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Continuous patient monitoring
with AI: real-time analysis of
video in hospital care settings

Paolo Gabriel*, Peter Rehani, Tyler Troy, Ti�any Wyatt,

Michael Choma and Narinder Singh

Department of R&D, LookDeep Health, Oakland, CA, United States

Introduction: This study introduces an AI-driven platform for continuous and

passive patient monitoring in hospital settings, developed by LookDeep Health.

Leveraging advanced computer vision, the platform provides real-time insights

into patient behavior and interactions through video analysis, securely storing

inference results in the cloud for retrospective evaluation.

Methods: The AI system detects key components in hospital rooms, including

individuals’ presence and roles, furniture location, motion magnitude, and

boundary crossings. Inference results are securely stored in the cloud for

retrospective evaluation. The dataset, compiled with 11 hospital partners,

includes over 300 high-risk fall patients and spans more than 1,000 days of

inference. An anonymized subset is publicly available to foster innovation and

reproducibility at lookdeep/ai-norms-2024.

Results: Performance evaluation demonstrates strong accuracy in object

detection (macro F1-score = 0.92) and patient-role classification (F1-score

= 0.98). The system reliably tracks the “patient alone” metric (mean logistic

regression accuracy = 0.82 ± 0.15), enabling detection of patient isolation,

wandering, and unsupervised movement-key indicators for fall risk and adverse

events.

Discussion: This work establishes benchmarks for AI-driven patient monitoring,

highlighting the platform’s potential to enhance patient safety through

continuous, data-driven insights into patient behavior and interactions.

KEYWORDS

artificial intelligence, medical imaging, computer vision, patient monitoring, RGB video,

deep learning, healthcare analytics

1 Introduction

In hospitals, direct patient observation is limited–nurses spend only 37% of their

shift engaged in patient care (Westbrook et al., 2011), and physicians average just 10

visits per hospital stay (Chae et al., 2021). This limited interaction hinders the ability to

fully understand patient behaviors, such as how often patients are left alone, how much

they move unsupervised, and how care allocation varies by time or condition. Virtual

monitoring systems, which allow remote patient observation via audio-video devices, have

improved safety, particularly for high-risk patients (Abbe and O’Keeffe, 2021).

Artificial Intelligence (AI) is transforming healthcare by enhancing diagnostic

accuracy, streamlining data processing, and personalizing patient care (Davenport and

Kalakota, 2019; Davoudi et al., 2019; Bajwa et al., 2021).While AI has found success in tasks

like surgical assistance (Mascagni et al., 2022) and diagnostic imaging (Esteva et al., 2021),

patient monitoring represents a critical frontier. Unlike these tasks, continuous patient

monitoring involves real-time video analysis over extended periods, requiring AI systems
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to process data efficiently and extract actionable insights spanning

days, like day-over-day movement (Parker et al., 2022).

Continuous monitoring enhances safety and enables the

detection of risks often missed during periodic assessments. For

example, trends like delirium fluctuate throughout the day, but

infrequent observations make these patterns hard to capture

(Wilson et al., 2020). Similarly, patients occasionally leave their

beds unattended—a key fall risk—yet monitoring every instance

in real-time remains challenging. A robust computer vision-based

system can provide immediate, context-aware insights into patient

behavior (Chen et al., 2018), caregiver interactions (Avogaro et al.,

2023), and room conditions (Haque et al., 2020). Such systems

surpass traditional intermittent observation methods by detecting

subtle patterns that inform care decisions (Lindroth et al., 2024).

However, achieving scalability, transparency, and adaptability

in continuous monitoring systems presents significant challenges.

These include efficiently processing video data at higher frame-

rates (Posch et al., 2014), ensuring privacy compliance (Watzlaf

et al., 2010), and adapting to dynamic hospital settings with

varying lighting, camera angles, and patient behaviors. Addressing

these technical and operational challenges is critical for AI-driven

monitoring systems to gain acceptance and deliver meaningful

outcomes, such as reducing falls and other preventable harms.

To bridge these gaps, this research presents a novel AI-

driven system for continuous patient monitoring using RGB video

(Figure 1), developed collaboratively with industry and healthcare

providers. The LookDeep Health platform aims to enhance

patient care by providing real-time monitoring and producing

computer-vision-based insights into patient behavior, movement,

and interactions with healthcare staff.

This study offers several key contributions:

1. Implementation of advanced computer vision models: our

system utilizes state-of-the-art models for real-time predictions,

including localization of people and furniture, monitoring

boundary crossings, and calculating motion scores.

2. Real-world validation: we rigorously evaluated the system’s

performance in live hospital settings, illustrating its capability

to present care providers with accurate data from continuous

monitoring, and laying the foundation for future AI-enabled

patient monitoring solutions.

3. Dataset development: we developed a comprehensive dataset

encompassing over 300 high-risk fall patients tracked across

1,000 collective days and 11 hospitals, creating a valuable

resource for studying patient behavior and hospital care

patterns. This dataset is publicly available for further research

at https://github.com/lookdeep/ai-norms-2024.

2 Methods

2.1 Study design

The LookDeep Health patient monitoring platform was

deployed across 11 hospitals in three states within a single

healthcare network. The system provides continuous, real-time

monitoring of high-risk fall patients. Data collection adhered

to institutional guidelines and patient consent procedures (see

Research Ethics).

2.1.1 Participants
Patients monitored by LookDeep Health were primarily high-

risk fall patients identified through mobility assessments as part

of standard care protocols. This classification often results in

the patient also being categorized as non-ambulatory during the

inpatient stay (Capo-Lugo et al., 2023).

Data was organized into three subsets:

1. Single-frame analysis: periodic samples from monitoring

sessions were used for training and testing object detectors, with

over 40,000 frames collected to date. Only patients monitored

during the first week of each month were included in the test

set, providing 10,000 frames held out for consistent model

evaluation.

2. Observation logging: ten patients who experienced falls were

selected for additional annotation over a twelve month period

(Figure 2A).

3. Public dataset: over 300 high-risk fall patients were monitored

during a six month period, excluding those monitored for less

than two days (Figure 2B).

As shown in Figure 3, data collection spanned multiple years,

with each subset contributing to the development and validation of

the AI system, with some overlap between subsets.

2.1.2 Patient monitoring system overview
The LookDeep Health monitoring system processes video

through a computer vision pipeline to detect, classify, and analyze

key elements within the patient’s room, providing actionable

insights to healthcare staff (Figure 4). Key components include:

1. Video data capture and preprocessing: video data is captured at

1 frame per second (fps) by LookDeep Video Unit (LVU) devices

deployed in patient rooms (Figure 5A). Data is preprocessed to

reduce bandwidth and enable efficient analysis.

2. Object detection and localization: a custom-trained model

detects key objects (“person”, “bed”, “chair”) and localizes them

with bounding boxes.

3. Person-role classification: detected “person” objects are further

classified as “patient”, “staff”, or “other” using the same

object detector model, by augmenting labels with role-specific

information.

4. Motion estimation: dense optical flow estimates motion

between consecutive frames, enabling activity tracking in

specific regions (e.g. scene, bed, safety zone).

5. Logical predictions: high-level predictions (e.g. “person alone”,

“patient supervised by staff”) are derived by applying rules to

detection and motion data, with a 5-second smoothing filter to

mitigate detection errors.

Inference results, including object detections, role

classifications, motion estimation, and logical predictions, are

securely stored in a Google cloud database for further analysis (e.g.
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FIGURE 1

Illustrative workflow of the lookdeep health AI-driven patient monitoring platform. The system captures video from a hospital room using mounted

cameras and processes each image through a series of computer vision modules. The output is presented as real-time insights for healthcare sta�.

trend analysis). Anonymized frames are stored at regular intervals

for quality assurance and model improvement.

2.1.3 Data anonymization
To ensure patient privacy in accordance with the Health

Insurance Portability and Accountability Act (HIPAA) and

institutional guidelines, all video data was processed to remove

identifiable information. For training purposes, frames were face-

blurred using a two-step procedure to maintain privacy while

preserving relevant scene context:

1. Manual labeling: faces were manually labeled on fully-blurred

images to create bounding boxes without exposing identifiable

features.

2. Local Gaussian blurring: a strong Gaussian blur was applied

to labeled facial regions, preserving scene context while

anonymizing identities.

This approach was chosen to ensure privacy while balancing

effective model training and validation. Additional obfuscation

methods, such as pixelation or complete occlusion of faces,

were considered but deemed not necessary for the intended use

case. Data handling was conducted under a Business Associate

Agreement (BAA) with participating hospitals.

2.2 Data collection

2.2.1 Video patient monitoring
LVU devices capture continuous video in RGB or near-

infrared (NIR) mode, depending on ambient lighting. Each device

is equipped with a CPU and Neural Processing Unit (NPU),

capable of processing data at 1fps to minimize latency and reduce

cloud processing requirements. Inference results are uploaded to

a secured cloud database (Google BigQuery), with blurred frames

stored separately for manual annotation. Camera placement varied

based on room layout and clinical workflows (Figure 5B).

2.2.2 Annotations
2.2.2.1 Frame-level labels

A professional labeling team manually annotated over 40,000

images with object bounding boxes, object properties, and scene-

level tags (Figure 6). Objects were annotated with 2-d bounding

boxes classed as “person”, “bed”, or “chair”, and each “person”

bounding box was also assigned a role of “patient”, “staff”, or

“other”. Scene level attributes were added for whether the patient

was “in bed” or “not in bed”, whether the camera was operating

in IR mode, and whether the scene included “exception cases”

in comparison to stated norms. Exception cases were applied in

any instance of labeler uncertainty (e.g. difficult to see person,

patient in street clothes, etc.); in instances of multiple exception

cases being applicable, a single “frame exception” catch-all was

used. Annotations and quality review were conducted using the

Computer VisionAnnotation Tool (CVAT, Corporation, 2023), and

final QA was conducted using the FiftyOne tool (Moore and Corso,

2024).

2.2.2.2 Observation logs

Blurred video summaries for 10 patients (54 patient-days) were

reviewed to log periods when the patient was alone. Logs included

timestamps with 1-2 second precision (Figure 6), and underwent

secondary quality assurance to provide feedback to labelers and fill

out any missing periods.

2.3 Computer vision predictions

The LookDeep Health pipeline processes video data using

custom-trained models to detect objects, classify person-role, and

estimate motion at 1 fps. Preprocessing compresses frames to

JPEG at 80% quality and resizes to a resolution of 1088x612 to

reduce bandwidth consumption while still meeting downstream

model requirements. Image processing is conducted usingOpenCV

(Bradski, 2000) and RKNN-toolkit (AI Rockchip, 2024).
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FIGURE 2

Overview of patient demographics. (A) Observations subset, comprising 10 patients, 54 patient-days, and 3 hospitals. (B) Released dataset,

comprising 387 patients, 1,466 patient-days, and 11 hospitals. Left: Pie charts showing the distribution of hospitals by size, where hospitals with an

average daily census of 150+ patients are shown in red, and smaller hospitals are shown in blue. Center: Heat maps showing patient age distribution

by gender. Right: Box plots showing patient length of monitoring. Central line represents the median, box edges indicate the 25th and 75th

percentiles, and whiskers extend to the most extreme data points within 1.5 times the interquartile range. The points represent outliers beyond this

range. The y-axis corresponds to hospital IDs, so Hospital 3 is absent from the top-row dataset but included in the bottom-row dataset. The released

dataset shows a broader demographic and extended data duration compared to the observations subset.

1. Object detection (person/bed/chair): based on the YOLOv4

architecture (Bochkovskiy et al., 2020), the model identifies key

objects in each frame, including “person”, “bed”, and “chair”.

Training models were initialized using COCO weights (Lin

et al., 2014), then fine-tuned on labeled data. Input images were

down-sampled to 608× 608 with OpenCV’s cubic interpolation

method to fit model requirements. Since the models operate

with a smaller fixed input size, increasing the resolution of input

images would not significantly improve detection performance

unless alternative patch-based approaches were considered.

Additionally, the impact of input size on detection accuracy

has been well-documented in the original YOLOv4 manuscript,

which demonstrated stable performance across various input

sizes. Training was conducted on NVIDIA 3070 GPU, and

models were subsequently converted for execution on the

Rockchip RKNN embedded in the LVU devices.

2. Person classification (patient/staff/other): during object

detector training, bounding box labels were augmented to

classify detected persons by role (“patient”, “staff”, “other”).

Then, at inference time, each “person-” bounding box are

re-labeled as “person”, with the specific role saved in a separate

classification field. Confidence scores for role classifications

are derived by taking the highest detection confidence as the

primary class and distributing residual scores across remaining

classes to indicate potential alternate roles.

3. Optical flow (motion estimation): motion between frames

was estimated using the Gunnar-Farneback dense optical flow

algorithm, which calculates horizontal and vertical displacement

for each pixel (Farnebäck, 2003). Optical flow inputs were

converted to grayscale and down-sampled to 480x270 to ensure

real-time execution. For each region of interest, average motion

magnitude was calculated by averaging horizontal and vertical

flow vectors, providing an indicator of activity intensity. This

estimation does not require training and was implemented using

OpenCV with fixed parameters: pyramid scale (pyr_scale = 0.5),

number of pyramid levels (levels=3), window size (winsize = 15),

number of iterations (iterations=3), size of pixel neighborhood

used to find polynomial expansion (poly_n = 5), and the
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FIGURE 3

Dataset overview and timeline of model updates. Progression of

data collection and model updates for the LookDeep Health

monitoring system. Single-frame analysis data collection spans a

two year period—a broad temporal range for training and validation

of object detection and classification tasks. Observation logging

data, used for trend validation, was collected over a one year period.

The publicly released dataset includes data from a more recent six

month period, representing over 1,000 collective patient days.

Model updates are indicated by numbered points.

standard deviation of the Gaussian used to smooth derivatives

(poly_sigma = 1.2).

2.3.1 Additional components
2.3.1.1 Regions of interest (ROIs)

ROIs, such as “safety zones”, provide contextual boundaries

for monitoring. They are not predictive outputs themselves, but

instead are used to track patient movements and boundary

crossings. The “safety zone” was a polygonal region defined by

the virtual monitor; its pixel mask is generated by expanding

the boundary perimeter by 10% to ensure effective monitoring.

Additional ROIs used by the system include the full scene and the

detected bed.

2.3.1.2 Logical predictions

Logical predictions summarize patient status and interactions.

These predictions were derived from a combination of object

detection and role classification results and smoothed with a 5-

second filter to mitigate intermittent detection errors.

• Person alone: True when the average number of detected

people in the room is less than two.

• Patient alone: True when the average number of detected

people in the room is less than two, and at least one person

is classified as a patient.

• Supervised by staff: True when the average number of

detected people in the room is two or more, and at least one

person is classified as healthcare staff.

2.3.1.3 Trend predictions

Trends provide insights into immediate and long-term patient

activity, aiding in risk identification and care planning. Hourly

trends summarize patient behavior (e.g. “alone” or “moving”) based

on aggregated logical predictions. For each one-hour interval,

predictions were used to calculate the percentage of time the patient

spent in key states like “alone,” “supervised by staff,” or “moving”.

These percentages were then plotted over time to visualize hourly

trends in patient isolation or activity levels throughout the day.

These trends provide a high-level overview of patient behavior,

aiding in the identification of potential risks and informing care

decisions.

2.3.1.3.1 “Assisted” trend predictions

A one-off analysis was conducted to simulate the system’s

performance when one of the predictions was known. The system’s

trend predictions based solely on AI inference were compared

with those generated using a combination of AI inference and

observation logs. For this comparison, “assisted” trends were

created by integrating AI-predicted states for “moving” and

“supervised by staff” withmanually logged periods of “alone” status

from the observation logs. This analysis was conducted across

the multiple patients and hospitals included in the “Observation

Logging” dataset.

2.4 Evaluation

The performance of the AI-driven monitoring system was

assessed through two primary methods: image-level assessment

and comparison against observation logs. In the image-level

assessment, each frame was analyzed against manual annotations

to evaluate the accuracy of the system’s object detection, person-

role classification, and scene interpretation capabilities. In parallel,

observation logs, created from anonymized video summaries of

select patients, were compared against predicted trends to assess the

system’s ability to capture patient behavior patterns.

2.4.1 Frame-level analysis
Each model in the AI system was evaluated independently to

assess its performance in object detection and classification tasks.

Key performance metrics—precision, recall, and F1-score—were

calculated to measure the accuracy and reliability of each model’s

predictions. Precision assessed the proportion of true positives

among all predicted positives, recall measured the ability to identify

all true positives, and the F1-score provided a balanced metric

between precision and recall.

In addition to these direct object detection and classification

tasks, the AI system also generated higher-level, “logical”

predictions derived from these outputs. For example, the prediction

“is patient alone” was inferred based on a combination of object

detection results, such as the absence of healthcare staff within

a defined proximity to the patient. These logical predictions

were treated as classification tasks themselves, with their accuracy

similarly evaluated using precision, recall, and F1-score metrics

based on labeled image data. This multi-layered approach allowed

us to thoroughly validate both the core object detection functions

of each model and the system’s ability to interpret and apply these

outputs to patient monitoring tasks.
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FIGURE 4

Real-time object detection, motion analysis, and patient status monitoring. Top-left: Object detection with bounding boxes identifying key elements

in the scene. Top-right: Segmentation map, where red represents the designated safety zone and green indicates detected motion. Middle: The

“alone” logical trend over time, showing whether the patient was detected alone in the room for every second within the hour. Peaks indicate periods

when the patient was unaccompanied, while lower values indicate caregiver presence. Bottom: The “alone” trend over a 24-hour period, aggregated

for each hour. This visualization highlights patterns in patient supervision throughout the day. The black markers in the middle and bottom rows

correspond to the timestamp of the video frame shown in the top row.

2.4.2 Trend analysis
Trend analysis was conducted by comparing the system’s

inference-derived metrics to ground truth metrics recorded in

observation logs, with both datasets aggregated by patient-day.

Unlike the hourly trends shown in Figure 4, analysis was conducted

at the per-second level to ensure accurate alignment between

AI predictions and observation logs. The primary metric for

this analysis was logistic regression accuracy, which assessed the

AI system’s ability to predict observed behaviors within three

time periods: daytime (6 am to 9 pm), nighttime (9 pm–6 am),

and the full 24-hour period. In cases where only a single class

(e.g. “alone” or “not alone”) was present within a specific time

period, logistic regression was not feasible. Instead, a manual

accuracy score was computed, to allow for consistent accuracy

measurements across all time intervals. This score is defined as

the proportion of matching values between the AI predictions and

ground truth.

Focusing on the “alone” binary behavior trend enables

an assessment of the alignment between AI predictions

and real-world observations. This analysis validated the AI

system’s effectiveness in capturing hourly patient behavior

trends, underscoring its potential utility in real-time

patient monitoring and early detection of deviations from

expected patterns.

2.4.3 Camera position meta-analysis
Since cameras were mounted on mobile carts rather than fixed

positions, there was variability in camera setup across patients and

hospital rooms (Figure 4B). To explore the potential impact of

this variability, labeled bed locations were used to estimate each

camera’s position relative to the hospital bed. Distributions of the

labeled bed area and size within each frame, along with the centroid

location of the bed relative to the camera’s field of view are plotted

in Figure 7. These distributions provide an indirect measure of

camera position.

This exploratory analysis helped identify patterns and

variations in camera setups across different monitoring sessions.

However, this information was observational and used only

to understand positional variability; no specific adjustments

were made during model training or evaluation to account for

different camera positions. The results underscore the robustness

of our models in handling diverse camera perspectives, as the

system maintained consistent detection performance despite

these variations.
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FIGURE 5

Camera setup and example frames. (A) LookDeep Video Unit (LVU), a 6” x 6” device, in various mounting configurations. (B) A 3 × 3 grid of

representative frames captured by the system, showing a diversity of configurations. All images are intentionally blurred to maintain privacy. Each

numbered frame provides a unique example that is found in Figure 7.

3 Results

3.1 Frame-level analysis

3.1.1 Object detection, role identification, and
patient isolation classification

The evaluations demonstrated that the custom-trained

computer vision models perform robustly in real-world hospital

settings, achieving high precision across key object detection

and classification tasks. We compared five production models

alongside a baseline model using an off-the-shelf YOLOv4

configuration (Table 1). Each production model corresponds to

a different release, with progressively larger and more refined

training datasets incorporated over time (Figure 3). This iterative

refinement led to increased model accuracy and adaptability in

real-world hospital settings. To ensure consistency, all frame-level

analysis was conducted on 10,000 frames collected over a two year

period. This representative sample, excluded from model training

and validation, highlights the incremental improvements achieved

by expanding training datasets across model versions.

As newer models were released, the training set was expanded

to include additional annotated data, allowing each successive

model to capture more complex and diverse scenarios encountered

in hospital environments. The most recent fine-tuned model (v5)
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achieved an F1-score of 0.91 for detecting “person”, notably

surpassing the baseline YOLOv4 model score of 0.41 (Table 2).

Across all object classes–including beds, furniture, and other

room elements–the v5 model demonstrated an F1-score of 0.92,

reflecting a high degree of accuracy and consistency across diverse

object types.

In addition to object detection, the system was evaluated on a

three-class person-role classification task, distinguishing between

patients, healthcare staff, and visitors within the camera’s field of

view. The v5 model demonstrated particularly strong performance

for the “patient” class, achieving an F1-score of 0.98, which reflects

FIGURE 6

Manually labeled image with observation log alignment. The bed is

highlighted with a blue bounding box. The patient, identified as a

“Person” with the role “Patient”, is highlighted with a red bounding

box. The associated observation log for “Alone” is shown for

illustrative purposes.

its high accuracy in identifying patients specifically (Table 2).

Accurate person-role classification is essential for monitoring

patient interactions and ensuring appropriate caregiving behaviors,

as it enables the system to capture not only the presence of

individuals but also their roles. Focusing on the “patient” class,

the high F1-score underscores the model’s robustness in tracking

patient activity and interactions, which are critical for effective

continuous monitoring in dynamic hospital environments.

The downstream classification task of identifying whether a

patient was “alone” in the room showed similarly strong results,

with the v5 model achieving an F1-score of 0.92 (Table 2).

This classification task, essential for monitoring patient isolation,

consistently improved with each new production release, as more

comprehensive training data contributed to better model accuracy.

These results confirm the advantage of iterative model refinement

TABLE 1 Performance metrics of successive model versions for object

detection.

Model version Fine-tuning
data size

Object detection (all)

Precision F1

YOLOv4 (baseline) n/a 0.84 0.59

Model v1 (2022 Q1) +700 0.97 0.74

Model v2 (2023 Q2) +2,474 0.98 0.83

Model v3 (2023 Q3) +10,133 0.97 0.83

Model v4 (2024 Q1) +28,914 0.98 0.91

Model v5 (2024 Q2) +34,239 0.97 0.92

Summary of precision and F1-scores across different versions of the LookDeep Health AI

model, highlighting improvements in key tasks as the training data increased. The baseline

YOLOv4 model demonstrates initial performance levels, while successive versions (Models

v1 to v5) show incremental gains in object detection. With each model iteration, higher

precision and F1-scores indicate enhanced detection accuracy and classification reliability,

underscoring the impact of additional data and model refinement on real-time patient

monitoring capabilities. Evaluation was performed on a fixed dataset containing 10k images.

FIGURE 7

Distribution of labeled bed positions relative to the camera. Left: Spatial variability of bed center coordinates. Right: Distribution of bed area vs. bed

angle relative to the camera. Each numbered point is shown in Figure 5B. This highlights the variations in camera perspective and placement across

the study.
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TABLE 2 Performance metrics of successive model versions for object detection (person), role classification, and “patient alone” classification.

Model version Object detection (person) Role classification “Patient alone” classification

Precision F1 (patient F1) (F1)

YOLOv4 (baseline) 0.98 0.41 n/a 0.28

Model v1 (2022 Q1) 0.98 0.85 n/a 0.86

Model v2 (2023 Q2) 0.97 0.89 n/a 0.91

Model v3 (2023 Q3) 0.97 0.86 0.97 0.88

Model v4 (2024 Q1) 0.97 0.91 0.98 0.94

Model v5 (2024 Q2) 0.96 0.91 0.98 0.92

Additional results corresponding to Table 1 are presented here, focusing on object detection of persons, role classification, and “patient alone” classification tasks.

TABLE 3 Performance comparison of models on unblurred vs. face-blurred images across versions.

Model version Evaluation data size Unblurred images Face-blurred images 1 F1

(F1) (F1)

Model v3 (2023 Q3) 2,135 0.81 0.85 +0.04

Model v4 (2024 Q1) 1,809 0.86 0.90 +0.04

Model v5 (2024 Q2) 1,226 0.89 0.91 +0.02

Evaluation of model performance on unblurred and face-blurred images across different versions. The F1-score measures the model’s performance, with the “1 F1” column showing the gap

between unblurred and face-blurred images. A 1 value closer to 0 indicates better consistency in model performance between unblurred and face-blurred images.

and dataset expansion, with each production release yielding

models that are better adapted to the variability and demands of

real-world hospital settings.

3.1.2 Impact of privacy-preserving blurring on
model consistency

The performance consistency of the models across unblurred

and face-blurred images was evaluated using the 1 metric, which

represents the F1-score difference between the two image types

(Table 3). Across all model versions, the 1 values were relatively

small, indicating that face-blurring–a common privacy-preserving

preprocessing step–had minimal impact on model accuracy. For

versions v3 and v4, the 1 value was +0.04, while in v5 it decreased

to +0.02, suggesting improved robustness to blurring as the training

data volume increased.

A smaller 1 value is desirable as it indicates that the

model performs consistently regardless of whether the images are

unblurred or face-blurred. The reduction in 1 for v5 highlights

the value of larger, more diverse training datasets in ensuring that

the models generalize well across different image types. This is

particularly important in hospital settings, where preserving patient

privacy often necessitates the use of face-blurred images. The ability

to maintain high accuracy in such scenarios ensures the system’s

practicality and reliability for real-world deployment.

These results demonstrate that the models not only achieve

high accuracy but also exhibit resilience to variations introduced

by privacy-preserving preprocessing, a key requirement for scalable

applications in healthcare environments.

3.1.3 Object detector performance by IR mode
We analyzed the impact of IR mode on object detection

performance by comparing F1-scores across different model

versions, broken down into all data, IR-on data, and IR-

off data (Figure 8). Results demonstrate a clear trend of

increasing F1-scores with newer model versions across all

conditions. Notably, the performance gap between IR-on and

IR-off scenarios decreases with successive model iterations,

indicating improved model robustness to variations in

lighting conditions.

At baseline, object detection performance in IR-on scenarios

lagged significantly behind IR-off scenarios. However, with the

latest model version, this gap narrowed substantially, suggesting

that additional training data and model refinements have enhanced

the system’s ability to generalize across lighting conditions.

Despite these improvements, it is worth noting that the test set

contains an approximate 25:75 ratio of IR-on to IR-off frames,

whereas the population average is closer to 40:60. This imbalance

may partially account for residual performance differences

and highlights the need for more balanced representation in

future datasets.

These findings underscore the importance of accounting

for lighting variability in real-world hospital environments and

demonstrate the system’s potential to adapt to challenging

conditions such as low-light monitoring.

3.2 Trend analysis

Inference-derived trends for the “patient alone” metric were

compared against observation logs to evaluate the system’s ability

to accurately capture real-world patterns (Figure 9). This trend

analysis utilized data from earlier stages of the project when base

models with lower performance were deployed. Specifically, the

object detectors used for these inferences had an F1-score of

0.85 for “person” detection, which is lower than the performance

of the latest models. Despite this, the analysis showed strong
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FIGURE 8

Object detection F1-score by model version and infrared (IR) mode. Model performance is shown across successive model versions for all data (solid

line), IR-o� data (dashed line), and IR-on data (dotted line). The performance gap between IR-on and IR-o� modes narrows with more recent model

iterations, highlighting increased robustness to varying lighting conditions. Notably, the test set comprises a 25:75 ratio of IR-on to IR-o� frames,

while the population average is closer to 40:60.

alignment with ground truth data, achieving an average logistic

regression/manual accuracy of 0.84 ± 0.13 during daytime, 0.80

± 0.16 at nighttime, and 0.82± 0.15 across all times. These results

highlight the robustness of the AI system in capturing patient

isolation trends, even when using earlier model versions with lower

baseline performance.

This accuracy indicates that, even with slightly reduced

detection precision in the older models, the system could reliably

capture general patterns in patient isolation behavior. The standard

deviation (± 0.15) reflects some variability in accuracy across

different times of day and patient conditions, possibly influenced

by factors such as changing camera angles or environmental

conditions. As shown in the normative hourly trends (Figure 10),

discrepancies between labeled and AI-inferred “alone” data are

more pronounced during nighttime hours, but these differences

have minimal impact on the broader trend patterns. For both

“Alone and Moving” and “Supervised by Staff” metrics, the

AI inferences closely align with label-assisted data, amounting

to an average error of 1–2 min per hour. This consistency

underscores the model’s robustness in capturing meaningful

patient-alone trends and suggests that any nighttime performance

gaps in the “alone” inference do not significantly compromise the

overall accuracy. These results highlight the model’s potential for

improved trend detection as newer, refined models are applied to

subsequent data.

4 Discussion

4.1 Implications for clinical practice

The findings of this study underscore the potential for AI-

enabled patient monitoring systems to enhance clinical practice

through continuous, real-time monitoring. Traditional in-person

observations are limited by the time constraints of healthcare staff,

who spend limited hours directly interacting with each patient. By

providing continuous monitoring, the LookDeep Health platform

enables staff to detect patterns that would otherwise go unnoticed,

such as extended periods of patient isolation, movement patterns

that might indicate a risk of falls, pressure injuries, or irregular

interactions with staff. Real-time alerts based on these observations

could prompt timely interventions, potentially improving patient

safety and outcomes.

Moreover, the data collected by this system can inform

trend analysis on a population level, supporting hospital resource

allocation and staffing decisions. For instance, identifying times

of day when patients are frequently unsupervised could guide

adjustments in staffing or the deployment of additional monitoring

resources to high-risk patients. Beyond staffing, the system’s

insights into patient mobility patterns–such as time spent in bed,

in a chair, or walking around the room–can help identify markers

of successful recovery and readiness for discharge, contributing
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FIGURE 9

Comparison of average minutes alone per hour across all patients, a

typical patient, and an atypical patient. The average minutes patients

spent alone per hour, comparing ground truth (black squares) and AI

inference (red triangles) across three scenarios: all patients (top), a

typical patient (middle), and an atypical patient (bottom). The x-axis

shows the hour of the day, while the y-axis indicates the average

minutes alone per hour. The shaded region represents nighttime

hours (9 pm–6 am). For all patients, AI inference closely aligns with

ground truth during the day but shows less accuracy at night. An

example of a typical and an atypical patient is shown to illustrate the

variability in alone time patterns across individual patients. Unlike

average trends, this atypical patient exhibits an overprediction of

alone time at night, highlighting the need for further model

refinement to capture individual patient behaviors accurately.

to improved patient outcomes. These mobility insights could also

support the development of best practices for post-procedure

mobility, tailored to specific surgeries or treatments, to enhance

patient recovery. Altogether, these data-driven insights promote a

more efficient, personalized approach to patient care, potentially

improving patient satisfaction and clinical outcomes.

4.2 Impact of face-blurring on model
performance

While the evaluation of model performance on both unblurred

and face-blurred images provides valuable insights, it is important

to note that face-blurring is applied only during training and

FIGURE 10

Average trends for all observed patients. Hourly trends are

compared across two metrics: alone and moving (top) and

supervised by sta� (bottom). Fully AI-inferred data (“Inference Only”)

is plotted with red triangles. “Assisted” data (“+Labels”) is plotted with

blue circles—for these data, ground truth “alone” status was used

instead of AI-inference. The x-axis indicates the hour of the day,

while the y-axis shows the average minutes per hour. The shaded

region represents nighttime hours (9 pm–6 am). Although there is a

discrepancy between labeled and inferred data for Alone,

particularly during nighttime hours, the downstream impact on

overall trend accuracy appears minimal (1–2 min per hour).

evaluation phases. In real-world deployment, the model will

encounter unblurred images as it monitors patients in hospital

settings, making this distinction critical to understanding its

practical performance. The small1 values observed across different

model versions indicate that the models have been designed to

handle face-blurred images without significant degradation in

performance. The reduced1 in the latest version (v5), attributed to

increased training data volume, demonstrates improved resilience

to face-blurring. However, further studies are needed to assess

the model’s performance in unblurred scenarios, particularly

in environments where face-blurring images for training and

evaluation is not an option. This approach ensures privacy during

development while maintaining practical deployment fidelity, as

real-time monitoring operates on unblurred frames.

4.3 Variation in camera setup

The LookDeep Health patient monitoring platform was

deployed in real-world hospital settings with cameras mounted

on mobile carts rather than fixed positions, resulting in variation

in camera angles, distances, and perspectives across different

patient rooms. This variability introduced potential challenges in

maintaining consistent object detection and classification accuracy,

as model performance can be influenced by changes in camera field

of view and positioning relative to the bed. Tomitigate these effects,

we conducted a camera position meta-analysis using metadata on

labeled bed area and centroid location to estimate the approximate
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camera placement within each room. Our analysis confirmed that,

despite positional differences, the model consistently achieved

reliable performance across object detection and classification

tasks, demonstrating its robustness to spatial variability. However,

this setup presents limitations in controlling for optimal camera

positioning, a factor that future studies with standardized camera

setups could explore further to minimize variability and enhance

model reliability.

4.4 Nuanced di�erences in time coverage
of analyses

A key aspect of this study is the variation in time coverage

across different datasets, reflecting the evolving nature of data

collection and model validation in real-world hospital settings.

The observation logs dataset, which provided ground truth for

logical trend validation, was collected exclusively in 2023. In

contrast, frame-level annotations for evaluating object detection

and person-role classification were gathered over a more extended

period from 2022 to 2024. Additionally, the publicly released

dataset comprises data collected from a 6 month span across

2024, representing over 1,000 collective patient days across

multiple hospitals.

These differences in collection periods introduce nuances

in interpretation. For instance, frame-level evaluations benefit

from the broader time span, capturing a variety of hospital

conditions and patient behaviors across seasons and changing

workflows. However, trend analyses were constrained to the

observation log time frame, which may limit the ability to

generalize trends across the entire study period. Similarly, the

released dataset reflects data from the latter phase of the study,

aligning with the most refined models but excluding early-stage

model iterations.

These variations in time coverage highlight the need to

contextualize each analysis within its specific time frame. Future

studies could benefit from aligning data collection periods across

all evaluation methods, ensuring that models validated on frame-

level tasks are continuously validated against trend and behavioral

analyses for consistent performance insights over time.

4.5 Challenges and limitations

Several challenges and limitations were encountered in this

study. First, the variability in camera setup, as mentioned earlier,

introduces potential inconsistencies in model performance due to

changing perspectives and distances. While our metadata analysis

mitigated this to some extent, a standardized camera setup would

likely yield more consistent results.

Second, while the LookDeep Health system demonstrated

strong performance in object detection and role classification,

real-time video processing presents computational challenges that

require balancing accuracy and processing speed. Our use of

onboard CPU and NPU on LVU devices provided sufficient

processing capabilities for 1 fps inference; however, the scalability of

such a setupmay be constrained in larger hospital systems requiring

higher frame rates for finer details.

Third, the dataset collected in this study primarily consists

of high-risk fall patients, which may limit the generalizability of

findings to broader patient populations - for example, high-risk

patients exhibit limited mobility compared to other patient groups.

Additionally, the analysis was conducted on older model versions

for some trend analyses, potentially lowering the accuracy of trend

detection. Although model refinements are expected to improve

results, these differences in model versions should be considered

when interpreting the findings.

Lastly, maintaining patient privacy is paramount in

continuous video monitoring systems. While the LookDeep

Health platform anonymizes all video and stores de-identified

data, ongoing attention to data privacy and compliance with

healthcare regulations is essential for future deployments in

clinical environments.

4.6 Suggestions for future research

While this study provides a foundation for understanding

the impact of AI-driven patient monitoring, further research is

warranted to explore additional facets of this technology. Future

studies could investigate:

• Enhanced edge case handling: expanding training datasets

to include more examples of diverse scenarios, such as low-

light conditions and atypical patient behaviors, could improve

model robustness in challenging environments.

• Advanced deep learning techniques: integrating more

sophisticated deep learning architectures like transformer-

based architectures or temporal models could enhance

the detection of subtle anomalies, while adaptive pipelines

could improve real-time robustness in dynamic hospital

environments.

• Refining architectures and guardrails: future work could

involve refining architectures to detect edge cases more

accurately, tracking patterns in prediction errors, and

incorporating confidence-based guardrails to prevent

catastrophic failures. Such guardrails could include alerts

when model confidence is unexpectedly low for consecutive

predictions.

• Higher frame rates and computational scaling: evaluating

the potential for higher frame rates or adaptive frame rate

technology to improve real-time responsiveness, particularly

in high-activity environments.

• Standardization of camera placement: testing standardized,

fixed camera setups across patient rooms aims to minimize

positional variability and improve model consistency.

Although standardization can reduce variability, embracing

the inherent diversity of setupsmay enhancemodel robustness

for real-world applications.

• Expanded patient cohorts: extending the analysis to include a

wider range of patient demographics and conditions to assess

generalizability and adapt the system to diverse populations.

• Interoperability with hospital systems: future iterations of

the system could integrate more seamlessly with hospital
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workflows by automating real-time alerts that directly sync

with electronic health record (EHR) systems. For example,

patient-specific alerts could be tagged to relevant EHR fields,

enabling clinicians to view contextual video data alongside

medical records. Additionally, the system could support

interoperability with existing hospital tools, such as nurse

call systems, to streamline the clinical response to high-risk

situations.

These research directions, alongside continued refinement of

computer vision models and monitoring systems, will be essential

for advancing the practical application of AI in patient monitoring

and driving further improvements in healthcare delivery.

5 Conclusion

AI integration in medical imaging is advancing personalized

patient treatment but still faces challenges related to effectiveness

and scalability. This work demonstrates the potential of computer

vision as a foundational technology for continuous and passive

patient monitoring in real-world hospital environments.

The contributions of this study are two-fold. First, we

introduce the LookDeep Health patient monitoring platform,

which leverages computer vision models to monitor patients

continuously throughout their hospital stay. This platform scales

to support a large number of patients and is designed to handle the

complexities of hospital-based data collection. Using this system,

we have compiled a unique dataset of computer vision predictions

from over 300 high-risk fall patients, spanning 1,000 collective days

of monitoring. To encourage further exploration in the field, we

released this anonymized dataset publicly at https://github.com/

lookdeep/ai-norms-2024.

Second, we rigorously validated the AI system, demonstrating

strong performance in image-level object detection and person-role

classification tasks. Our analysis also confirms a positive alignment

between inference-derived trends and human-observed behaviors

on a patient-hour basis, underscoring the reliability of the AI

system in capturing patient activity trends. This evaluation can

serve as a benchmark for future studies, providing a standard

set of criteria for assessing the performance of AI-driven patient

monitoring systems.

The extensive dataset and rigorous validation of the LookDeep

Health platform highlight the feasibility and impact of continuous

patient monitoring through video. By offering real-time insights

into patient activity and isolation patterns, continuous monitoring

has the potential to reduce fall risks by alerting staff to high-risk

situations as they unfold. Beyond improving patient safety, these

insights support more efficient staffing and resource allocation,

allowing hospitals to adjust care based on real-time patient needs.

This predictive capability also aids administrators in managing

bed occupancy and optimizing patient flow, particularly during

peak times, thus enhancing the responsiveness, efficiency, and

scalability of the healthcare system. This work paves the way for

future advancements in AI-driven healthcare solutions, promising

scalable, data-informed insights to elevate patient care and

hospital management.
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