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Introduction: Deepfakes have become ubiquitous in our modern society, with

both their quantity and quality increasing. The current evolution of image

generation techniques makes the detection of manipulated content through

visual inspection increasingly di�cult. This challenge has motivated researchers

to analyze heart-beat-related signal to distinguish deep fakes from genuine

videos.

Methods: In this study, we analyze deepfake videos of faces generated

with novel methods regarding their heart-beat-related signals using remote

photoplethysmography (rPPG). The rPPG signal describes the blood flow based,

or rather local blood volume changes, and thus reflects the pulse signal. For our

analysis, we present a pipeline that extracts rPPG signals and investigate the origin

of the extracted signals in deepfake videos using correlation analyses. To validate

our rPPG extraction pipeline and analyze rPPG signals of deepfakes, we captured

a dataset of facial videos synchronized with an electrocardiogram (ECG) as a

ground-truth pulse signal. Additionally, we generated high-quality deepfakes and

incorporated publicly available datasets into our evaluation.

Results: Weprove that our heart rate extraction pipeline produces valid estimates

for genuine videos by comparing the estimated results with ECG reference data.

Our high-quality deepfakes exhibit valid heart rates and their rPPG signals show

a significant correlation with the corresponding driver video that was used to

generate them. Furthermore, we show that this also holds for deepfakes from a

publicly available dataset.

Discussion: Previous research assumed that the subtle heart-beat-related

signals get lost during the deepfake generation process, making them useful for

deepfake detection. However, this paper shows that this assumption is no longer

valid for current deepfake methods. Nevertheless, preliminary experiments

indicate that analyzing spatial distribution of bloodflow regarding its plausibility

can still help to detect high quality deepfakes.

KEYWORDS

deepfakes, video forensics, remote photoplethysmography (rPPG), biological signals,

remote heart rate estimation, imaging photoplethysmography (IPPG)

1 Introduction

In recent years, deepfakes have emerged as a prominent and concerning phenomenon.

Notably, political figures such as Barack Obama, Donald Trump, and Wladimir Klitschko

have become targets, drawing significant public attention. The societal and ethical

implications of deepfake technology have become increasingly evident. Initial examples

were characterized by vivible artifacts, particularly when static images were synthesized

into video sequences (DeepFakes, 2019). However, advancements in image generation

techniques have significantly improved the realism of these manipulations, making it

increasingly difficult to detect alterations through visual inspection alone (Ramesh et al.,

2021; Karras et al., 2020).

Frontiers in Imaging 01 frontiersin.org

https://www.frontiersin.org/journals/imaging
https://www.frontiersin.org/journals/imaging#editorial-board
https://www.frontiersin.org/journals/imaging#editorial-board
https://www.frontiersin.org/journals/imaging#editorial-board
https://www.frontiersin.org/journals/imaging#editorial-board
https://doi.org/10.3389/fimag.2025.1504551
http://crossmark.crossref.org/dialog/?doi=10.3389/fimag.2025.1504551&domain=pdf&date_stamp=2025-04-30
mailto:peter.eisert@hhi.fraunhofer.de
https://doi.org/10.3389/fimag.2025.1504551
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fimag.2025.1504551/full
https://www.frontiersin.org/journals/imaging
https://www.frontiersin.org


Seibold et al. 10.3389/fimag.2025.1504551

Modern state-of-the-art deepfake detection approaches rely on

features learned by convolutional filters sensitive to inconsistencies

in both the spatial and the temporal domain (Wang et al., 2023;

Haliassos et al., 2022). Despite receiving outstanding performance

results on benchmark datasets, these techniques suffer from

a lack of explainability. This weakness becomes critical when

human supervisors of video-identification systems face potential

misclassifications by these detectors, leading to challenges due to

their opaque decision-making processes.

However, contemporary deepfake generation techniques, while

increasingly sophisticated in their ability to visually mimic real

individuals, do not explicitly model physiological signals present

in genuine videos. The cardiovascular pulse, inducing individual

pulsating blood flow in human skin, causes subtle color variations

that are assumed to be plausible in genuine videos only. This

inadequacy has been employed by several researchers for leveraging

locally resolved signals, such as those captured by techniques

like remote photoplethysmography (rPPG), which capture these

subtle variations (Yu et al., 2021a). For example, rPPG can

extract physiological information, such as pulse rate, from a

recorded video, providing valuable data for deepfake detection

(Kossack et al., 2019a). Traditional approaches have primarily

focused on extracting a global pulse signal from an entire video

sequence (Yu et al., 2021a). Detectors leveraging this global

rPPG signal have demonstrated promising results concluding that

deepfakes do not include such physiologically induced signals.

However, contrary findings indicate that deepfakes can indeed

exhibit a one-dimensional signal resembling a heart rate (HR),

further complicating the detection process (Fernandes et al., 2019).

Additionally, recent advancements in synthetic face generation

explicitly incorporate pulsation signals (Ciftci and Yin, 2019) or

enable the manipulation of physiological signals in facial videos

(Chen et al., 2022), thus blurring the distinction between real and

fake rPPG signals. It is also important to note that rPPG-based

deepfake detectors may inadvertently rely on non-physiological

cues, such as background artifacts, noise, or comparisons between

image pairs, rather than purely detecting pulse-related color

changes in the skin (Çiftçi et al., 2024; Qi et al., 2020; Ciftci

et al., 2020b,a). For instance, Ciftci et al. (2020a) demonstrated that

filtering rPPG signals with a bandpass filter between 4.68Hz to

15Hz (i.e., 180 bpm to 900 bpm), can more effectively distinguish

real videos from deepfakes compared to filtering signals based on

human heart rate frequencies. This highlights a critical limitation in

current deepfake detection approaches that rely on rPPG signals, as

they often fail to account for the fact that deepfakes can still produce

realistic HR signals.

In this article, we demonstrate that HR signals can indeed be

derived from deepfake videos, and, more importantly, these signals

closely match those of the original driving video, which define

the head motion and facial expressions. This finding challenges

the assumption that deepfakes inherently lack valid physiological

signals and emphasizes the need for detection methods that go

beyond simple pulse detection. Our contribution provides new

insights into the physiological consistency of deepfakes, raising the

bar for future detection techniques.

To validate our findings, we propose a pipeline that extracts the

pulse rate from videos while incorporating motion compensation

and background noise reduction for enhanced robustness. To

further substantiate our approach, we collected a dataset consisting

of video recordings synchronized with electrocardiogram (ECG)

data. Our experiments demonstrate that the HRs extracted from

the videos using our pipeline closely align with those from the

ECG signal, confirming the accuracy of the rPPG-based extraction

process. To explore the origin of the heart beats detected in

the rPPG signals of the deepfake videos, we generated a set

of deepfakes based on these original video recordings. In our

experiments, we show that the HRs derived from the deepfakes

significantly overlap with those of the source (or “driver”) videos,

highlighting that deepfake HR signals are not random but

rather reflect the physiological information present in the driving

video. Furthermore, we extend our analysis to older generations

of deepfakes by utilizing the publicly available KoDF dataset

(Kwon et al., 2021), where we similarly demonstrate the presence

of valid HR signals. These results emphasize that even older

deepfake methods can carry realistic physiological signals, further

complicating traditional detection methods.

The remainder of this paper is organized as follows: In Section

2, we provide an overview of existing work on deepfake generation,

deepfake detection, and rPPG. Our proposed method is presented

in Section 3. Section 4 outlines the experiments conducted, along

with the presentation of our used dataset and results. Thereafter,

we discuss our method’s limitations and conclude our paper with a

summary of our results and findings in Section 6.

2 Related work

2.1 Deepfakes

Deepfakes represent a category of manipulated videos and

audio files created through deep learning techniques. These

manipulations involve altering faces, modifying gestures and

facial expressions, and adjusting physical appearances and

mouth movements to align with manipulated audio content.

The widespread popularity of deepfakes is evident in various

applications, with common usage found in AI-based face swapping

techniques. Notably, there is a surge in popularity with smartphone

apps that facilitate seamless face swapping, demonstrating the

accessibility and user-friendly nature of these technologies. These

apps leverage advanced voice synthesis, facial synthesis, and

video generation methods to produce convincing and often

deceptive content.

The development of GANs (Goodfellow et al., 2014), VAEs

(Kingma and Welling, 2014) and, lately, diffusion models (Ho

et al., 2020) enabled various possibilities for the forgery of

digital content. The seminal deepfake generation method utilizes

a dual-decoder autoencoder, with each decoder dedicated to

one of the set target identities for swapping (DeepFakes, 2019).

Subsequently, this foundational method has been enhanced by

the integration of adversarial training, application of more

sophisticated convolutional neural networks or advanced blending

techniques (Perov et al., 2020; Beckmann et al., 2023). Numerous

methods have been developed for manipulating face expressions

and appearances, with modern approaches capable of synthesizing

a face with a given appearance and an expression of choice in the

one-shot scenario (Drobyshev et al., 2022; Nirkin et al., 2022;Wang

et al., 2021b,a). Recently, several approaches leverage denoising
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diffusion models for the generation and manipulation of high-

quality face images (Ho et al., 2020; Zhao et al., 2023; Ding

et al., 2023; Huang et al., 2023). This continuous evolution of

deepfake technologies poses challenges for content authentication

and necessitates the development of robust detection mechanisms.

Early approaches to detect deepfakes exploit physical

inconsistencies in the behaviour and appearance of the head.

Li et al. (2018) exploit the fact that early deepfake generation

approaches merely use training images with opened eyes, by

utilizing facial landmarks to identify the eye-blinking behaviour

in videos. In Yang et al. (2019), the authors take advantage of the

fact that the process of cropping, aligning and inserting a face onto

another head leads to a misalignment of the attributes in the inner

face and the head pose. Other approaches aim to manually generate

fake training images by simulating the artifacts introduced by

warping or blending operations in genuine images (Li and Lyu,

2018; Li et al., 2020). With the rapid increase of quality in visual

fake content, research focus shifted from more obvious and

explainable artifacts to high dimensional complex convolutional

feature maps. In the foundational FaceForensics++ (FF++) paper

(Rössler et al., 2019), the authors propose a benchmark dataset

for the evaluation of deepfake detectors and analyze the detection

performance of several CNN based detectors.

While recent and ongoing works on generating better deepfakes

focus mostly on making them look more realistic and appealing,

the coherence of biological rPPG signals is not considered. This

motivated several researches to work on the promising line of fake

detection methods, analyzing the coherence of biological rPPG

signals in the spatial and temporal domain and thereby increasing

the explainability of the detection process (Ciftci et al., 2020a;

Hernandez-Ortega et al., 2020). FakeCatcher (Ciftci et al., 2020a)

extracts rPPG signals from three face regions which are subject

to various signal transformations. Moreover, the extracted signals

are consolidated into image-like PPG maps, which represent the

temporal and spatial distribution of biological signals across the

analyzed facial regions. Those signal maps are then fed to a CNN

for classification. DeepFakeON-Phys (Hernandez-Ortega et al.,

2020) adapts the heart rate estimation method proposed in Chen

and McDuff (2018) and modifies it through the usage of a two

branch convolutional attention network to assess both appearance

and motion related information for deepfake video detection. In

Wu et al. (2023), the authors propose the usage of a temporal

transformer in combination with a mask-guided local attention

module in order to capture spatial and temporal inconsistencies

over long distances in the used PPG maps. Detection methods

that specifically pay attention to the heart rate (HR) information

extracted from rPPG were proposed in Ciftci et al. (2020b) and

Boccignone et al. (2022).

2.2 rPPG

The extraction of human vital signs from face videos is a rapidly

growing and emerging field with numerous recent publications

(Poh et al., 2010; De Haan and Jeanne, 2013; Wang et al.,

2017; Tulyakov et al., 2016). The medical measurement of the

HR typically relies on the optical measuring technique known

as photoplethysmography (PPG) (Zaunseder et al., 2018). This

technique capitalizes on human blood circulation, where blood’s

light absorption exceeds that of surrounding tissue. Consequently,

variations in blood volume influence light transmission or

reflectance accordingly (Tamura et al., 2014). A PPG sensor,

commonly used for measuring the human pulse rate, is placed

directly on the skin to optically detect changes in blood volume

(Tamura et al., 2014). Remote photoplethysmography employs the

same principle, allowing for contactless HR measurements using a

standard RGB camera (Zaunseder et al., 2018). In this technique,

the continuous change in skin color, resulting from blood flow

through the circulatory system, is analyzed by rPPG methods to

determine HR (Poh et al., 2010; De Haan and Jeanne, 2013; Wang

et al., 2017; Tulyakov et al., 2016).

To robustly extract an rPPG signal, irrespective of the subject’s

skin tone and non-white illumination conditions, the Plane-

Orthogonal-to-Skin Transformation (POS) (Wang et al., 2017) of

the rPPG signal has been developed for pre-processing the input

video sequence.

Given that global model-based methods may be susceptible

to noise, compression artifacts, or masking, recent rPPG-related

publications leverage deep neural networks for HR extraction

from video data (Chen and McDuff, 2018; Yu et al., 2019, 2020).

Yang et al. (2021) conducted a comparative study of three neural

networks [Deepphys (Chen and McDuff, 2018), rPPGNet (Yu

et al., 2019), and Physnet (Yu et al., 2020)] against model-based

approaches [independent component analysis (ICA) (Poh et al.,

2010), CHROM (De Haan and Jeanne, 2013), and POS (Wang

et al., 2017)] using the publicly available UBFC-rPPG dataset

(Bobbia et al., 2019). In these experiments, under constant lighting

conditions, deep-learning-based approaches outperformed model-

based ones. However, model-based approaches (ICA, CHROM,

and POS) exhibited more accurate and robust results in varying

lighting conditions (Yang et al., 2021).

The locally analyzed rPPG signal extracted from videos is

visualized based on amplitude, velocity, or signal-to-noise ratio

(SNR) maps (Kossack et al., 2019b; Yang Jun, Guthier B, 2015;

Zaunseder et al., 2018). Particularly, blood flow in facial videos

has been scrutinized (Yang Jun, Guthier B, 2015; Kossack et al.,

2019b,a), where blood flow velocity is calculated from the relative

phase shift of the frequency component corresponding to HR in

the frequency domain. These methods assume that the difference

between neighboring phase values directly corresponds to the

velocity at that point.

Beyond medical applications (Schraven et al., 2023; Kossack

et al., 2023), rPPG analysis has also been employed to detect

presentation attacks on authentication systems (Kossack et al.,

2022). In multiple studies, rPPG methods are applied to facial

videos to discern whether the face is covered by a mask (Li

et al., 2017; Kossack et al., 2019a; Yu et al., 2021b). However,

deepfake detection proposes another challenge, and as described in

Section 2.1, discrepancies between images resulting from deepfake

generation disrupt the natural color variations in the skin induced

by the heartbeat.

3 Methods and data

We propose a pipeline for extracting and analyzing

physiologically related signals, specifically focusing on those
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associated with the cardiovascular cycle, which typically occur

in the frequency range of 0.7Hz to 3Hz. To ensure the accurate

detection of these signals, the pipeline requires an input video

showing the face of a single person for at least 10 s. The proposed

pipeline incorporates motion compensation techniques and

accounts for frequencies introduced by external factors, such as

compression or camera properties, to ensure a robust extraction of

physiologically related signals. The details of these components are

discussed in the following two sections.

Following the components of our pipeline, we describe the data

used for the experiments. This includes the dataset of videos and

ECG data that we captured, the method used to generate deepfakes

and finally an external dataset that was used for evaluation.

3.1 Reference face and temporal alignment

We focus on global rPPG signals over time, specifically the

averaged color changes across various spatial positions on the

facial surface. To ensure accurate signal extraction, it is essential

to compensate for any movements made by the person in the

video. To achieve this, each frame of the input video is aligned

with a reference face by detecting facial landmarks usingMediaPipe

(Google, 2022). These landmarks form the basis for Delaunay

triangulation (de Berg et al., 2008), generating a 2D mesh over

the facial region. The reference 2D mesh consists of 918 triangles,

and serves as a foundation for tracking and stabilizing the facial

movements across the video. While this approach is easy to

implement, it does not consider motion blur, and the accuracy of

the registration is constrained by the facial landmarks. To further

enhance this important process, we will extend our method in the

future by using the approach proposed by Seibold et al. (2017) for

removing motion blur and Seibold et al. (2024) for a pixel-wise

registration.

In each input frame, we track the detected facial landmarks

and use the 2D mesh to warp each triangle to its corresponding

reference position. This warping process aligns the facial features

from the input video to the reference face, as illustrated in Figure 1.

The outcome is a motion-compensated image sequence that serves

as the foundation for our subsequent analysis, ensuring that the

extracted rPPG signals are not affected by facial movements.

3.2 Encoding of heart rate related features

To extract heart rates, we perform a global analysis of the entire

video to obtain a single robust reference rPPG signal, which is

associated with the subject’s pulse signal (Kossack et al., 2021). For

rPPG calculation, we apply the Plane-to-Orthogonal skin (POS)

transformation (Wang et al., 2017) on a 10 s window orange, i.e.,

including 300 frames. A preliminary analysis about the optimal

window length showed a standard deviation of the differences

between extracted HR and ground truth for the 10 s window of

1.39 bpm, increasing to 3.38 bpm, 3.76 bpm, and 4.15 bpm for 8 s,

6 s, and 5 s windows, respectively. The entire video is processed

by sliding this window over the video duration with a step size of

one frame, ensuring continuous analysis and accurate pulse signal

extraction.

After processing the entire video sequence, the output signal

is normalized and filtered with a fifth-order Butterworth digital

band-pass filter with a frequency range between 0.7Hz and 3.0Hz

(corresponding to a HR of 42 bpm to 180 bpm). This filtering

produces the final rPPG signals. For each time step, we then

transform rPPG signal from the time domain to the frequency

domain using a fast Fourier transform (FFT), mapping the signal

magnitudes across all time steps for further analysis.

This processing is applied to the entire face region to

capture physiologically relevant signals, as well as to two

homogeneous square regions in the background to collect image

noise information, see Figure 2. The two background regions are

averaged during transformation, resulting in a single FFT map

for the background. The two FFT maps - one from the face and

one from the background - are then subtracted based on their

intensities to generate a background-free FFT map that focuses on

the physiologically induced signals.

To determine the HR signal over the entire video duration,

the highest magnitude in the subtraction FFT map is identified,

and based on this peak, the HR for each time instant is extracted

through a single optimization step.

3.3 Captured dataset

Given that many of the most popular datasets for deepfake

analysis are several years old and deepfake generation techniques

have advanced significantly, we created a fully controlled, high-

quality dataset to ensure optimal compression and realism. To

validate the functionality of our method, we collected recordings

of twelve individuals, representing diverse genders, ages and ethnic

background in a controlled studio environment. The recordings

were captured with participants positioned in front of a white

background, under uniform lighting provided by white LED

illumination. For each participant, 10-20 frontal view recordings

were taken, with the head centered throughout the video. During

each recording, participants were asked to perform a range of

activities, including talking, reading, and interacting with the

recording supervisor. All participants provided written consent for

the use of their recordings in this experiment and its subsequent

publication.

We used an industry RGB camera1 to capture the video

recordings. The recordings vary in length, ranging from 10 s up

to several minutes, with a frame-rate of 25 fps and a resolution of

2448 × 2048 pixels. In addition to the RGB video, we measured

the ECG and PPG of selected subjects. These physiological signals

were used to calculate the heart rate (HR) as ground truth for our

analysis. Selected frames from our dataset are shown in Figure 3A.

3.4 Creation of high-quality deepfakes

Publicly available datasets have not kept pace with the rapid

development in deepfake technology as new techniques and

architectures continuously emerge, leading to increasingly realistic

and higher-quality deepfakes. This progress likely impacts previous

1 ace acA2440-75uc, Basler AG, Germany.
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FIGURE 1

Illustration of the temporal alignment process. A reference mesh, composed of 918 triangles formed from MediaPipe facial landmarks, (center) is

used to spatially warp each frame from the video sequence (top) to a reference position (bottom).

FIGURE 2

Heart rate extraction pipeline. From the registered video sequence, we calculate a global rPPG signal of the face as well as the background.

Following, we determine the magnitudes in frequency space for each signal over time. To robustly extract the heart rate both signals are “subtracted”.

assumptions about deepfakes, particularly the notion that they do

not contain HR-related signals. As deepfake generation methods

improve, it becomes necessary to reassess these conclusions in light

of more sophisticated and physiologically accurate manipulations.

To generate our own set of high-quality deepfakes, we

employed a dual-decoder autoencoder architecture along with an

advanced blending procedure, as described in Beckmann et al.

(2023). Unlike a standard autoencoder with a single decoder to

reconstruct the input image, this model utilizes two decoders. Each

decoder is trained to reconstruct the input image but with the

identity of a specific person respectively, the source and target

person. During training, the autoencoder is fed with pairs of images

of the source and target person. Once trained, the model can be

used to swap faces in images and, accordingly, in videos. The

advanced blending procedure enhances quality of the deepfakes

by modifying the mask used for blending. Specifically, the mask is
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FIGURE 3

A subset of our recorded data representing six participants (A) and a correlating subset of generated deepfakes (B).

adjusted to create a greater distance between the edges of the face

and the boundaries of the mask by “squeezing” it by approximately

15 pixels on each side. This adjustment excludes non-facial regions

from the blending process, thereby reducing blending artifacts at

the boundaries and improving the overall realism of the generated

deepfakes.

Following data collection, we created various identity pairs

and trained a separate deepfake autoencoder for each pair. Using

these autoencoders, we performed face swaps between all videos

for each identity pair, generating a total of 858 identity-specific

deepfake videos and 156 unaltered counterparts. Figure 3B shows

examples of our deepfakes. For more details on the used method

see Beckmann et al. (2023).

In addition to these deep fakes, we generated additional ones

using the open-source tool DeepFaceLive (DFL) (Petrov, 2023).

This tool was developed for real-time face swapping. It requires

a driver video and swaps the face in the video with that of a

target face model, while maintaining the driver’s expression and

head pose. A set of target face models is provided by the tool.

We used four of these provided face models to generate 32 deep

fake videos. These videos are used in our experiments to show

that the rPPG signal of a deep fake is similar to that of its

driver video and also to our fakes generated using the same driver

video.

3.5 External data

In addition to our own dataset, which includes videos with

ECG data and corresponding deepfakes, we also utilized publicly

available datasets to enhance the scope of our analysis. First, we

used the deepfakes generated in Beckmann et al. (2023) based on

the “actors” subset of the deepfake detection dataset (Dufour et al.,

2019), its corresponding originals as well as the fakes from that

dataset based on the same originals.

Recognizing that many existing deepfake datasets may have

limitations in terms of size and diversity, we selected the KoDF

dataset (Kwon et al., 2021), which is designed generalize more

effectively to real-world deepfakes compared to other public

datasets like FF++ (Rössler et al., 2019) or Celeb-DF (Dang-

Nguyen et al., 2020). KoDF contains 403 Korean subjects and a few

ten-thousands of real and fake videos. In addition, KoDF includes

six synthesis models for deepfake creation, which brings a large

diversity of fakes to the set; in our study, we utilized four of these

six methods due to fake quality.

Finally, we selected 45 videos from the KoDF dataset and

generated an additional 45 Deepfake videos using the Picsi.Ai

platform2, leveraging its available synthesis methods.

4 Results

4.1 Signal analysis

In the initial phase of our analysis, we focused on our own

dataset, where we successfully extractedmeaningful heart rate (HR)

signals from both genuine and deepfake videos. In all cases, the

detected HR corresponded to the face of the subject in the video,

regardless of whether the video was real or a deepfake.

The average signal-to-noise ratio (SNR) of the extracted HR

was significantly higher in the original videos compared to the

deepfake videos with values of -1.97 dB for genuine and -3.35 dB

for deepfakes. This difference in SNR highlights the lower quality of

rPPG signals in deepfakes, likely due to artifacts introduced during

the generation process. As all participants were seated during the

recordings and made only slight movements, it is reasonable to

assume that the resting heart rate (normally between 60 bpm to

90 bpm) was detected for all participants. A higher HR was only

measured for two participants, but this was consistent across all

recordings and verified by the ECG measurements, suggesting the

reliability of our extraction process. The results of our analysis on

four videos, two fake and two genuine, are exemplary depicted in

Figure 4.

For the videos with a captured PPG reference signal and

deepfakes based on these videos, we further analysed the rPPG in

2 https://www.picsi.ai
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FIGURE 4

This illustration presents two pairs of genuine and fake videos. On the left of each example, frames from each video sequence are displayed. On the

right, the extracted reference rPPG signal is plotted for each paired fake and original video. Additionally, the measured heart rate of the person

recorded is displayed.

time domain. We calculated the Pearson correlation coefficients

for the PPG and rPPG signals for the genuine videos. Since no

ground truth PPG signal can be measured for the deepfakes, the

signal from the underlying driver video is used instead. In addition

to the correlation, we calculated the Mean Squared Error (MSE)

for the rPPG signals, using the PPG signals as ground truth. Before

calculating the MSE, the mean and variance of both signals were

normalized to zero and one, respectively. The results are shown

in Figure 5.

For all types of videos, there is a moderate to strong correlation

in most samples. The correlation between the PPG and rPPG

signals for the genuine videos and the DeepFaceLive (DFL) fakes

shows a similar distribution, while the correlation for deepfakes

generated with the method of Beckmann et al. (2023) is slightly

lower. These high correlations between the rPPG signals of the

deepfakes and the ground truth PPG signal of the driver videos

show that these fakes replicate the rPPG signal of the driver

videos. This point is further supported by the HR gained from

the rPPG signal. The absolute difference to the ground truth

across all videos and time periods is on average 1.80 bpm,

1.85 bpm and 3.24 bmp for the genuine videos, the Beckmann

et al. (2023) and DFL fakes, respectively. It should be noted that

rPPG signal extraction from videos includes, alongside the PPG-

related signal, additional components induced by body motion

and other noise sources, and thus cannot perfectly reflect a true

PPG signal.

In addition to comparisons with ground truth PPG signals,

we calculated the Pearson correlation coefficients between these

deepfakes and their underlying driver videos. The results are shown

in Figure 6. While the correlation for videos generated with DFL is

strong in most cases, the correlation for those generated with the

method of Beckmann et al. (2023) is moderate for most videos. This

provides further evidence that deepfakes mimic the rPPG signal of

the driver video.

Building on these results, we further analyzed the generated

deepfakes to investigate the origin of their rPPG signals. In the

majority of cases, the rPPG signals in the deepfakes closelymirrored

those of the original source videos, with only minor variations

observed.When comparing the HRmeasured in the genuine videos

with those from their deepfake counterparts, we found that the

global HR in the deepfake videos was remarkably similar to the

HR of the original source recordings, as well as to the measured

ECG ground truth, see examples in Figure 7. For all fakes in our

dataset, we found a high correlation to the HR of the original

driving video, see Figure 8. The average correlation between the

HR of the fakes created by using the method of Beckmann et al.

(2023) is r̄ = 0.57 (median r = 0.55) and for the fakes generated

with DFL r̄ = 0.82 (median r = 0.89). For the other fakes (KoDF

dataset, both methods on actor subset), the correlation is above r >

0.4. However, for the public available FF++ fakes, the deviation is

remarkably high (min r = −0.23 to max r = 0.91). These findings

confirm that the heart rate signals in high-quality deepfakes are

often inherited from the source video, further complicating the task

of distinguishing between real and fake content based solely on

global HR analysis.

The FFT maps visualize that the rPPG signal, which can be

traced back to physiological properties, clearly originates from the

source video. Figures 9, 10 show two examples with a set of six

FFT maps, the background, face and subtraction FFT maps of an

original video and an deepfake, where the original served as source.

The extracted HRs for both examples can be found in Figure 7.

Example ID_04_0100 demonstrates the influence of our

proposed background analysis on signal detection. In this instance,

a strong noise signal around 150 bpm is detectable in the
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FIGURE 5

Correlation and deviation of rPPG to PPG signal as well as the absolute di�erence of the heart rate (HR) between detected and ground truth. The

rPPG signal of the deep fake videos generated with DeepFaceLive (DFL) shows a similarly strong correlation to the measured PPG signal as the rPPG

signal for the genuine videos. The correlation for the rPPG signal of the deep fake videos generated with the methods of (Beckmann et al., 2023) is

slightly weaker but still moderate. The MSE is in a similar range for all types of videos.

FIGURE 6

Correlation and deviation of rPPG signals of deepfakes to their underlying driver video’s rPPG signal. The rPPG signals of the deepfakes generated

with DeepFaceLive (DFL) show a strong correlation to the rPPG signal of the underlying driver videos in most cases, while those for the deepfakes

generated with the method of (Beckmann et al., 2023) are weaker but, on average, still moderate. The DFL deepfakes outperform also in terms of

MSE those of (Beckmann et al., 2023).

background. Due to the nature of deepfake generation, this noise

signal is also present in all fakes where that capture served as source,

resulting in a high correlation between the FFT maps of original

and deepfakes (with a correlation of 0.96). In the original face video,

the physiological signal (at about 59 bpm) is twice as strong as the

background noise signal (at 150 bpm), making it easy to extract.

However, in the deepfake face, the HR and noise signals are of

comparable magnitudes, complicating clear pulse extraction. This

issue is resolved by incorporating background analysis, as shown

in Figure 9.

The correlation between the original and deepfake FFT maps

increases slightly, 0.7667 for the face FFT maps to 0.7826 for the

subtraction maps, further emphasizing that the rPPG signal in the

deepfake originates from the source video. This strong relationship
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FIGURE 7

Heart rates of di�erent videos. In each plot the extracted HR of the original video (red), the recorded ECG signal (yellow) and a created high-quality

deepfake (blue) using the original video as source video is shown. (A) capture ID 04 0100. (B) capture ID 04 0101. (C) capture ID 011 1100.

FIGURE 8

Correlation and MSE of Heart Rates (HR) of the deepfakes to their underlying driver video’s HR. The correlation of the HRs of the deepfakes generated

with DeepFaceLive show a strong correlation, while those for the deepfakes generated with the method of Beckmann et al. (2023) are moderate.

between the original and deepfake signals extends to cases where

the background signals in the deepfakes differ more significantly

from the originals, reinforcing the notion that deepfakes inherit

their rPPG signals from the driver video (cf. Figure 10).

Both examples clearly demonstrate that, in the analysis of

the face region in deepfakes, the background signal (induced by

noise, compression, etc.) plays a significantly stronger role, as the

transferred HR signal is reproduced with less intensity compared

to the original video. This is also reflected in the corresponding

SNRs (see above). Due to the weaker transmission and artificial

replication of the pulse signal, a strong correlation between the

original and deepfake signal is not always observed, see Figure 11

as example for a moderate relationship between original source

and deepfake subtraction maps with a correlation of 0.53. However,

upon closer examination, a trace of the original video’s HR signal

can still be detected in the faked face. This ‘signal trace’ underscores

that, despite noise and degradation, elements of the physiological

signal from the source video remain present in the deepfake.

4.2 Analysis on external data

Given the limited size of our dataset, we extended of

HR analysis to the KoDF and FF++ dataset. Despite varying

compression rates and relatively high image noise, we were able to

consistently extract HR signals from all genuine videos. Although

some deepfake videos presented challenges due to noise and

compression artifacts, we were still able to extract signals in most

cases that could be associated with HR (cf. Figure 8). However, as

the datasets do not include the participants’ actual HR data, we were

unable to validate these extracted HR signals against ground truth

measurements.

A closer look to quality parameter (Table 1) shows a extremely

low signal-to-noise ratio (SNR) of the extracted HRs for the

external datasets, especially for FF++, while the deviation of the

HR over time is high although all videos involve individuals who

are at rest and should therefore have a stable pulse. This indicates

that for a certain amount of videos, the detected HR is not plausible,
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FIGURE 9

FFT maps of capturing ID_04_0100. A similar HR can be detected in both cases, original source (A–C) and deepfake (D–F) video with about 59bpm.

The correlations between the original and deepfake FFT maps shows a strong relationship for all three map pairs: 0.96 for background, 0.77 for face,

and 0.78 for subtraction map.

i.e., not related to the real HR, although we have selected the videos

with best signal quality and analyzed the corresponding deepfakes.

It is important to note, that it is not possible for the KoDF dataset

to identify the exact driver video used for each fake. Therefore, we

only looked at whether it is possible to identify a physiologically

meaningful HR in both the original and the fake videos. Here,

similar results as with our dataset could be achieved (cf. Figure 12).

For the deepfakes, a signal which can be related to a HR is in most

cases detectable. For further examples of FFT maps of deepfakes

from the KoDF dataset are shown in Appendix.

5 Discussion

As discussed in Section 3.5, numerous datasets have been

developed to support deepfake research, such as the DeepFake

Detection Challenge Dataset (Dolhansky et al., 2020), FF++

(Rössler et al., 2019), and Celeb-DF (Dang-Nguyen et al., 2020).

These datasets have significantly advanced deepfake detection

techniques. However, few authors have explored deepfake detection

through the analysis of physiologically related signals, such as

rPPG. Despite their importance, public datasets present several

challenges when used for analyzing rPPG signals in the context of

deepfake detection as rPPG is sensitive to video quality.

Many deepfake datasets suffer from compression artifacts, low

resolution, inconsistent frame rates, high background noise, and

challenging illumination settings (D’Amelio et al., 2023; Kwon

et al., 2021). These factors can substantially degrade the quality of

rPPG signals, making it difficult to reliably extract physiological

features (Wang et al., 2024; Zaunseder et al., 2018; McDuff et al.,

2017). Consequently, the utility of rPPG analysis in deepfake

detection has been limited, particularly in datasets where video

quality is compromised.

Previous studies (Çiftçi et al., 2024; Qi et al., 2020; Ciftci et al.,

2020b,a; Hernandez-Ortega et al., 2020) concluded that deepfakes

do not exhibit a detectable heartbeat (Boccignone et al., 2022),

suggesting that this could be used as a reliable marker for deepfake

detection. However, much of this research was conducted on

datasets of low image quality. In contrast, our study reveals that for

recent and high-quality deepfakes, such as those generated using

the method described in Beckmann et al. (2023), DeepFaceLive

or present in the KoDF dataset, it is possible to robustly detect

a HR signal that originates from the source (driver) video. Our

experiments demonstrated that deepfakes can exhibit realistic heart

rates, contradicting previous findings. Specifically, in all fake videos

from our dataset and most videos from the KoDF dataset, valid HR

signals were successfully extracted. This indicates that solely relying

on the analysis of global HR signals is no longer sufficient to detect

deepfakes.

Another significant challenge in existing deepfake datasets is

the lack of reference measurements, such as concurrent ECG

or PPG sensor readings, which are crucial for validating the

accuracy of extracted rPPG signals. Without these ground truth

data, it becomes difficult to assess the reliability of physiological

signal extraction and, consequently, the conclusions drawn

from them.
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FIGURE 10

FFT maps of capturing ID_11_1100. A similar HR can be detected in both cases, original source (A–C) and deepfake (D–F) video with about 71bpm.

The correlations between the original and deepfake FFT maps shows a moderate to strong relationship for all three map pairs: 0.50 for background

(moderate relationship), 0.91 for face (strong), and 0.89 for subtraction map (strong).

FIGURE 11

FFT subtraction maps of (A) capturing ID_004_0110 and (B) a related deepfake. In the original FFT map, a HR can be identified clearly at around

65bpm. The FFT subtraction map of the deepfake is more noisy but the HR of the underlying original is detectable as well. The correlation between

both maps is moderate with 0.53. (A) Original. (B) Deepfake.

To improve the utility of physiological signals for deepfake

detection, we propose shifting from global HR analysis to locally

resolved signals within the face. Recent advances in video-based

vital sign analysis have moved toward capturing local pulse

signals from specific facial regions (Kossack et al., 2019b, 2021),

which better reflect the anatomical blood flow patterns of the
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TABLE 1 Signal-to-noise ratio (SNR) and standard deviation (STD) of the extracted HR signal for all included data.

Method Beckmann et al. (2023) DFL KoDF Actor our fakes Actor FF++ fakes

SNR originals [dB] 5.595 8.947 4.470 2.951 1.852

SNR fakes [dB] 3.566 7.838 3.027 2.730 2.345

STD originals [bpm] 5.033 2.779 7.892 6.929 8.291

STD fakes [bpm] 7.300 2.245 8.609 8.931 8.833

FIGURE 12

FFT maps of a deepfake taken from the KoDF dataset. (A) background, (B) face, (C) subtraction. The extracted HR is about 69bpm.

human face. By leveraging these localized physiological patterns,

we aim to enhance both the robustness and interpretability of

deepfake detection. Building on this idea, we performed initial

experiments where we extracted rPPG-related feature maps from

a subset of our dataset following the approach described in

Schraven et al. (2023) and trained an EfficientNet-B4 model

as a convolutional deepfake detector (Tan and Le, 2019). Our

preliminary results (AUROC score of 87.4%) show promising

results that these local maps can be used for deepfake detection.

Using the rPPG-based features improves interpretability by

providing more understandable features, but the detector itself

lacks transparency by design. To overcome this issue, we adapt

in the future the concept proposed by Seibold et al. (2021),

which leads to detectors that accurately determines which part

of the input contributes to the prediction that an input is

a forgery.

6 Conclusion

In conclusion, our study demonstrates that high-

quality deepfakes exhibit rPPG signals that correspond to

the HR of the source (driver) video. By comparing the

different PPG signals and analyzing the FFT maps as well

as the extracted HRs and its correlations, we confirmed

that the globally derived rPPG signal originates from the

driving video, rather than being artificially generated. This

finding challenges previous assumptions that deepfakes

inherently lack valid physiological signals, revealing the

limitations of using simple HR analysis for detecting

high-quality deepfakes.

One of the key contributions of our study is the demonstration

that HR signals in deepfakes can closely match those of the

source video, making traditional global HR-based detection

methods insufficient for distinguishing between real and fake

content. By performing our analysis not only on our own

dataset but also on fakes created with DeepFaceLive and from

the KoDF dataset, we confirmed the generalization of our

findings, showing that even older deepfake datasets contain valid

HR signals.

To address this limitation, we propose leveraging local blood

flow information for deepfake detection. Preliminary experiments

indicate that this localized analysis holds significant promise

for improving detection accuracy. As part of ongoing work, we

are further refining this approach, which also offers the added

benefit of enhanced explainability. Visualizing local blood flow

patterns could provide clearer insight into the decision-making

process of detection algorithms. Another important factor in

ensuring robust detection is the availability of good and diverse

training data. An attacker may attempt to mimic blood flow

patterns to evade detection; therefore, we plan to enhance our

deepfake dataset using style-transfer with a temporal component

by extending the work on improved image forgeries of Seibold et al.

(2019).

In summary, our contributions include: (1) providing

evidence that deepfakes can exhibit realistic heart rate signals,

(2) highlighting the insufficiency of global HR analysis for

detecting high-quality deepfakes, and (3) proposing the use
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of localized rPPG signals to enhance both the robustness and

explainability of deepfake detection. Our approach could serve as

a valuable complement to existing techniques, with the potential

to improve the security and integrity of multimedia content

across platforms.
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