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Introduction: Homomorphic encryption (HE) enables privacy-preserving face

recognition by allowing encrypted facial embeddings to be compared without

decryption. While e�cient, these systems often reveal comparison scores in

plaintext, introducing a security risk. Revealing these scores can potentially allow

adversaries to reconstruct sensitive facial embeddings and infer demographic

attributes, thus compromising user privacy.

Methods: This work proposes a training-less face template recovery attack

leveraging the Lagrangemultiplier optimizationmethod. The attack requires only

a small set of randomly generated synthetic facial images and their associated

comparison scores with a target template. The method assumes attackers use

spoofed synthetic faces and lack direct access to the face recognition system,

aligning with real-world threat models.

Results: Experimental evaluation demonstrates the feasibility and e�ectiveness

of the proposed attack. It shows that between 50 and 192 comparison scores

and synthetic images are su�cient to recover the target face template with

100% success under strict system thresholds. The recovered templates closely

resemble the original and retain identifiable soft biometric traits.

Discussion: The findings reveal a critical vulnerability in face recognition systems

employing inner product similarity measures under homomorphic encryption.

Even without system access or training data, attackers can exploit leaked

comparison scores to compromise facial privacy. The study underscores the

need to reassess how score leakage is handled in encrypted recognition systems

and explore stronger protection mechanisms against template reconstruction.

KEYWORDS

homomorphic encryption, template recovery, biometric template protection, inner

product-based score, biometric recognition, synthetic facial images
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1 Introduction

Modern face recognition systems (Rathgeb et al., 2023)

represent biometric samples by distinctive feature vectors that

can be viewed as points spread out in an embedding space.

They produce recognition decisions by evaluating whether a

similarity score is above a predefined biometric threshold. Several

studies (Acien et al., 2018; Zhang et al., 2020) report that facial

feature vectors contain personally identifiable information, such as

demographic information, and are susceptible to being inverted for

retrieving raw facial images, threatening the privacy and security

aspects of face recognition schemes.

To alleviate these privacy and security threats, biometric

template protection schemes (BTPs; Sandhya and Prasad, 2017)

were introduced as protection mechanisms withstanding these

threats for a maintained recognition performance. Among existing

BTPs, homomorphic encryption (HE)–based BTPs (Chitrapu and

Kalluri, 2023) have gained traction in the biometrics community for

their ability to process biometric data under encryption, aiming to

prevent the biometric leakage. By comparing encrypted biometric

templates, HE-based BTPs produce encrypted scores that are nearly

identical to cleartext scores when decrypted. This makes HE-based

BTPs maintain the unprotected system’s recognition performance

because HE allows arithmetic operations over encrypted data

without decryption. However, they save links between pairs of

unprotected templates and pairs of protected ones that are

expressed as (dis)similarity scores. The heavy computational nature

of homomorphic operations leaves no choice for most HE-based

BTPs (Drozdowski et al., 2019; Kolberg et al., 2020; Engelsma

et al., 2022; Boddeti, 2018; Bauspieß et al., 2022) but to break the

protection and reveal the scores to carry out the comparison with

the predefined biometric threshold in the unprotected cleartext

domain. This approach is taken to avoid the significant additional

runtime required for performing the comparison under encryption.

A similarity score is a strong indicator of how similar a facial

feature vector is to another one, typically with one being freshly

extracted (i.e., a probe) and the other stored (i.e., the reference).

For a target facial feature vector, this score provides enough

information to mount a template recovery attack in which a set

of different facial feature vectors and their corresponding scores

regarding the target vector form an optimization problem, which

we tackle in this work. Figure 1 depicts an overview of our template

recovery attack and its capabilities.

What are the potential dangers and implications of exposing

cleartext scores?

Once a target facial embedding template is recovered, this

cannot be effectively mitigated. Even if this recovered embedding

template is replaced with a newly generated one, the original and

its neighboring embeddings can still deceive the system due to

their proximity in the embedding space. To mitigate this risk,

minimizing biometric leakage by performing the comparison with

the threshold within the encrypted domain is crucial to ensure that

only the final decision is transmitted in encrypted form. Recovering

raw templates from leaked comparison scores of homomorphically

encrypted biometric templates has received limited attention in the

biometrics community. It is often considered low-risk, as attackers

are perceived to lack the necessary knowledge to successfully mount

a recovery attack (Engelsma et al., 2022). However, our research

demonstrates that semi-honest attackers can leverage HE-based

BTPs’ architecture to facilitate template recovery.

Approaches that exploit score leakage can be divided

into two main categories: adaptive and non-adaptive. Adaptive

approaches (Soutar et al., 2002; Adler, 2004, 2005; Galbally et al.,

2009, 2010; Gomez-Barrero et al., 2011, 2012) rely on adaptive hill-

climbing attacks. In these attacks, a target template is gradually

recovered by adaptively adjusting a template and evaluating the

resulting variations in comparison scores relative to the target

template, eventually converging on the target template. Despite

their effectiveness, adaptive hill-climbing attacks have notable

drawbacks, such as being comparator-dependent or requiring a

large number of iterations [e.g., 900 iterations as shown by Gomez-

Barrero et al. (2012), for a 100-dim eigenface] for successful

recovery. Additionally, changing the target necessitates repeating

the process with new arbitrary templates.

The only known non-adaptive approach to exploiting score

leakage is described inMohanty et al. (2006). The authors proposed

the first non-adaptive recovery attack, which involves inverting an

affine transform that approximates an eigenface-based recognition

model, from which specific scores are collected. However, similar

to white-box adversarial attacks in machine learning, this approach

requires knowledge of the underlying face recognition model’s

hyperparameters used during the training phase to approximate the

model, making it model-dependent. Moreover, it relies on a set of

real facial images from individuals different from the target identity

to recover the target template.

In this article, we propose a non-adaptive facial template

recovery attack that exploits the cleartext score disclosure

vulnerability of many HE-based BTPs, further motivating research

on HE-based BTPs that keep the scores encrypted (Bassit et al.,

2021, 2022, 2023b; Ibarrondo et al., 2023). We focus on HE-based

BTPs (Drozdowski et al., 2019; Kolberg et al., 2020; Engelsma et al.,

2022; Boddeti, 2018; Bauspieß et al., 2022) that compare and reveal

inner product–based scores. To simulate this attack, we choose a

pretrained ArcFace-like feature extractor (Deng et al., 2019) as it

is considered a state-of-the-art face recognition model to generate

the feature vectors known as templates before they are encrypted

using HE-based BTPs. These feature vectors are d-dimensional and

normalized. They can be seen as points spread on the surface of the

unit d-ball, for which the similarity measure is based on the inner

product (i.e., the cosine similarity).

We begin by defining our attack model, which includes a one-

to-one attack scenario as well as a one-to-many attack scenario.

We consider a semi-honest attacker, such as a service provider,

who does not collude with the database (DB) server but legitimately

receives cleartext scores.We show that this attacker can recover raw

templates of target users using auxiliary knowledge while remaining

semi-honest. This scenario falls within the threat model of HE-

based BTPs (Drozdowski et al., 2019; Kolberg et al., 2020; Engelsma

et al., 2022; Boddeti, 2018; Bauspieß et al., 2022). Unlike previous

work (Mohanty et al., 2006), we demonstrate that this recovery

is feasible for inner product-based template comparisons without

requiring real data or training.
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FIGURE 1

Overview of the capabilities of our template recovery attack using synthetic templates extracted from synthetic facial images. Further details of our

attack can be found in Sections 2, 3.

Our attack follows the non-adaptive approach and consists of

randomly selecting synthetic facial images (e.g., samples from the

SFace dataset; Boutros et al., 2022) from which it derives their

respective facial embeddings as normalized feature vectors of the

same dimension as the target. Those synthetic facial embeddings1

represent the attacker’s auxiliary knowledge for which they will

receive their respective scores. Using synthetic facial images allows

us to demonstrate the real-world applicability of our attack,

assuming that the synthetic facial images represent spoofed faces in

reality. This assumption is relevant in scenarios in which attackers

do not have direct access to face recognition systems or wish to

avoid detection, thus resorting to external approaches that use

spoofed faces to compromise these systems. In fact, this assumption

is feasible as it was experimentally demonstrated in section IV-

C by Shahreza and Marcel (2023a). The authors conducted a

presentation attack using reconstructed facial images produced

by a template-inversion model fed with facial templates. In this

experiment, the reconstructed facial images were either printed

photographs or displayed on the screen of an iPad and then placed

in front of the capturing device (camera) to fool a face recognition

system that tolerates 0.001% false match rate (FMR) with a success

rate of approximately 85%.

Depending on the HE scheme, encrypted facial templates

may require quantization, resulting in noisy scores from HE-

based BTPs. To address this, we recover the target template by

solving an optimization problem over synthetic templates and their

noisy scores, employing the Lagrange multiplier method. This is

done with the constraint that the target template is a normalized

1 In Bassit et al. (2023a), this attackwas evaluated on random fake templates

that are random normalized vectors.

vector. Hence, this optimization’s solution is a normalized vector

approximate to the target.

Subsequently, we assess the effectiveness of our attack on

three levels: (1) performance evaluation, (2) the amount of gender

information recovered, and (3) the visual impact on raw sample

reconstruction. Initially, we analyze our attack’s performance by

varying the number of synthetic facial templates across different

quantization methods. Unlike (Mohanty et al., 2006) that tested a

face recognition system with a threshold at 1% FMR, we choose

stricter thresholds of 0.1%, 0.01%, and 0.001% FMR for evaluating

our attack. Our results show that, in practice, an attacker has a

50% chance of bypassing such systems with a 100% success rate

using only 50–195 revealed scores and synthetic facial templates

to recover a 512-dim target vector, regardless of the quantization

approach. Next, we analyze the risk of template recovery on gender

information retrieval through the performance comparison of three

gender classifiers logistic regression [LR], linear support vector

machine [SVM], and radial basis function (RBF) kernel [SVM]

tested on the original templates (our baseline) and recovered

templates. Logistic regression and linear SVM to assess the linear

separability of the templates according to gender, and the RBF

kernel SVM to assess their non-linear separability. Our results show

a difference between 0% and 13%; thus, more advanced gender

classifiers would perform equally on the recovered and the original

templates. Finally, we check the visual impact on reconstructed raw

facial images from the recovered target templates, where we can

visually see their resemblance, demographic information (gender

expression and ethnicity), and facial artifacts (hair color), which is

sufficient information for revealing the target’s identity in real life.

In summary, we make the following contributions:

• We propose a non-adaptive template recovery attack that

exploits score leakage using synthetic facial images as spoofed
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faces, for which we define two attack scenarios for the one-to-

one and one-to-many settings.

• We estimated that an attacker using only 50–192 revealed

scores and synthetic facial templates can successfully bypass

recognition systems with thresholds of various strictnesses.

• We analyze the recovered templates regarding facial image

reconstruction and the amount of gender information they

contain and demonstrate their accurate retrieval.

2 Attack model

Our focus is onHE-based BTPs that compute an inner product-

based similarity measure under encryption to compare their

encrypted templates. We base our attack model on the common

architecture considered in most HE-based BTPs (Drozdowski et al.,

2019; Kolberg et al., 2020; Engelsma et al., 2022; Boddeti, 2018;

Bauspieß et al., 2022) that involves three semi-honest (a.k.a. honest-

but-curious) parties, namely, the user, the DB server, and the service

provider (SP).

Semi-honest security (Goldreich, 2009) is a widely used security

model for multiparty cryptographic protocols. In this model, all

the parties are assumed to strictly adhere to the protocol steps.

Additionally, parties with private inputs aim to compute a joint

function such that the protocol reveals nothing about their private

inputs beyond the function’s output. It is important to note that the

semi-honest model makes no assumptions on (e.g., the correctness

of) the parties’ inputs; parties are allowed to freely choose or create

their own inputs.

The user is a biometric data owner who wants to use a service

(e.g., social service) offered by an SP (e.g., health care). The

SP gives access to its services only if the user is biometrically

recognized: biometric verification (one-to-one comparison) or

biometric identification (one-to-many comparison). To comply

with data privacy regulations (European Union, 2018) by not

storing users’ biometric data, in those HE-based BTPs (Drozdowski

et al., 2019; Kolberg et al., 2020; Engelsma et al., 2022; Boddeti, 2018;

Bauspieß et al., 2022), the SP delegates the biometric recognition

task to the DB server as a separate non-colluding entity that stores

encrypted reference templates for the SP and does not hold the

decryption key. During the recognition, the DB server returns the

encrypted scores to the SP. Subsequently, the SP uses its decryption

key to reveal the scores on which it applies a threshold to make its

decision.

Previous work (Drozdowski et al., 2019; Kolberg et al., 2020;

Engelsma et al., 2022; Boddeti, 2018; Bauspieß et al., 2022)

considers semi-honest security where they assume that the scores

can be revealed to a semi-honest SP non-colluding with the DB

server. They do not exclude any collusion assumptions between

the user and the SP. In cryptography, a protocol secure against

semi-honest attackers is a protocol that does not leak information

about target parties’ inputs other than what the protocol naturally

outputs. In this case, a biometric recognition protocol (verification

or identification) secure against semi-honest attackers (such as the

SP) should not leak information about target parties’ inputs (such

as biometric reference or probe) other than what the protocol

naturally outputs (such as a comparison scores revealed to the SP).

Hence, an SP attacker that exactly follows the protocol, legitimately

receives the comparison scores, and possesses auxiliary knowledge

fits perfectly the definition of the semi-honest attacker, where they

have no control over the protocol but has control over the inputs.

In this work, we study when revealing the scores to such an

SP becomes a risk by defining two attack scenarios: (a) a non-

adaptive attack in the one-to-one setting and (b) a non-adaptive

template injection attack in the one-to-many setting, as illustrated

in Figure 2. We define the attacker an SP that targets a specific

user (or any user querying the system) in the one-to-one (or one-

to-many) setting. The attacker aims to learn the target user’s raw

biometric template from the revealed scores they naturally receive

and some auxiliary knowledge they can acquire without colluding

with the DB server and remaining semi-honest.

Once this raw template is recovered, the attacker can use it to

impersonate or retrieve the target user’s demographic information

or see its appearance. We define the auxiliary knowledge required

by the attacker in both one-to-one and one-to-many scenarios

as a set of synthetic facial templates obtained from a feature

extractor similar to the system’s extractor. These templates, which

consist of feature vectors extracted from synthetic facial images

assumed to mimic spoofed faces, are used by the SP attacker to

obtain the respective scores in relation to the target user. Those

scores represent the similarity between the target template and the

synthetic templates. In other words, the attacker knows a set of

synthetic templates and their similarity to the same target, which

we demonstrate is sufficient information for recovering the target

template. Note that such an attacker is captured by the threat model

defined by Drozdowski et al. (2019), Kolberg et al. (2020), Engelsma

et al. (2022), Boddeti (2018), and Bauspieß et al. (2022), where the

DB server and the SP are non-colluding semi-honest parties.

The possible ways to acquire such auxiliary knowledge can be as

follows: (a) For the one-to-one case, for instance, the SP can control

synthetic users2 to send synthetic probes, as one-to-one queries,

to the DB server claiming the identity of the target user so that

the SP attacker receives the scores relative to this reference target;

and (b) for the one-to-many case, for example, the SP can control

synthetic users to enroll only once in the DB server using synthetic

references; thus, the SP is able to inject synthetic references into the

DB so that it receives the scores relative to any target user’s probe

sent to the system as a one-to-many query.

In those examples, the SP attacker only acquires the auxiliary

knowledge they need to run the attack without colluding with

the DB server while sticking to the protocol and thus remaining

semi-honest.

2.1 One-to-one attack scenario

In Figure 2a, the SP attacker’s goal is to recover the raw

reference template of a specific target user whose encrypted

template is stored on the DB server. In this case, the SP

attacker uses only the synthetic probes they have from their

auxiliary knowledge and the respective scores they receives

2 If the architecture allows the SP to send queries to the DB server, then

the SP can themselves send the synthetic probes to the DB server, claiming

the target user’s identity to receive the scores.
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FIGURE 2

Illustration of our non-adaptive template recovery attack scenarios considering a semi-honest service provider attacker that has some auxiliary

knowledge and legitimately receives cleartext scores. (a) One-to-one template recovery attack scenario in which the service provider attacker aims

to recover the reference template of a specific target user using their auxiliary knowledge and the scores they legitimately receive. This auxiliary

knowledge is a set of di�erent synthetic probes that, for instance, the service provider can acquire by controlling synthetic users (spoofers) to send

them to the database server claiming the target user’s identity. (b) One-to-many template recovery attack scenario in which the attacker aims to

recover the probe of any target user querying the system using their auxiliary knowledge and the scores they legitimately receive. This auxiliary

knowledge is a set of di�erent synthetic references that, for instance, can be acquired by controlling synthetic users (spoofers) to enroll in the

database using synthetic references.

to recover the target reference template. This is a non-

adaptive attack because the queries are sent independently

from each other, unlike adaptive hill-climbing attacks, which

adapt their actual query to its previous one. Note that some

recognition systems limit the number of authentication

attempts per user upon a limited number of rejections. To

overcome this, the attacker sends their queries one batch

after the other and waits between them for the number of

authentication attempts to be reinitialized before sending the

next batch.

2.2 One-to-many attack scenario

In Figure 2b, the SP attacker’s goal is to recover the raw probe

template of a target user who sends it encrypted to the DB server

during the recognition phase. In this case, the SP attacker uses only

the synthetic references they have from their auxiliary knowledge

and the respective scores they receive and try to recover the target

probe template. Thus, when a target user queries the DB server

in a one-to-many manner, the SP attacker will receive the scores

between the target template and the reference templates injected in

the DB. Unlike the one-to-one attack scenario, this can be received

in a single query, and the injected synthetic references are reused to

recover any target probe.

Therefore, in both scenarios, we model the SP as a semi-honest

attacker who does not collude with the database server. In Section 3,

we describe our template recovery attack for this security model

exploiting auxiliary knowledge and the cleartext comparison scores.

3 Our template recovery attack

Face recognition systems represent facial image samples as

d-dim feature vectors resulting from well-trained deep neural

networks (DNNs; i.e., feature extractors), which can be visualized

as points spread in the embedding space. State-of-the-art DNNs,

which demonstrate (near-)optimal recognition performance, use

ArcFace-like loss (Deng et al., 2019) to train their models to

represent samples as feature vectors on the surface of the unit d-

ball, resulting in normalized feature vector representations. Thus,

normalized vectors of dimension d can be seen as a point on the

surface of the unit d-ball.

In this work, we consider the type of face recognition system

that represents facial images as normalized d-dim feature vectors,

such as DNNs trained with ArcFace-like loss. ArcFace loss enforces

an angular margin between distinct identities on the surface of the
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unit d-ball that ensures that feature vectors of the same identity

are closely clustered, while different identities are further separated.

This has achieved improved recognition performance compared

to feature extractors trained with the conventional cross-entropy

loss based on Softmax probabilities. Therefore, in our attack, we

consider feature extractors that were trained using ArcFace-like

losses. In those systems, the similarity between two normalized

feature vectors is measured by their inner product to produce

a similarity score. Our goal is to recover a target template T

represented by a normalized d-dim feature vector resulting from

those types of DNN for which the inner product is the similarity

measure used to compare those vectors.

Let F = [F1, · · · , Fk] be a column matrix of k synthetic

templates Fi. Each synthetic template represents a normalized

feature vector of dimension d. We denote si =< T, Fi >= T
⊺

· Fi
the score corresponding to the inner product between the target T

and a synthetic template Fi quantifying their similarity. We denote

S = (s1, · · · , sk) a vector of k scores.

3.1 Optimization problem statement

Given k synthetic templates {Fi}i∈[1,k], which are normalized3

d-dim vectors sampled at random, and their corresponding scores

si with respect to the same target T, find the recovered template T̂

such that T̂
⊺

· T̂ = 1. The recovered template T̂ is found using

Equation 1:

min
T̂
⊺
·T̂=1

T̂
⊺

· F − S. (1)

By putting the constraint on T̂ to be a normalized vector, we

restrict the set of possible solutions to one solution that lies on the

surface of the unit d-ball. This is because cosine similarity in most

modern face recognition systems is measured over normalized

vectors.

3.2 Our solution

This optimization problem translates to T̂
⊺

· Fi = si, which

is basically minimizing f (T̂) =
∑k

i=1(T̂
⊺

· Fi − si)2 subject to

the constraint g(T̂) = T̂
⊺

T̂ − 1. We can solve this minimization

problem in a simple way by using the Lagrange multiplier λ and

forming the Lagrangian function L(T̂, λ) = f (T̂) + λg(T̂). Given

that

L(T̂, λ) =
k

∑

i=1

(T̂
⊺

· Fi − si)
2 + λ(T̂

⊺

· T̂ − 1), (2)

we partially derive Equation 2 with respect to the target vector’s

coordinates to obtain

∂L

∂ t̂j
=

k
∑

i=1

2 · Fi,j · (T̂
⊺

· Fi − si)+ 2λt̂j. (3)

3 We consider synthetic templates to be normalized to simulate their

belonging to the same embedding space as the target.

We leave out the factor 2 from Equation 3 because we are

interested in ∂L

∂T̂
= 0. Then, we calculate the partial derivative

with respect to the target vector ∂L

∂T̂
by assembling the partial

derivatives with respect to its coordinates and rewriting them as
∂L

∂T̂
=

∑k
i=1 Fi · (T̂

⊺

· Fi − si) + λT̂. Hence, the main equation to

solve is

[

FF
⊺

+ λId

]

· T̂ − F · S = 0. (4)

As a result, the recovered template is T̂, satisfying ∂L

∂T̂
= 0,

that is,
[

FF
⊺

+ λId
]

· T̂ − F · S = 0 where Id is the identity

matrix of dimension d. We can solve Equation 4 for a large range

of λ and choose the λ for which T̂
⊺

· T̂ = 1. For instance, this

can be achieved using scipy.optimize.fsolve (The SciPy

community, 2023). Hence, we can write T̂ =
[

FF
⊺

+ λId
]−1

×

F · S for the recovered template. The pseudo-code of our attack is

described in Algorithm 1.

Remark 3.1. (Solution [Non-] Unicity). Note that Equation 4 has a

unique solution when d ≤ k and infinitely many solutions when

k < k.

4 Experiments

We analyze revealed scores coming from HE-based BTPs,

which, depending on the HE plaintext space, involve quantization

techniques to adapt the feature values to the HE plaintext space.

Hence, these quantization approaches can bring a certain level

of noise to the actual score, making HE-based BTPs produce

noisy scores. For instance, HE schemes (such as the BFV

scheme) supporting only integers, their respective BTPs require

a quantization either on feature-level, such as precision-based

quantization (Boddeti, 2018), or on feature- and score-level lookup

table-based quantization (Bassit et al., 2022, 2023b) to map their

templates from floating points to integer values so that such

encryption scheme can be applied. Other HE schemes (such as the

CKKS scheme) supporting floating point encryption do not need

quantization.

In the following, we vary the number of synthetic templates

needed for the recovery to evaluate the performance of our

attack in retrieving feature vectors that can either (1) bypass the

1: Input: k synthetic embeddings and their

corresponding scores with respect to the

target embedding

2: Output: T̂ the recovered target template

3: Combine the synthetic embeddings into a matrix

F

4: Combine the scores into a vector S

5: Generate Id an identity matrix of dimension d

6: Choose a λ for which T̂
⊺

· T̂ = 1 ⊲ using

scipy.optimize.fsolve

7: Solve
[

FF
⊺

+ λId

]

· T̂ − F · S = 0 ⊲ Equation 4

Algorithm 1. Pseudo-code of our attack.
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FIGURE 3

Comparison between the mated score distribution of original pairs (the green histogram) and mated score distribution of pairs where one of them is

recovered (the red histogram) for the quantization cases: without (first row), with table-based (second row), and with precision-based (third row)

using k ∈ {400, 512, 5, 000} synthetic templates. Original pairs from the LFW data set (Huang et al., 2008) produce similar distributions to those from

the VGGFace2 data set plotted here. IP, inner product.

face recognition system (Section 4.1), (2) determine its gender

(Section 4.2), or (3) reconstruct its raw facial image (Section 4.3).

For the quantization techniques over 512-dim normalized

feature vectors, we use the same parameters reported in Bassit et al.

(2022), Bassit et al. (2023b), and Boddeti (2018) with which they

achieved good recognition performance, namely, the table-based

quantization (the Multiplication-free Inner product (MFIP) table;

Bassit et al., 2022, 2023b) with features quantized over 3 bits and a

score quantization step of 1 = 0.001, and for the precision-based

quantization (Boddeti, 2018), precision = 0.0025. We have made

the source code of our implementation publicly available.4

4.1 Performance evaluation

In our assessment, we use the VGGFace2 data set (Cao

et al., 2018), a publicly available facial image dataset of real

subjects captured in unconstrained settings, to simulate real-

life template databases based on images of actual individuals.

Additionally, we utilize the SFace data set (Boutros et al., 2022), a

synthetic facial image data set, to model spoofing attack scenarios

and the resources potentially available to attackers, enabling a

comprehensive evaluation of both real and adversarial conditions.

To evaluate our recovery attack, we use the ResNet-100 (He

et al., 2016) pretrained with ArcFace (Deng et al., 2019) to extract

normalized feature vectors of dimension 512 for (1) the target facial

4 https://github.com/aminabassit/tra-he-btps

feature vectors from the VGGFace2 data set and (2) synthetic facial

feature vectors as auxiliary information.

In this experiment, we aim to determine whether a recognition

system will still recognize the recovered template as similar to the

target template stored in the system. To replicate the case of a

recovered template bypassing an inner product-based recognition

system, in Figure 3, we compare the score distribution of mated

pairs, where both pairs are original (the green histograms), with

the score distribution of mated pairs, where one is original

and the other is recovered using synthetic facial templates (the

red histograms). We notice that starting from k = 400, both

distributions completely overlap (first row of Figure 3) when no

quantization interferes with the score computation. This means

that the recovered templates will be treated (accepted or rejected)

by a recognition system5 as the original pairs, and thus, they can be

used to bypass the system using a number of synthetic templates less

than the dimensionality of the target feature vector, in this case, 400.

Bassit et al.’s (2023a) study, using random normalized vectors as

fake templates created a less noticeable overlap of both distributions

at k = 400 but a full overlap starting from k = 512. Figure 4a

confirms the complete overlap regarding the maximum (Max),

average (Avg), and minimum (Min) scores, which is depicted by

the superposition of the circles and the stars for all values of the

number of synthetic templates k.

In the case of quantization, the second row (table-based) and

the third row (precision-based) in Figure 3, the distributions are

5 In this case, the system uses CKKS for encryption and reveals the scores.
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b. IP with table-based quantization

c. IP with precision-based quantization

a. IP without quantization

FIGURE 4

Mated score variation (maximum, average, and minimum) of original pairs (circles) and pairs with a recovered template (stars) using the inner product

(IP) without quantization and with table-based and precision-based quantizations for k ∈ [400, 5, 000]. (a) IP without quantization. (b) IP with

table-based quantization. (c) IP with precision-based quantization.
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TABLE 1 Success rate in percentage (%) for various thresholds (θ ).

θ 400 512 600 900 1, 000 3, 000 4, 000

Without 0.1% FMR 100 100 100 100 100 100 100

0.01% FMR 100 100 100 100 100 100 100

0.001% FMR 100 100 100 100 100 100 100

Table-based 0.1% FMR 98.39 98.73 99.00 99.21 99.23 99.46 99.46

0.01% FMR 97.63 98.21 98.23 98.88 98.86 99.22 99.24

0.001% FMR 68.08 74.59 78.43 83.92 85.10 90.77 91.44

Precision-
based

0.1% FMR 98.62 98.87 98.96 99.06 99.23 99.31 99.41

0.01% FMR 97.55 98.04 98.19 98.48 98.57 99.09 99.20

0.001% FMR 69.80 76.77 79.90 84.68 85.65 90.70 91.75

clearly separable, and the distribution for the recovered case is

gradually shifting to the right, increases, showing a slight increase of

the overlap. This makes the produced scores more likely to be above

the threshold (the black line) and thus are accepted, especially for

k = 5, 000. Unlike in Bassit et al.’s (2023a) study, where, for 5, 000

synthetic templates, table-based quantization approach achieves a

full overlap and almost full overlap for precision-based one, which

can be justified by the randomness effect and the increased number

of fake templates. Figures 4b, c illustrate the gradual increase of

the original-recovered mated score distributions for a number of

synthetic templates varying between 400 and 5, 000. Although the

overlap is not full, we notice that the average score for the recovered

pairs is above a threshold chosen at 0.1% FMR, stricter than the

threshold found in Mohanty et al.’s (2006) study.

4.1.1 Attack success rate
We denote xorg and yorg as two distinct mated templates and

x̃rec as the recovered template of xorg using k synthetic templates.

For a given threshold θ and a number of synthetic templates k, we

defineNrec =
∣

∣{θ ≤ IP(x̃rec, yorg)}
∣

∣ as the number of x̃rec that would

be accepted by the system and thus treated as mated templates and

Norg =
∣

∣{(θ ≤ IP(xorg, yorg)}
∣

∣ as the number of mated templates

correctly accepted by the system. We define our attack success rate

SR(θ , k) as

SR(θ , k) =
Nrec

Norg
(5)

the ratio of Nrec to Norg. The measured rate can be visually seen

in the histograms of Figure 3 as the part of the red histogram

on the right of the black line divided by the part of the green

histogram on the right of the black line. Table 1 shows the

success rate of our attack measured more htan 5,000 mated

comparisons for different values of k. We notice that for the

scores without quantization, starting at 400, the success rate

reaches 100% for all three thresholds. In contrast, the success

rate steadily increases in both quantization approaches. For a

threshold at 0.1% FMR, it starts at approximately 98% at 400

to achieve approximately 99.4% at 4000. For a threshold at

0.01% FMR, it starts at approximately 97% at 400 to achieve

approximately 99.2% at 4000. For a threshold at 0.001% FMR, it

starts at approximately 68% at 400 to achieve approximately 91%

at 4000. We observe that for stricter thresholds, at 0.01% FMR

and 0.001% FMR, our attack requires more synthetic templates to

reach confident success rates of 91% and 99%. However, our attack

still achieves satisfying success rates (∼ 74% − 76%) using 512

synthetic templates, which corresponds to the dimensionality of the

target vector.

In summary, our attack successfully recovers templates from

leaked unquantized scores with a 100% success rate for a number of

synthetic templates smaller than the target vector’s dimensionality.

However, for leaked quantized scores, our attack requires more

synthetic templates to achieve a confident success rate. This

suggests that quantization approaches act as a form of mitigation

mechanism against our attack.

4.1.2 How much knowledge does an attacker
need for a successful bypass?

In practice, when the number of synthetic templates k is inferior

to d, then Equation 4 has an infinite number of solutions. However,

our interest lies in solutions that satisfy the normality constraint,

ensuring that the recovered template resides on the surface of

the unit d-ball. This makes a recovered template using k < d

more likely to find a good enough approximation of the target

that would be acceptable by the recognition system. To estimate

this number in practice, we fix the success rate to 100% and select

200 distinct subjects. For each subject, we select two templates: a

target template to be recovered and a mated template. We then

evaluate whether the system recognizes the recovered template

as the mated template, in other words, if the inner product of

this mated template and the recovered one exceeds the system’s

threshold. For each subject, we iterate 10 times over a set of

possible k ∈ [50, 2, 000] with a step of 50. An iteration ends

as soon as the first k satisfies the inner product of the mate

template and a recovered template using k synthetic templates

exceeds the threshold, reflecting the success rate that we fix

to 100%.

Figure 5 shows bar plots of the median and mean numbers

of synthetic templates measured over 10 iterations per subject

for 200 different subjects. We observe that the mean is greater

than the median for all bar plots, indicating that the mean

overestimates the most frequent values of k. Thus, we rely on the

median to estimate k. The median number of synthetic templates

required to bypass an inner product-based recognition system

with a threshold at 0.1% FMR for a 512-dim target vector from

(1) non-quantized scores, (2) from table-based quantized scores,

and (3) from precision-based quantized scores is 50 synthetic

templates. For different quantization approaches, the estimated

number of synthetic templates increases as the threshold gets

stricter. For a threshold at 0.01% FMR, the median is between

55 and 60, while for a threshold at 0.001% FMR, it is between

130 and 192. This means that in practice, an attacker has a 50%

chance of finding a sufficiently good approximation of the target

template by using only between 50 and 195 synthetic templates

to recover a 512-dim normalized target vector, comparable to

Bassit et al.’s (2023a) study, where this attack required 60–165

fake templates.
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FIGURE 5

Estimated number of synthetic templates required for bypassing thresholds at 0.1%, 0.01%, and 0.001% false-match rate (FMR) for a 100% fixed

success rate using di�erent quantization approaches and measured for 200 subjects from the VGGFace2 data set with their median (numbers in

black) and mean (numbers in red) over 10 iterations per subject to recover a 512-dim template.

4.2 Gender information analysis

In this section, we aim to analyze how much gender

information can be retrieved from recovered templates using

various numbers of synthetic templates and different quantization

approaches. Our aim in this gender information analysis is to

consider the worst-case scenario in which both genders are

balanced. This approach allowed us to objectively evaluate the

effectiveness of our attack in recovering gender information while

avoiding potential biases that could arise from fixing the gender

to one group. To remove risks of overfitting and bias on one

class, in this analysis, we select a gender-balanced subset from the

LFW data set (Huang et al., 2008), which is a publicly available

data set with facial images captured in unconstrained settings

that includes 5, 934 images of females and males (2, 967 for each

gender). We use this subset to generate the original embeddings

that are facial feature vectors of dimension 512 extracted using

ResNet-100 (He et al., 2016) trained with ArcFace (Deng et al.,

2019), which we then normalize. To simulate different levels of

the attacker’s resources, we generate the recovered templates for

the three quantization cases using 512, 1, 000, and 3, 000 synthetic

templates and their respective scores. Then, we test the linear

SVM and RBF SVM and LR as three gender classifiers (two linear

classifiers and one non-linear) trained with their default parameters

to measure the performance difference between the original and

recovered templates. This comparison serves as an indicator of

how much gender information can be retrieved from the recovered

templates.

Table 2 shows the gender classifiers’ performance results

expressed in terms of accuracy over a threefold cross-validation

TABLE 2 Gender classification performance measuring the di�erence

between original and recovered templates in terms of accuracy (%) for

di�erent numbers of synthetic templates (k) and scores tested on a

gender-balanced subset from the LFW data set.

Classifier Original k Recovered

Quantization approach

Without Precision-
based

Table-
based

LR 70.86 512 70.86 61.42 62.03

1, 000 70.84 63.41 62.67

3, 000 70.87 65.09 65.21

Linear SVM 72.05 512 71.97 62.18 63.04

1000 72.02 64.39 63.97

3, 000 72.05 65.52 67.07

RBF SVM 89.72 512 89.63 76.55 76.76

1, 000 89.70 79.62 78.96

3, 000 89.72 82.27 82.27

The bold values indicate the best performances for a classifier among k per quantization

approach. LR, linear regression; SVM, support vector machine; RBF, .

setting. The results in this table highlight the impact of different

quantization approaches on the accuracy of gender classification

over recovered templates from using synthetic templates extracted

from the SFace data set.

In the absence of quantization, the recovered templates’

accuracy is consistently high and close to the original accuracy

for all classifiers, especially for higher values of k = 3, 000.
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FIGURE 6

Image reconstruction of recovered target templates using k ∈ {512, 1, 000, 3, 000, 5, 000} synthetic templates and scores over three di�erent

quantization approaches. The target templates are 512-dim normalized feature vectors extracted using ResNet-100, and the images are from the

VGGFace2 data set (https://www.kaggle.com/datasets/hearfool/vggface2) reconstructed using the inversion model for low-resolution images from

Shahreza et al. (2024).

For precision-based and table-based quantization approaches, they

generally reduce accuracy, although table-based quantization tends

to perform slightly better than precision-based quantization across

most of the values of k.

For classifier performance, LR has an original accuracy of

70.86%. The accuracy of recovered templates without quantization

is nearly the same across all k values. However, both precision

and table-based quantization approaches lead to a noticeable drop

in accuracy, between 5% and 13%, with table-based quantization

performing marginally better. The linear SVM has an original

accuracy of 72.05%, and similar to the LR, the accuracy of recovered

templates without quantization remains close to the original, while,

the precision and table-based quantization approaches reduce the

accuracy by 6%–9%, with table-based quantization showing a slight

edge. The RBF SVM, with an original accuracy of 89.72%, the

highest among the classifiers, shows that the accuracy in the absence

of quantization remains very close to the original. Precision and

table-based quantization approaches also decrease in accuracy by

7%–13%, but less so than for the LR and the linear SVM, with both

approaches performing similarly well.

Overall, for each classifier, the best performance is achieved

in the absence of quantization and remains very close to the

original accuracy. Among the quantization approaches, table-based

quantization often provides slightly better accuracy than precision-

based quantization. The RBF SVM classifier is the most resilient to

quantization approaches, maintaining higher accuracy compared

to LR and linear SVM.

In summary, these results are comparable to Bassit et al.’s

(2023a) and suggest that using quantization can make it

more challenging for a linear classifier to correctly determine

gender from recovered templates. However, for non-linear

classifiers, gender classification from recovered templates remains

relatively straightforward regardless of the quantization approach,

highlighting the accurate retrieval of gender information using our

recovery attack.

It is important to note that this analysis does not aim to

enhance existing gender classifiers. Instead, it seeks to demonstrate

the risk of template recovery on inferring gender information by

comparing the accuracy difference between the original templates

(our baseline) and the recovered templates, which ranges from

0% to 13%. Therefore, advanced gender classifiers would likely

perform similarly on both recovered and original templates.

4.3 Image reconstruction analysis

In this section, we examine how much our recovery attack

visually impacts the raw image reconstruction. We demonstrate

this by reconstructing raw facial images from recovered target

templates for various numbers of synthetic templates and scores

for different quantization approaches. We emphasize the fact that

our goal is not to improve on the existing work regarding image

reconstruction attacks from feature vectors but rather to illustrate

the visual quality of the recovered target template using our attack,

regardless of the performance of the image reconstruction method

used to invert feature vectors. For this experiment, we use the

VGGFace2 data set for the target facial templates that we extract

using ResNet-100.

It is important to note that our recovered templates can be

inverted to raw images by any template-inversion model. To

demonstrate the quality of our recovered templates, we tested them

on two different state-of-the-art template-inversion models. We

use the inversion model in (Shahreza and Marcel, 2023b) that

is GAN-based and reconstructs high-resolution images and use

the inversion model in (Shahreza et al., 2024) that is based on

DSCasConv and reconstructs low-resolution images. We retrained

both on normalized feature vectors over 10 epochs and 80 epochs,

respectively.

Figure 6 shows the reconstructed facial images using the

inversion model presented by Shahreza et al. (2024) and Figure 7

shows the reconstructed facial images using the inversion model

presented by Shahreza and Marcel (2023b). In both figures, we

selected the number of synthetic templates k starting from the

dimensionality of the feature vector and progressively increasing
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FIGURE 7

Image reconstruction of recovered target templates using k ∈ {512, 1, 000, 3, 000, 5, 000} synthetic templates and scores over three di�erent

quantization approaches. The target templates are 512-dim normalized feature vectors extracted using ResNet-100, and the images are from the

VGGFace2 data set (https://www.kaggle.com/datasets/hearfool/vggface2) reconstructed using the inversion model for high-resolution images from

Shahreza and Marcel (2023b).

it with large steps to evaluate whether the inversion improves

as k increases. We use both pretrained models to reconstruct

images and compare the directly extracted and non-recovered

feature vectors against the recovered feature vectors. Note that our

comparison references for this experiment are the reconstructed

images from feature vectors directly extracted from ResNet-100

(the black box in both figures). In other words, both figures should

be read by comparing the resemblance between the images in

the black box and the images in the red, blue, and orange boxes.

The comparison between images in the green box and the black

box shows the performance of the inversion models, which is less

relevant to the purpose of this experiment.

Both figures show identical gender expression and ethnicity

in the reconstructed images from the directly extracted feature

vectors and the recovered ones, regardless of the quantization

approach. Also, the higher k is, the more similar the reconstructed

images from recovered synthetic templates and scores become

(the column k = 5, 000 of the colored boxes). In both figures,

we notice that the recovery from non-quantized scores for

all k produces reconstructed images identical to the ones that

are directly reconstructed from the original feature vector. For

the recovery from precision and table-based quantized scores

for all k, we observe that in Figure 6, the facial artifacts (i.e.,

hair) with a change in facial expression (i.e., smiling) are

retrieved; however, the age is not fully retrieved as in the

third row, the resulting facial images look younger than the

original one. In Figure 7, the quantization approaches slightly the

reconstructed images regarding the image background and hair

color.

Overall, the recovered target templates from our attack can

be inverted to reconstruct their corresponding raw facial images.

These reconstructions retain enough demographic information

and facial artifacts to enable an attacker to recognize or form

a reasonable idea of the target subject’s appearance in real life.

Additionally, similarly to Shahreza and Marcel’s (2023a) work,

an attacker can also use the target reconstructed facial images

to perform a presentation attack by either printing them as

photographs or displaying them on the screen of an iPad and then

presenting them in front of the capturing device (camera) to fool a

face recognition system that tolerates 0.001% FMR.

5 Conclusion

In this article, we demonstrate that inner product-based

homomorphically encrypted biometric recognition systems

deliberately leaking cleartext scores are vulnerable to a template

recovery attack. We present two non-adaptive template recovery

attack scenarios suitable for different threat models, the one-

to-one and the one-to-many settings. By using synthetic faces

as spoofed faces, we show our attack’s applicability in a real-

world scenario in which, the adversary attacks the recognition

system from outside. We assess the efficacy of our attack across

three key levels: recovery performance in bypassing the system,

retrieving gender information, and the visual impact on image

reconstruction. Our results highlight the gravity of revealed

scores as we showed that no matter which quantization approach

HE-based BTPs use, an attacker needs at most 192 cleartext scores

and synthetic templates for a successful recovery. Therefore, the

scores must be hidden as a potential countermeasure to mitigate

our attack. Throughout this work, our goal was to emphasize the

significance of restricting the leakage level that HE-based biometric

recognition systems can tolerate, as we demonstrated that even

a minor leak, such as the score, can result in the recovery of a

target template. Once a target template is retrieved, it cannot be

mitigated even if it is replaced because the recovered template

and its neighboring embeddings remain valid for bypassing

the system.
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