a specificity of 0.78.

Conclusion: The US radiomic features were correlated with the FNCLCC grade

of STS. The radiomic analysis of US imaging could be potentially helpful for

identifying the FNCLCC grades of STS pre-surgically.
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Introduction

Soft tissue sarcomas (STSs) are a cohort of malignancies that derive from heterogenous

soft tissues in various parts of the entire body. They account for about 1% of cancers in

adult and comprise over 80 histological subtypes (Siegel et al., 2019; Choi and Ro, 2021). It

is challenging to diagnose and treat STSs properly due to their diverse pathological changes

and clinical behaviors. Clinicians attempt to tailor histology-specific treatment algorithms

for the patients with STSs instead of a single method for all types of STSs (Demetri et al.,

2017). To note, it is important to differentiate G1 (Grade I), the low-grade sarcomas, with

G2/G3 (Grade II/Grade III), the high-grade sarcomas, due to their different response to the

therapeutic strategies (Peeken et al., 2019, 2018). For those high-grade tumors, neoadjuvant
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therapy, such as chemotherapy and radiation therapy before

tumor resection, could be helpful for improving the prognosis

of the patients with STS (Casali et al., 2018; Gradishar et al.,

2021). Therefore, a pre-surgical evaluation of STS is of significant

importance for decision making.

The malignant degree of STSs is associated with their

histological manifestations. A histopathological grading system

for STSs has been established by the Fédération Nationale des

Centers de Lutte Contre le Cancer (FNCLCC) to determine the

malignant degree of STSs histologically (Neuville et al., 2014). The

FNCLCC grading system is constituted by three histopathological

parameters, including tumor differentiation, tumor necrosis, and

mitotic count. And the imaging-guided biopsies of the tumors

enable the pre-surgical histological evaluation of STSs. However,

the histological scores acquired from pretreatment biopsied

samples might be inaccurate. Schneider et al. found that about

68% in 100 patients with leiomyosarcoma showed difference

in FNCLCC scores between biopsied specimens and resected

specimens. And the scores of biopsied specimens were relatively

lower than that of resected ones (Schneider et al., 2017). Weigl

et al. reported a concordance rate of 92.5% in FNCLCC scores

between ultrasound-guided biopsied samples and resected samples

in 74 cases of STSs. And a total of five cases had a lower score

in biopsied samples than the resected samples (Weigl et al.,

2021). The discrepancy in FNCLCC scores could be explained

by that the biopsy-obtained samples are relatively small, which

could not be representative for the entire tumors with large sizes

and intratumoral heterogenicity. Therefore, a supplementary for

assessing the malignant degree of STSs to pretreatment biopsy

is necessary.

High-frequency ultrasound (US) and magnetic resonance

imaging (MRI) are two major imaging methods for the evaluation

of STSs, due to their excellent resolution to soft tissues (Achar

et al., 2022; Crombé et al., 2023; Sharon et al., 2022). Apart from

diagnosing STSs, studies have shown that STS imaging could also

indicates the histopathological information of the tumors. The

correlation between MRI indexes and histological characteristics

of STSs have been revealed by previous studies (Crombé et al.,

2019; Hettler et al., 2022; Teixeira et al., 2016; Chhabra et al., 2019;

Nakamura et al., 2017; Zhao et al., 2014). Compared with MRI, US

enjoyed a larger popularity in scanning patients with soft tissue

tumors clinically as a convenient and rapid imaging tool (Hung

et al., 2020; Morii et al., 2018). However, the correlation of US and

histopathological features has not been investigated previously.

Although US provides limited image information, the

development of radiomics has addressed this issue by employing

advanced analytical methods. Radiomics is an emerging

methodology in medical imaging analysis that extracts high-

throughput characteristics from medical images via computer

techniques (Avanzo et al., 2020; Lambin et al., 2017). US radiomics

has been utilized to facilitate cancer diagnosis and prognosis

prediction in some diseases, such as breast cancer, thyroid cancer,

and hepatocarcinoma (Conti et al., 2021; Han et al., 2021; Mao

et al., 2021; Yu et al., 2022; Chen, 2021). While the association of

US radiomics and STSs has not been reported previously. Given the

capacity of US radiomics in implying pathological information, it is

of clinical value to investigate the correlation of US radiomics and

histopathological characteristics of STS and explore the potential

role of radiomics in guiding treatment of STS.

In this study, we recruited patients with STSs from various

tumor sites. We made radiomic analysis of US images and applied

the FNCLCC criteria to evaluate the histopathological grades of

the tumors. The correlation of radiomic features of US imaging

and FNCLCC grades was explored subsequently. This pilot study

aimed to investigate the association between US radiomics and

histopathological grading of STSs and explore the role of radiomics

in assessing STSs.

Materials and methods

Ethical approval

The retrospective study was approved by the ethics committee

of Hospital (Approval number: 202200901). The informed

consent was not waived in this study, for there was no

interventional method performed, and only medical information

was retrospectively collected. The ethics committee approved the

exemption of informed consent.

Patient recruitment

The patients with STSs from July 2013 to December 2021 were

recruited consecutively.We collected the basic clinical information,

US images and pathological records of the patients for further

analysis. The inclusion criteria of the patients were: (1) patients

newly diagnosed with STSs by post-surgical histopathological

results; (2) patients who received US scanning of the lesion within

1 month before surgery; (3) patients with complete US imaging

and pathological results; (4) patients who received no neoadjuvant

therapy of STS. The basic clinical information included age, sex,

and the site of the STSs.

US examination and US imaging reading

The US scanning of soft tissue tumors was performed

by commercial US machines, including Philips IU22, Mindray

Resona70, Aplio 500, and GE healthcare EPIQ7, using linear probes

with a frequency of 5–15 MHz. The images of longitudinal section

showing the largest diameter of the lesions were recorded for

radiomic analysis.

Radiomic analysis

Two radiologists with 5 years of experiences in musculoskeletal

US (CY.Z. and N.Z.) selected the US images of the patients

with STSs from the imaging system. Two radiologists with 5

years of experiences in musculoskeletal US (YS. Z and H.L.)

outlined ROI of the selected images of STSs manually. A senior

radiologist with 12 years of experiences in musculoskeletal US

(HQ.X.) checked the ROI delineation of all the selected images

and modified the inappropriate ROIs. The radiologists (YS. Z, H.L.,
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and HQ.X.) were blind to the pathological results of the STSs. ROI

segmentation was conducted using ITK-SNAP (Yushkevich et al.,

2006). The radiomic features of the US images were extracted by

an open-source python package (PyRadiomics) (van Griethuysen

et al., 2017). A total of 96 radiomic features were extracted,

including first-order statistics (distribution of voxel intensities),

two-dimension shape-based statistics (two-dimensional size and

shape), gray level cooccurrence matrix (GLCM) (the second-order

joint probability function), gray level run length matrix (GLRLM)

(the length in number of pixels), gray level size zone matrix

(GLSZM), neighboring gray tone difference matrix (NGTDM)

(difference between a gray value and the average gray value of its

neighbors), gray level dependence matrix (GLDM).

Histopathological assessment

An expert pathologist evaluated the FNCLCC grading of the

recruited STS cases based on the standard proposed by the French

Sarcoma Group. The FNCLCC grading system includes three

pathological parameters, including tumor differentiation, mitotic

count, and tumor necrosis, scored as 1–3. For tumor differentiation,

Score 1 is the tumors resembling normal mesenchymal tissues;

Score 2 represents some certain types of STSs; and embryonal and

undifferentiated STSs, synovial sarcomas, doubtful-type STSs were

categorized into Score 3. For mitotic count, score 1 is 0–9 mitoses

per 10 high-power field (HPF); Score 2 is 10–19 mitoses; Score 3

is more than 19 mitoses. For tumor necrosis, Score 0 represents no

necrosis; Score 1 is less than 50% of necrosis; Score 2 is more than

50% or 50%. And the total score of 2–3 is Grade I; total score of 4–5

is Grade II; total score of 6–8 is Grade III (Neuville et al., 2014).

Statistical analysis

According to previous study, the specificity of the MR feature

on T1-weighted imaging reflecting themargin of the lesion was 0.69

(Zhao et al., 2014). We calculated the sample size of the study using

PASS 2021. A total sample size of 80 (which includes 40 subjects

with the disease) could achieve 90% power to detect a change in

specificity from 0.69 to 0.88 using a one-sided binomial test. The

target significance level is 0.05.

R (http://www.R-project.org) was used for statistical analysis in

this study. P < 0.05 was considered statistically significant.

We used the chi-square or Fisher test to investigate the

associations between the FNCLCC grade and categorical or ordinal

variables. And for each radiomic feature analyzed, we calculated

the univariable odds ratio (OR) along with a 95% confidence

interval (CI), to assess the strength of the association between

radiomics feature and the FNCLCC grading. Continuous variables

were compared using either the Wilcoxon test or the student t-test,

depending on the results of the Shapiro-Wilk normality test.

We first assessed whether there were the differences among

the three pathological types of STSs. Then we made pairwise

comparisons between each pair of groups. One-way analysis of

variance (ANOVA) for multiple group comparisons were utilized

for comparing the imaging parameters of the three grades of STSs.

When ANOVA test showed significant differences of the three

pathological grades, the student t-test was performed for pairwise

comparisons. For the post hocmultiple tests, P-values were adjusted

using Bonferroni correction to control the overall probability of

making at least one Type I error.

Additionally, the correlation between the imaging indexes

and histopathological grades were assessed via Spearman’s rank-

order correlation coefficient, which could provide insight into

the strength of the association between the variables and the

pathological grades.

The features showing difference among the three FNCLCC

grades were selected for building model for predicting the

histopathological grade of STSs. We categorized the STSs into two

groups: low-grade (FNCLCC Grade I) and high-grade (FNCLCC

Grade II and III) STSs. The backward stepwise variable selection

method based on the Akaike information criterion (AIC) was used

to establish the model. This process was enhanced by bootstrap

resampling of 500 times to ensure robust model performance.

Finally, we assessed the diagnostic performance of the model by

measuring sensitivity, specificity, positive predictive value (PPV)

and negative predictive value (NPV). We also evaluated the

diagnostic performance of the model through depicting its receiver

operating characteristic (ROC) curve and calculating the area

under the ROC curve (AUC).

Results

A total of 79 patients with STSs were recruited in this study

(47 male and 32 female). The basic clinical information and

histopathological types of the enrolled cases is shown in Table 1.

A total of 34 (43.0%) were Grade I STS, 32 (40.1%) were Grade

II STS, and 13 (16.5%) were Grade III STS. Among the recruited

cases, the most common types of STS were fibrosarcoma (34,

43.0%), liposarcoma (16, 20.3%), and rhabdomyosarcoma (6, 7.6%).

The lesions were located in the lower extremity (26, 33.0%), the

upper extremity (16, 20.3%), the trunk (25, 31.6%), and head

and neck (12, 15.2%). The Grade-I STSs were measured 76.06 ×

30.56 (longitudinal length × short length) averagely. The Grade-

II STSs were measured 70.44 × 35.84 (longitudinal length × short

length) averagely. The Grade-III STSs weremeasured 70.46× 40.31

(longitudinal length× short length) averagely.

Correlation between the radiomic features
and the FNCLCC grading of STSs

Among the 96 radiomic features, there were a total of 15

features showing significant correlation with the FNCLCC grade, as

shown in Table 2 and Figure 1, including 3 features ofmask indexes,

6 features of the tumor shape, 3 features of GLCM, one GLDM

feature, and one GLSZM feature. The correlation coefficient ranged

from 0.23 to 0.38.

Among the 15 features correlated with the FNCLCC grade,

a total of 8 features (R1-8) showed significant difference among

the three grades, as shown in Table 3. On adjusted pairwise

comparison, the difference still exist in the following features: R2

(p = 0.0005 for Grade I vs. III, p = 0.008 for Grade II vs. III), R3
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(p = 0.030 for Grade I vs. II, p = 0.036 for Grade I vs. III), R4 (p =

0.038 for Grade I vs. II, p= 0.022 for Grade I vs. III), R5 (p= 0.029

for Grade I vs. III), R7 (p = 0.028 for Grade I vs. II), R8 (p = 0.046

for Grade I vs. II).

Establishing the model for predicting the
high-grade STSs based on radiomic
features

There are 34 of low-grade STSs (Grade I) and 45 high-grade

STSs (Grade II and III). The formula of the predictive model based

TABLE 1 Basic clinical characteristics of the enrolled cases of STS.

FNCLCC
grade

I II III P-value

N 34 32 13

Age 44.88± 16.33 45.81± 15.70 49.85± 19.71 0.656

Sex

Male 17 (50.00%) 17 (53.12%) 13 (100.00%) 0.005

Female 17 (50.00%) 15 (46.88%) 0 (0.00%)

Site

Lower extremity 13 (39.39%) 9 (31.03%) 4 (33.33%) 0.198

Upper extremity 5 (15.15%) 5 (17.24%) 6 (50.00%)

Trunk 12 (36.36%) 12 (41.38%) 1 (8.33%)

Head and neck 3 (9.09%) 3 (10.34%) 1 (8.33%)

Longitutinal length 76.06± 72.96 70.44± 51.55 70.46± 41.13 0.92

Short length 30.56± 31.44 35.84± 22.49 40.31± 29.03 0.518

on ultrasonic radiomic features using stepwise regression is listed

as follows:

Logit (FNCLCC) = 3.73799 −0.00723∗R1

+0.00084∗R2 +4.55453∗R3 +0.00346∗R4 −0.00413∗R5

−121.71883∗R6+1.49956∗R7-0.00863∗R8.

The predictive model had a sensitivity of 0.73, specificity of

0.78, PPV of 0.87, NPV of 0.71, and AUC of 0.80 (0.71–0.89). The

ROC curve and the nomogram representing the formulation of the

radiomic model is shown in Figure 1. And an example of predicting

the high-grade STS using the model is shown in Figure 2.

Discussion

The histopathological grade is highly predictive to the

prognosis of STSs. However, the grades acquired with biopsied

samples can be inaccurate, which could not be representative for the

whole lesions. In this study, we found that the high-output radiomic

features were associated with the FNCLCC grades of STSs, with

the correlation coefficient ranging from 0.22 to 0.38. The model

for predicting high-grade STS based on radiomic features could

reach an AUC value of 0.80. The radiomic analysis of US imaging

could be potentially helpful for identifying the FNCLCC grades of

STS pre-surgically.

Previous studies have revealed the association of several

MRI features with the pathological grade and prognosis of STS.

However, the role of US imaging in pre-surgical histopathological

evaluation has not been reported previously. This is the first study

exploring the correlation of US and histopathological FNCLCC

grading of STS. US imaging-based radiomics has emerged as a

valuable approach in the diagnosis of malignancies and prognostic

prediction for a range of diseases, including breast cancer, thyroid

carcinoma, and hepatic cancer (Qi et al., 2022; Wang et al., 2019;

Yu et al., 2020). Radiomics captures spatial distributions of pixels

TABLE 2 Correlation between radiomic features and the FNCLCC grading of STSs.

Radiomic feature Correlation coe�cient 95% CI low 95% CI up P-value

diagnostics_Mask-original_VoxelNum 0.24 0.01 0.43 0.04

diagnostics_Mask-original_VolumeNum 0.28 0.07 0.47 0.01

diagnostics_Mask-original_CenterOfMassIndex 0.38 0.17 0.55 0.00

original_shape_Elongation 0.32 0.11 0.50 0.00

original_shape_Maximum2DDiameterRow 0.33 0.12 0.52 0.00

original_shape_MinorAxisLength 0.32 0.11 0.50 0.00

original_shape_Sphericity 0.29 −0.48 −0.07 0.01

original_shape_SurfaceVolumeRatio 0.23 0.01 0.43 0.04

original_shape_VoxelVolume 0.24 0.01 0.43 0.04

original_glcm_Correlation 0.24 0.02 0.44 0.03

original_glcm_DifferenceAverage 0.23 −0.43 −0.01 0.05

original_glcm_Idmn 0.25 0.03 0.44 0.03

original_glcm_Idn 0.23 0.01 0.43 0.04

original_gldm_DependenceNonUniformity 0.26 0.04 0.45 0.02

original_glszm_LargeAreaHighGrayLevelEmphasis 0.26 −0.46 −0.04 0.02
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FIGURE 1

Receiver operating characteristic (ROC) curve of the model predicting aggressive STS (A) and the nomogram for calculating the radiomic scores (B).

TABLE 3 Adjusted p-values for pairwise comparisons among Grade I-III STSs.

Radiomic features 12 13 23 P-value

R1: diagnostics_Mask-original_VolumeNum 0.074 0.073 0.85 0.031

R2: diagnostics_Mask-original_CenterOfMassIndex 0.54 0.0005 0.008 0.0008

R3: original_shape_Elongation 0.03 0.036 0.84 0.011

R4: original_shape_Maximum2DDiameterRow 0.038 0.022 0.69 0.009

R5: original_shape_MinorAxisLength 0.055 0.029 0.69 0.014

R6: original_shape_Sphericity 0.16 0.13 0.12 0.029

R7: original_shape_SurfaceVolumeRatio 0.028 0.28 0.90 0.031

R8: original_glszm_LargeAreaHighGrayLevelEmphasis 0.046 0.13 0.99 0.033

or voxels that are imperceptible to the human eye, which could

potentially elucidate the associations of imaging with underlying

pathological processes. The radiomic analysis of US could acquire

more information from the US images, compared with common

hand-crafted features, such as boundary, margin, and internal

echogenicity. Therefore, it is possible to explore the correlation

between ultrasonic radiomic features and the histopathological

grades of STS.

The features correlated with the histopathological grades

includes mask indexes, tumor shape, gray-level co-occurrence

matrix, gray level dependence matrix, and gray level size zone

matrix. The mask indexes represent the physical size and voxels of

the region of interest. Larger tumors may indicate more aggressive

behavior of STSs. The tumor shape features measure the size,

the ratio of longitudinal length and short length of the lesion,

and the sphericity of the lesion. Irregular shapes can also suggest

the aggressiveness of STSs in histopathology. The gray-level co-

occurrence matrix, gray-level dependence matrix, and gray-level

size zone matrix reflect pixel intensities and the uniformity of pixel

distribution within the lesions. Variations in these patterns can

indicate differences in tissue composition and cellularity, which

are associated with histopathological characteristics. Therefore,

physical appearances and components of the STS lesions, including

the shape, size, distribution of pixels, are associated with their

histopathological characteristics. The quantitative assessment of

US features through computer algorithms could be helpful in

predicting the histopathological aggressiveness of STSs. To note,

the correlation coefficients between the radiomic features and the

pathological grades are relatively low in this study, ranging from

0.23 to 0.38. This might be attributed to the limited sample size

of the study. Also, the biological behaviors of STSs are relatively

complex. The ultrasonic features alone cannot fully reflect the

histopathological characteristics of STSs. Further studies with

larger sample size and additional imaging variables are needed

to explore the association between imaging and histopathological

features of STSs.
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FIGURE 2

Example of predicting aggressive STS. (A) Gray-scale US image and pathological images of a 23-year-old female with Grade I STS. The radiomic

model predicted it as a low-grade STS with a high-grade probability of 0.44. (B) Gray-scale US image and pathological images of a 55-year-old male

with Grade III STS. The radiomic model predicted it as a high-grade STS with a probability of 0.78.

Grade I and Grade II STSs showed significant differences in

radiomic features reflecting the shape and distribution of pixels.

However, Grade II and Grade III is hard to differentiate through

US radiomic features. Given their histopathological characteristics,

we attributed Grade II and Grade III into one category as high-

grade STS, and Grade I as low-grade STS. The model based on

the radiomic features with significant differences among the three

grades had an AUC value of 0.80, sensitivity of 0.73, and specificity

of 0.78 for predicting aggressiveness of STS. The diagnostic

model provides a presurgical assessment of the lesions, which

may guide clinical decisions. For those lesions that may exhibit

greater aggressiveness according to the model, additional treatment

strategies can be considered, such as neoadjuvant therapy, or larger

incision area.

There exist several limitations of the study. Firstly, the number

of cases included in this study is relatively small, especially for

Grade III STS. More cases will be enrolled for further exploring the

association of US radiomic features and histopathological grades

of STSs. Moreover, radiomic features of pseudo-color images of

Color-Doppler US were not analyzed in this study, which might

also provide useful information in assessing histopathological grade

of STS. Additionally, we established a model for predicting the

high-grade STS based on US radiomic features with internal

validation of 500 times of bootstrap resampling. External validation

should be performed in further studies.

Conclusions

High output radiomic features of US imaging are correlated

with the FNCLCC histopathological grades of STS. The

model based on the radiomic features correlated with the

histopathological grade showed a good performance in identifying

high-grade STS with an AUC value of 0.80.
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