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Recognition of pathogen-associated carbohydrates by a broad range of carbohydrate-
binding proteins is central to both adaptive and innate immunity. A large functionally diverse
group of mammalian carbohydrate-binding proteins are lectins, which often display calcium-
dependent carbohydrate interactions mediated by one or more carbohydrate recognition
domains. We report here the application of molecular docking and site mapping to study
carbohydrate recognition by several lectins involved in innate immunity or in modulating
adaptive immune responses. It was found that molecular docking programs can identify
the correct carbohydrate-binding mode, but often have difficulty in ranking it as the best
pose. This is largely attributed to the broad and shallow nature of lectin binding sites, and
the high flexibility of carbohydrates. Site mapping is very effective at identifying lectin
residues involved in carbohydrate recognition, especially with cases that were found to be
particularly difficult to characterize via molecular docking.This study highlights the need for
alternative strategies to examine carbohydrate–lectin interactions, and specifically demon-
strates the potential for mapping methods to extract additional and relevant information
from the ensembles of binding poses generated by molecular docking.
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INTRODUCTION
Recognition of pathogens by the innate immune system involves
a multitude of cellular receptors and secreted proteins that can be
broadly classified as pattern recognition receptors (PRRs), which
have inherent specificities for pathogen-associated molecular pat-
terns (PAMPs). Within the PAMPs there are a diversity of carbohy-
drates that are either unique to the pathogen or share similarities
to autologous or “self” carbohydrates of the host (e.g., Lewis type
histo-blood group carbohydrates; Yuriev et al., 2005). In humans,
like other mammals, PRRs include the Toll-like receptors that often
have specificity for both carbohydrates and non-carbohydrate
PAMPs. There is also a diversity of carbohydrate-binding proteins
(lectins) that have roles both in innate immunity as PRRs and
in modulating adaptive immunity. Lectins functioning as PRRs
often contain multiple carbohydrate recognition domains and are
subdivided into the C-type lectins, galectins, and siglecs and are
further grouped within these families according to their sequences,
structures, molecular locations, and fine specificities (Kerrigan and
Brown, 2009; Sato et al., 2009; Dam and Brewer, 2010).

As a group, lectins have been shown to be structurally diverse
and adopt a wide range of folds (Gabius, 2008). Despite this,
lectins from different species have been demonstrated to bind
to the same carbohydrate, often utilizing similar mechanisms of
recognition (Yuriev et al., 2009). However, lectins may recognize
multiple carbohydrates either through the same binding site or
by the assembly of closely related monomeric structures. As dis-
cussed later in this manuscript, several mammalian C-type lectins,

such as DC-SIGN and human lung surfactant protein D (SP-D),
have quite shallow binding sites which permit the recognition of
multiple types of glycans. Galectins, of which there are at least
15 in mammals, bind β-galactose residues usually in the form of
N -acetyllactosamine-containing glycans found in many pathogen
and host glycoproteins and glycolipids (Rabinovich and Toscano,
2009). Siglecs bind to sialic acid residues often displayed at the
termini of a range of complex glycan structures in pathogen and
host molecules and play a multitude of roles in adaptive and innate
immunity (Crocker et al., 2007).

While the role of lectins in innate immunity is to recognize and
defend against invading pathogens, occasionally through adopt-
ing or mimicking carbohydrates of the host, pathogens can gain
entry into cells and establish infection. For example, the high
mannose shield of the HIV envelope glycoprotein binds to DC-
SIGN as the first step in HIV invasion of dendritic cells and some
macrophages (Hertje et al., 2010). The same type of interaction
with langerin, a C-type lectin restricted to Langerhans cells, trans-
fers HIV to the intracellular Birbeck granules for degradation and
clearance (Van Der Vlist and Geijtenbeek, 2010). Similar to DC-
SIGN and langerin, cell membrane-associated lectins are often
involved in phagocytosis of pathogens for elimination or pro-
cessing for antigen presentation (Kerrigan and Brown, 2009). In
addition, secreted lectins (e.g., some of the galectins and SP-D) are
typically involved as soluble PPRs in blocking pathogen invasion
of the host and mediating signaling pathways, such as the lectin
complement activation pathway (Wallis et al., 2010).
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The large amount of carbohydrate–lectin functional and inter-
action data that is being generated by major international gly-
comics efforts has led us to pursue computational strategies to
both augment the existing structural knowledge and to provide
new insights into the structural aspects of carbohydrate recogni-
tion by lectins. In this regard, computational (in silico) techniques
are particularly useful. Homology modeling can be used to gen-
erate the structure of a lectin in the absence of an experimentally
determined structure. Molecular docking can be used to inves-
tigate carbohydrate recognition by a lectin where that particular
carbohydrate–lectin complex is unavailable. Molecular dynamics
can be used to study the movement of the protein over time,
and how this movement affects ligand binding. We previously
developed a site mapping technique to investigate carbohydrate–
antibody recognition (Agostino et al., 2009b). The technique
considers multiple binding modes obtained from molecular dock-
ing (thereby considering the dynamic behavior of the system) in
order to identify the most likely interacting residues of the pro-
tein. We have also developed ligand-based mapping techniques,
specific for carbohydrates, which, in combination with site map-
ping output, were used to determine likely carbohydrate–antibody
complexes (Agostino et al., 2010). The combination of site- and
ligand-based mapping procedures allows us to “score” individ-
ual carbohydrate poses, and therefore determine the likelihood of
observing a particular pose.

In this study, we extend our previous in silico work in studying
carbohydrate–antibody recognition to carbohydrate–lectin recog-
nition. Specifically, we investigate the application of molecular
docking and site mapping to key carbohydrate–lectin systems
(galectins, DC-SIGN, langerin, and SP-D), for which high quality
crystal structures as complexes with carbohydrates were available.
Our results demonstrate that docking algorithms can identify
the correct binding modes, but cannot effectively score them.

Site mapping offers substantial improvements in interaction pre-
diction compared to the top ranked pose. The computational
approach described alongside future developments should be gen-
erally applicable for investigating carbohydrate recognition by
lectins involved in innate immunity.

MATERIALS AND METHODS
SELECTION AND PREPARATION OF TEST SYSTEMS
A series of 15 high resolution (≤2.0 Å) human-derived
carbohydrate–lectin complexes were selected from the Protein
Data Bank (Table 1). For multimeric structures, only a single
monomer was used (Table 1) and all other chains were removed
from the structure. Once reduced to the appropriate monomer,
the structures were prepared using the Protein Preparation Wiz-
ard workflow implemented in Maestro 9.1. All water molecules
were removed from the structure. Metal ions within the binding
site were retained. The Prime Refinement tool was used to predict
side chains for incomplete residues. Ligands were extracted from
the crystal structures within Maestro.

DOCKING PROGRAMS
Glide 5.6 (with Maestro 9.1; Friesner et al., 2004), Autodock 4.2
(with Autodock Tools 1.5.4; Morris et al., 1998), DOCK 6.4 (Lang
et al., 2009), and GOLD 4.1.1 (with Hermes 1.3.1; Verdonk et al.,
2003) were investigated. Rigid receptor docking was used for
all cases (i.e., induced-fit effects were not investigated). Default
options were used unless otherwise stated. In each case, the top
100 poses per ligand were retained, clustered using a root-mean-
square deviation (rmsd) threshold of 2.0 Å. The rmsd values were
calculated for each docked pose relative to crystal structure ligand
using the Superposition tool within Maestro. The pose for which
the lowest rmsd value was obtained was designated as the best
pose.

Table 1 | Carbohydrate–lectin complexes selected for the test set.

PDB code (chain ID)a Protein Ligandb Resolution (Å) Reference

1GZW (A) Galectin-1 Galβ(1 → 4)Glc 1.70 López-Lucendo et al. (2004)

1W6O (A) Galectin-1 Galβ(1 → 4)Glc 1.90 López-Lucendo et al. (2004)

1W6P (A) Galectin-1 Galβ(1 → 4)GlcNAc 1.80 López-Lucendo et al. (2004)

2ZKN (A) Galectin-1 Galβ(1 → 4)Glc 1.86 Nishi et al. (2008)

1KJL (A) Galectin-3 Galβ(1 → 4)GlcNAc 1.40 Sörme et al. (2005)

4GAL (B) Galectin-7 Galβ(1 → 4)Glc 1.95 Leonidas et al. (1998)

5GAL (B) Galectin-7 Galβ(1 → 4)GlcNAc 2.00 Leonidas et al. (1998)

1SL5 (A) DC-SIGN Galβ(1 → 4)[Fucα(1 → 3)]GlcNAcβ(1 → 3)Gal 1.80 Guo et al. (2004)

2IT6 (A) DC-SIGN Manα(1 → 2)Man 1.95 Feinberg et al. (2007)

3P5F (C) Langerin Manα(1 → 2)Man 1.75 Feinberg et al. (2011)

3P5G (A) Langerin Galα(1 → 3)[Fucα(1 → 2)]Gal 1.60 Feinberg et al. (2011)

3P5H (A) Langerin Glcβ(1 → 3)Glc 1.61 Feinberg et al. (2011)

1PWB (A) SP-D Glcα(1 → 4)Glc 1.40 Shrive et al. (2003)

2GGU (A) SP-D Glcα(1 → 4)Glcα(1 → 4)Glc 1.90 Crouch et al. (2006)

3G83 (A) SP-D Manα(1 → 2)Man 1.90 Crouch et al. (2009)

aProtein structures deposited in the Protein Data Bank often feature multiple related protein chains.The chain which appeared first alphabetically and which contained

the relevant carbohydrate structure in complex was used. bLigand abbreviations: Gal, D-galactose; Glc, D-glucose; GlcNAc, D-N-acetylglucosamine; Fuc, L-fucose;

Man, D-mannose.
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Glide
The grid box was centered at the ligand centroid and built using
default options. The ligand and protein were parameterized with
the OPLS force field. Docking was performed using standard preci-
sion mode. The option to sample ring conformations was disabled
in order to maintain the input conformation, and to prevent the
generation of unrealistic ring conformations. Poses were scored
using GlideScore.

Autodock
The Autodock Tools interface was used to generate the required
input files for Autodock. Gasteiger charges were added to the lig-
and and protein. The charge on metal ions was set to +2.0. The
grid box was centered at the ligand centroid. The genetic algorithm
(GA) parameters were modified to ensure thorough exploration
of conformational space and energetic convergence of each run.
Specifically, a modified set of parameters (Agostino et al., 2009b)
compared to those used previously for carbohydrates (Rockey
et al., 2000) were employed: 200 runs per ligand, population size
of 200 and 106 evaluations per run. All other GA parameters were
kept as defaults.

DOCK
AMBER FF99 charges were loaded for the protein using SYBYL-
X 1.0. Gasteiger–Marsili charges were calculated for the ligand.
Residues within 5.0 Å of the ligand were identified and surfaced
using the DMS tool. Normals were calculated for surface points (-n
option). The probe radius was set to 1.4 Å for surface preparation.
Spheres were generated using the SPHGEN_CPP tool with default
options and sphere clusters were converted to PDB format using
the SHOWSPHERE tool. The PDB format sphere clusters were
visualized using Maestro, and those which best represented the
binding site were selected for box generation. A grid box enclosing
the selected spheres was automatically generated using the SHOW-
BOX tool. An additional 5.0 Å margin was added in all directions,
to ensure that ligand poses could be well accommodated within the
box. For grid generation, the bump filter was used, with a bump
overlap of 0.75. For docking, the maximum number of orienta-
tions generated per ligand was set to 4000. A minimum anchor
size of five heavy atoms was used (rings are not sampled and are
therefore typically selected as anchors), and clash overlap was set to
0.75. These options are adapted from our earlier work in studying
carbohydrate–antibody and peptide–antibody recognition (Yuriev
et al., 2001, 2008).

GOLD
The Wizard within the Hermes interface was used to generate
the required input files for GOLD. The binding site was defined
using the centroid of the ligand. The binding site cavity was
automatically detected based on the input coordinates. The gold-
score_p450_csd configuration template was loaded and modified
as subsequently detailed. Ligands were subject to 200 GA runs,
resulting in 200 poses per ligand. Early termination of the dock-
ing run was permitted if the top two ranked poses were within an
rmsd of 2.0 Å of one another. The option to generate diverse solu-
tions was enabled. Diverse solutions were clustered to rmsd 2.0 Å.
The GA search options were set to very flexible (200% search effi-
ciency). To ensure retention of diverse solutions, the results from

the docking run were clustered using the CLUSTER script from
the Silico library (obtained from http://silico.sourceforge.net).

SITE MAPPING STUDIES
Site mapping was carried out for the 15 complexes according
to our previously published procedures using GOLD-generated
docking poses (Agostino et al., 2009b). The quality of the maps
was assessed using the metrics of reproduction and correctness,
which we have previously used to assess the quality of maps of
carbohydrate-recognizing antibodies (Agostino et al., 2009b). The
map reproduction is computed by dividing the number of crystal
structure interactions reproduced by the map by the number of
crystal structure interactions observed. Reproduction values close
to one indicate that the map is extremely successful at identifying
crystal structure interactions. The map correctness is computed by
dividing the number of crystal structure interactions reproduced
by the map by the total number of mapped interactions. Correct-
ness values close to one indicate that few additional interactions
are included in the map. Reproduction and correctness values
were also obtained for the top ranked docked pose in each case.
In these instances, the number of crystal structure interactions
reproduced by the top ranked docked pose and the total number
of interactions taking place in the top ranked docked pose were
used to compute reproduction and correctness values. Full details
of the ligand-contacting residues in the crystal structure, in the
top ranked pose, and in the site maps are available for each case in
the Appendix (Tables A1–A15).

RESULTS
EVALUATION OF MOLECULAR DOCKING FOR CARBOHYDRATE–LECTIN
INTERACTIONS
While the four docking programs evaluated were generally found
to identify reasonable carbohydrate poses in each case, the top
ranked pose was rarely found to be the best pose obtained by
any of the programs (Table 2). DOCK was able to correctly rank
the best pose in 6 out of the 15 cases, followed closely by Glide.
The failure to rank the best pose as the top pose in the major-
ity cases is most likely due to a scoring problem. However, for
Glide and, to a lesser extent, GOLD, the best poses were typically
found within the top 10 ranked poses. Autodock was generally
unable to accurately identify the correct pose. This kind of per-
formance discrepancy between Glide, GOLD, and Autodock has
been previously observed in both carbohydrate–antibody docking
(Agostino et al., 2009a) and carbohydrate–lectin docking (Nurisso
et al., 2008). In terms of pose prediction accuracy – regardless
of scoring/ranking – GOLD is clearly the best program, with an
average rmsd for the best poses of 1.4 Å compared to 2.2–2.7 Å
for the other three programs. This docking study highlights that
considering the top ranked docking pose alone is not suitable for
studying carbohydrate–lectin interactions. However, there were
specific cases where docking alone was successful, and also cases
where it was surprisingly unsuccessful. Examining these cases in
more detail allowed us to identify some of the specific successes
and shortcomings of the docking approach when applied to these
systems.

Carbohydrate recognition could be well reproduced by most
programs for at least a few of the galectin test cases (Table 2).
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Table 2 | Cognate docking performance for the test set.

rmsd Values (Å)

Glide GOLD Autodock DOCK

PDB code Topa Bestb Top Best Top Best Top Best

1GZW 7.6 2.7 (4) 6.3 1.0 (3) 3.5 2.5 (26) 1.2 1.2 (1)

1W6O 7.6 0.8 (6) 1.4 1.0 (3) 6.2 1.6 (6) 5.7 3.5 (19)

1W6P 0.6 0.6 (1) 1.2 1.2 (1) 5.3 2.6 (21) 7.2 5.4 (6)

2ZKN 7.4 4.9 (10) 1.9 0.7 (4) 4.7 2.9 (13) 1.2 1.2 (1)

1KJL 9.0 0.8 (2) 8.4 0.9 (5) 7.1 2.1 (16) 5.7 4.2 (21)

4GAL 0.9 0.9 (1) 7.3 1.1 (54) 5.8 3.0 (15) 0.9 0.9 (1)

5GAL 3.3 0.6 (9) 2.3 1.2 (4) 4.2 2.6 (12) 1.2 1.2 (1)

1SL5 5.3 5.3 (1) 8.5 6.0 (41) 5.5 2.7 (15) 6.6 3.5 (25)

2IT6 5.2 0.8 (2) 5.8 0.9 (4) 5.2 2.8 (11) 5.7 2.2 (28)

3P5F 5.4 3.9 (11) 5.8 0.9 (89) 5.0 3.2 (16) 5.3 3.5 (13)

3P5G 0.7 0.7 (1) 6.9 0.6 (6) 3.5 1.6 (2) 9.9 2.2 (15)

3P5H 3.5 3.4 (12) 4.2 1.7 (10) 3.3 3.1 (62) 2.2 2.2 (1)

1PWB 5.4 4.7 (2) 5.2 1.6 (51) 6.8 3.0 (10) 2.6 2.6 (1)

2GGU 2.0 2.0 (1) 8.5 1.0 (59) 5.3 1.6 (2) 3.8 2.9 (26)

3G83 5.7 1.4 (9) 7.6 1.8 (22) 3.8 2.3 (3) 5.6 3.3 (14)

Mean 4.6 2.2 5.4 1.4 5.0 2.5 4.3 2.7

aHighest ranked is referred to as the top pose. bThe pose achieving the lowest rmsd value relative to the crystal bound ligand is referred to as the best pose.The value

in parentheses is the rank of the pose in the docking results.

Specifically, carbohydrate recognition by galectin-1 was very accu-
rately reproduced by GOLD. In the crystallographic binding
modes obtained for ligands in complex with galectin-1, the ter-
minal galactose residue is sandwiched between His52 and Trp68
(Figure 1A). This placement of the galactose residue allows it to
interact with a range of polar amino acids in proximity to that por-
tion of the binding site. However, the placement of the ligand is
fairly shallow within the binding site. In addition, there is a region
adjacent to the binding site that appears able to accommodate

FIGURE 1 | Structural aspects of ligand recognition by galectins. (A)

Galectin-1 (PDB codes 1GZW, 1W6O, 1W6P, and 2ZKN, shown in red)
features a loop with a histidine residue (His52) which associates closely
with the ligand. The terminal galactose is bound between this histidine and
an opposite-facing tryptophan (Trp68), effectively sandwiched between the
two residues. Galectin-3 (PDB code 1KJL, shown in yellow) does not
feature the histidine residue, and the loop does not closely associate with
the ligand. In galectin-7 (PDB codes 4GAL and 5GAL, shown in blue), the
loop is considerably shortened from that of galectin-1 and galectin-3. (B)

Surface view of galectin-3, highlighting the crystallographically observed
binding site (red) and the alternative site to which ligands were typically
docked (yellow). Galectins-1 and 7 feature similar alternative sites. All
structures rendered using PyMOL. For figure (A), structures were overlaid
using Maestro.

ligands. In most of the programs, except for GOLD, the top scor-
ing pose was docked into this adjacent site (Figure 1B). This is not
unexpected, since docking algorithms generally aim to maximize
the contact surface and number of favorable interactions between
the ligand and receptor. Since the ligand is small enough that it
can be fully accommodated into this alternative space, and can
therefore form more interactions with the protein, such binding
modes are favored by scoring functions. In contrast to the other
docking programs, GOLD was successful in identifying the bind-
ing mode in three out of the four cases (PDB codes 1W6O, 1W6P,
and 2ZKN). This may be due to its better treatment of solvation
effects, or possibly due to a better consideration of enthalpic versus
entropic contributions to binding (Verdonk et al., 2005). It must
be noted that subtle changes in binding site organization can have
a large influence on docking success, as observed in the cases of
1GZW, 1W6O, and 2ZKN, all of which feature lactose binding to
galectin-1, but are reproduced with varying levels of success by
each of the programs.

Galectin-3 and galectin-7 do not feature the His-Trp sandwich
binding mode, as the histidine residue is absent from the loop.
Furthermore, as the loop has moved away from the bound carbo-
hydrate, the binding sites are considerably more open compared
to galectin-1, making accurate scoring by molecular docking quite
challenging. This is reflected in almost every program being able
to generate the correct binding mode for each of the three cases,
but in most cases failing to correctly rank them at the top of the
list (Table 2). DOCK was successful in ranking the best as the top
pose for the carbohydrate ligands of the two galectin-7 structures
(PDB codes 4GAL and 5GAL), suggesting that it correctly placed
the anchoring groups in these cases.
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The complex of Galα(1 → 3)[Fucα(1 → 2)]Galβ (B antigen)
with langerin (PDB 3P5G) was well reproduced by all of the pro-
grams, but was only correctly ranked by Glide (Table 2). The
binding site of langerin is very broad and shallow, although there
appears to be a number of potential subsites (Figure 2A). In the
crystal structure of the langerin:B antigen complex (Figure 2B), a
fucose-binding site and a galactose-binding site can be observed;
the fucose-binding site is formed by a cleft between Lys299 and
Ala289, and the α-galactose binds in a site formed by the loop from
Pro283 to Asn287. The β-galactose forms a bridge between the
two terminal residues and does not directly interact with langerin.
Another subsite formed by a cleft between Lys299 and Lys313 is
utilized to bind sulfated ligands (Feinberg et al., 2011). Despite the
shallow nature of the binding site, it should be possible to success-
fully dock ligands to langerin, assuming that the docking program
used can correctly identify where anchoring segments of the mol-
ecule should be placed. While all of the programs can do this,
only Glide successfully identified the correct pose. The Glide scor-
ing function was able to identify that the α-galactose and fucose
residues form an optimal set of interactions with their respective
subsites. The other programs have likely penalized such a binding
mode due to the β-galactose portion being exposed to the solvent,
failing to identify the importance of the interactions made by the
other two residues. While DOCK is successful at ranking the best
binding mode for Glcβ(1 → 3)Glc (PDB 3P5H), the pose itself is
quite distant from the crystal bound conformation, with an rmsd
of 2.2 Å.

The complex of Galβ(1 → 4)[Fucα(1 → 3)]GlcNAcβ(1 → 3)Gal
with DC-SIGN (PDB 1SL5) was not well reproduced by any
of the docking programs. This carbohydrate contains the Lewis
X trisaccharide, which, along with other Lewis antigens, is
known to be structurally rigid both bound and in solution
(Yuriev et al., 2005). Due to the structural rigidity of this
section of the molecule, the conformational search undertaken
during the docking procedure should find relatively few lig-
and conformations, and the problem should be largely reduced
to that of ligand orientation and placement. To determine
if this was indeed the case, we generated Ramachandran-
like plots for the Galβ(1 → 4)GlcNAc, Fucα(1 → 3)GlcNAc, and

FIGURE 2 | Carbohydrate-binding subsites of langerin. (A) Langerin has
three discernable subsites within its binding site, two of which are
demonstrated to be involved in carbohydrate recognition. Color guide:
blue – α-galactose-binding subsite, yellow – α-fucose-binding subsite,
green – potential additional binding site. (B) Langerin in complex with blood
group B antigen (Galα(1 → 3)[Fucα(1 → 2)]Galβ). Color guide: blue –
α-galactose, yellow – α-fucose, pink – β-galactose. Figures generated in
PyMOL using the langerin-B antigen complex structure (PDB code 3P5H).

GlcNAcβ(1 → 3)Gal linkages based on the docking results for each
program (Figure 3). It was found that the Galβ(1 → 4)GlcNAc
and the Fucα(1 → 3)GlcNAc linkages exhibited quite specific
conformational minima, which agreed with the experimen-
tal values of φ/ψ = −77.0/131.6˚ for Galβ(1 → 4)GlcNAc, and
φ/ψ = −53.4/−90.9˚ for Fucα(1 → 3)GlcNAc. The overall rigidity

FIGURE 3 | Ramachandran-like plots obtained for cognate docking to

PDB 1SL5. (A) Plot obtained for Galβ(1 → 4)GlcNAc linkage. (B) Plot
obtained for Fucα(1 → 3)GlcNAc linkage. (C) Plot obtained for
GlcNAcβ(1 → 3)Gal linkage. The φ/ψ angles were calculated for each linkage
in each pose given by each of the four programs. The angles were
calculated according to the IUPAC convention (Liebecq, 1992); for a given
1 → x linkage, φ is the dihedral of O5-C1-O1-Cx, and ψ is the dihedral of
C1-O1-Cx-Cx−1. Contour plots were generated using QTIPLOT. Color guide:
black – Glide, green – GOLD, red – Autodock, blue – DOCK. The crystal
structure angle is highlighted by a white diamond in each plot.
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of these linkages has been found in previous computational and
experimental investigations (Yuriev et al., 2005; Jackson et al., 2009;
Agostino et al., 2010). The GlcNAcβ(1 → 3)Gal linkage exhib-
ited broader minima, also in agreement with previous findings
(Jackson et al., 2009). The Ramachandran-like plots highlight
that Glide, GOLD, and DOCK can effectively identify appropri-
ate conformations of the Lewis X trisaccharide in the majority
of instances; the experimentally determined conformations occur
within the clusters obtained via the conformational search imple-
mentation of molecular docking. Autodock performed very poorly
in predicting the conformations of Lewis X. The crystallographic
conformation for the GlcNAcβ(1 → 3)Gal linkage was not well
reproduced by any of the docking programs. Although this part
of the molecule is not directly involved in binding in the crystal
structure, docking algorithms fit it into the binding site in a variety
of ways by rotating this linkage (Figure 4). Such fitting results in an
overall greater contacting surface area between the ligand and the
receptor. Although the Lewis X portion of the molecule is gener-
ally well reproduced, the high flexibility of the GlcNAcβ(1 → 3)Gal
linkage affects the ability of docking programs to correctly predict
the binding mode. The effect that the shallow nature of the DC-
SIGN binding site has on docking success cannot be ignored, and
probably plays the more significant role in influencing the quality
of docking results. Similar carbohydrates binding to more restric-
tive binding sites, for example, Lewis Y binding to the antibody
hu3S913 (Ramsland et al., 2004; Farrugia et al., 2009), have been
extremely well reproduced by docking (Agostino et al., 2009a).
However, it is remarkable to note that in the variety of binding
modes generated, many still feature the terminal galactose and
fucose portions bound at approximately the same location as in
the crystal structure. Therefore, there is some possibility that such
binding modes are not merely artifacts of docking, but potentially
valid in describing ligand recognition by DC-SIGN.

Although the carbohydrate-binding mode could be generated
for each of the human lung SP-D examples, these were gener-
ally ranked poorly by all of the programs, often outside of the
top 10 poses (Table 2). The binding site of SP-D cannot be eas-
ily discerned when examining a surface representation of the
protein as it is extremely broad and shallow. Poses docked into
such binding sites are generally not effectively scored by dock-
ing programs, as noted for our other test systems. The most
successful case is the prediction of the complex of SP-D with
Glcα(1 → 4)Glcα(1 → 4)Glc (PDB code 2GGU). Glide was able
to correctly identify and rank the binding mode, while Autodock
ranked the correct binding mode in second place. This suggests
that an optimal balance between the size of the binding site and
the size of the carbohydrate has been reached, with a trisaccharide
motif being able to participate in all of the likely interactions, and
for those interactions to be appropriately scored above others (at
least by Glide and Autodock). By comparison, reproducing dis-
accharide binding modes is far more difficult. Since the binding
site is so broad and shallow, disaccharides could be more easily
made to fit anywhere in the binding site. In the case of repro-
ducing the Glcα(1 → 4)Glc binding mode (PDW 1PWB), DOCK
was able to correctly rank the best binding mode, however, it is
moderately distant from the crystal bound conformation, with an
rmsd of 2.6 Å. In general, the potential for accurate discrimination

FIGURE 4 | Rotation of the GlcNAcβ(1 → 3)Gal linkage allows many

different tetrasaccharide binding modes with DC-SIGN. (A) Crystal
structure binding mode (φ = −84.2, ψ = −157.4; PDB code 1SL5). (B) Top
ranked binding mode (φ = −76.6, ψ = −126.8). (C) Third ranked binding
mode (φ = −81.8, ψ = −130.6). (D) Twelfth ranked binding mode
(φ = −132.4, ψ = −131.5). (E) Twenty-seventh ranked binding mode
(φ = −89.6, ψ = −88.6). Figures (B–E) generated based on representative
examples of each conformational cluster of GlcNAcβ(1 → 3)Gal linkage (see
Figure 3C) obtained by GOLD docking results. Color guide: blue –
galactose, green – N -acetylglucosamine, yellow – fucose.
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between binding modes by the scoring functions for a wide range
of cases is limited and, consequently, the results of docking are
generally not very informative.

EVALUATION OF SITE MAPPING FOR CARBOHYDRATE–LECTIN
INTERACTIONS
It is clear from our molecular docking test cases that some addi-
tional interpretation and post-processing of the carbohydrate
poses is needed in order to derive useful information regard-
ing carbohydrate recognition by lectins. We previously devel-
oped a site mapping technique which we applied to investi-
gate carbohydrate–antibody recognition (Agostino et al., 2009b)
and peptide–antibody recognition (Agostino et al., 2011). We
wanted to investigate whether this technique could be applied to
carbohydrate–lectin systems, to augment the output of molecular
docking. The docked poses from GOLD were used as input for
site mapping, since this program performed the best at molecular
docking in the carbohydrate–lectin systems, at least in terms of
identifying the best poses in a given docking run.

The ability of the site maps to identify lectin residues involved
in ligand recognition was compared to that of the top pose
obtained for each system (Table 3). Using the metrics of repro-
duction and correctness (see Materials and Methods), it was
found that site mapping performed better (reproduction) or
comparably (correctness) to the top pose. However, there are
several cases where site mapping clearly outperformed the top
pose. The most notable examples were the site maps pro-
duced for DC-SIGN. The docking programs generally failed
to accurately predict the carbohydrate-binding modes of both
Galβ(1 → 4)[Fucα(1 → 3)]GlcNAcβ(1 → 3)Gal (PDB code 1SL5)
and Manα(1 → 2)Man (PDB code 2IT6) in complex with DC-
SIGN, most likely due to the shallow nature of the binding site.
Since GOLD failed to correctly identify the ligand binding mode
in either case, the accuracy is low for the interactions taking place
between DC-SIGN and the top carbohydrate poses (reproduction
of 0.25 and 0.55, respectively). In both cases, site mapping was able
to identify almost all of the interactions taking place (reproduc-
tion of 0.88 and 0.73, respectively). In the case of 1SL5 (Figure 5),
several additional contacts appear in the map, as indicated by the
relatively low correctness. However, these contacts, not observed
in the crystal structure, may yet be important in the dynamics
of carbohydrate recognition by DC-SIGN. Regardless, the rela-
tive success of site mapping compared to the top pose prediction

Table 3 | Site mapping results for carbohydrate–lectin interactions.

PDB code Reproductiona Correctnessb

Site map Top pose Site map Top pose

1GZW 0.80 1.00 0.67 0.63

1W6O 1.00 0.67 1.00 1.00

1W6P 0.83 0.83 0.71 0.71

2ZKN 0.83 0.83 0.83 0.83

1KJL 0.80 0.60 0.67 0.60

4GAL 1.00 0.83 0.86 0.83

5GAL 1.00 0.83 0.75 0.83

1SL5 0.88 0.25 0.58 0.29

2IT6 0.73 0.55 0.89 0.75

3P5F 0.75 0.63 0.60 0.83

3P5G 0.56 0.56 0.50 0.63

3P5H 0.83 0.83 0.42 0.56

1PWB 0.86 0.71 0.86 0.71

2GGU 0.50 0.50 0.71 1.00

3G83 0.83 0.67 0.83 0.50

Mean ± SD 0.81 ± 0.14 0.69 ± 0.18 0.73 ± 0.15 0.71 ± 0.19

aReproduction is computed by dividing the number of crystal structure inter-

actions reproduced by the map/top pose by the number of crystal structure

interactions observed. bCorrectness is computed by dividing the number of crys-

tal structure interactions reproduced by the map/top pose by the total number of

interactions identified by the map/top pose.

indicates that this is the preferred technique for studying the
interaction of large carbohydrates with shallow binding sites.

Site mapping was overall found to be quite successful for
investigating carbohydrate recognition by the various galectins
(Table 3). Notable improvements in interaction prediction made
by site mapping, compared to considering the top ranked docked
pose alone, were obtained for galectin-3 complexed to N -
acetyllactosamine (PDB code 1KJL) and galectin-7 complexed to
lactose (PDB code 4GAL). The reason for the observed improve-
ment is the same in each case. In each of the galectins (including
galectin-1), the galactose-binding site is centered at Trp68. The
terminal galactose moiety interacts with Trp68 via CH-π interac-
tions, and can also form various other interactions. Adjacent to
the galactose-binding site is another potential binding site, which
appears to be “joined” to the galactose-binding site (Figure 1B).
Due to the binding topography, this additional site is unavoidably

FIGURE 5 |The recognition of Galβ(1 → 4)[Fucα(1 → 3)]GlcNAcβ(1 → 3)Gal by DC-SIGN. (A) Comparison of crystal structure binding mode (PDB code 1SL5;
black) with top ranked docked pose (gray). (B) Hydrogen bonding map. (C) van der Waals interaction map. Color depth corresponds to importance of the
mapped residue for recognition. All figures generated in PyMOL.
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selected as a potential binding site for docking during protein
preparation. Without the aid of a bound ligand, or further experi-
mentally derived knowledge, it would be virtually impossible to
discern between the true binding site and this additional site.
However, in these examples, we have achieved this using the site
mapping technique.

Site mapping generally performed well compared to the top
pose in interaction prediction for each of the SP-D cases. The
interactions taking place in the two disaccharide complexes were
better predicted by the respective site maps rather than by the top
docked poses (Figures 6A–C). As noted earlier, it was particularly
difficult for molecular docking to identify and score the correct dis-
accharide poses. Therefore, these cases highlight a situation where
site mapping clearly outperforms molecular docking: disaccha-
ride recognition by a lectin with a shallow binding site. However,
trisaccharide binding by SP-D was not as well reproduced by site
mapping (Figures 6D–F). The reason for these observations is
likely to be associated with the size and shape of the ligands. A
disaccharide is more likely to be able to discriminate between
potential subsites in a broad, shallow binding site. However, in

such a binding site, a linear trisaccharide is able to spread out
across multiple subsites without discriminating between any of
them. It is important to note that such an effect is likely to be
observed only when studying recognition of linear, as opposed to
branched, oligosaccharides, as they are somewhat easier to fit to the
contours of a binding site. The effect is possibly exacerbated in this
case by the removal of water molecules from the binding site (car-
ried out as part of the protein preparation), which creates access
to protein subsites that were previously occupied (Van Dijk and
Bonvin, 2006; Englebienne and Moitessier, 2009). The removal
of crystallographic water has a limited impact on the quality of
molecular docking in reproducing carbohydrate recognition by
some antibodies, particularly hu3S913 (PDB code 1S3K), owing
to the carbohydrate being largely tightly bound by the antibody
(Agostino et al., 2009a).

Low map correctness was observed when site mapping was
applied to langerin. Although most of the crystal structure inter-
actions could be identified, many additional interactions not
observed in the crystal structure were seen in the site maps
(Figure 7). These interactions occur with residues located in and

FIGURE 6 |The recognition of Glcα(1 → 4)Glc and

Glcα(1 → 4)Glcα(1 → 4)Glc by SP-D. (A) Comparison of crystal structure
binding mode of Glcα(1 → 4)Glc (PDB code 1PWB; black) with top ranked
docked pose (gray). (B) Hydrogen bonding map obtained for the recognition of
Glcα(1 → 4)Glc. (C) van der Waals map obtained for the recognition of

Glcα(1 → 4)Glc. (D) Comparison of crystal structure binding mode of
Glcα(1 → 4)Glcα(1 → 4)Glc (PDB code 2GGU; black) with top ranked docked
pose (gray). (E) Hydrogen bonding map obtained for the recognition of
Glcα(1 → 4)Glcα(1 → 4)Glc. (F) van der Waals map obtained for the
recognition of Glcα(1 → 4)Glcα(1 → 4)Glc. All figures generated in PyMOL.

FIGURE 7 |The recognition of Glcβ(1 → 3)Glc by langerin. (A) Comparison
of crystal structure binding mode of Glcβ(1 → 3)Glc (PDB code 3P5H; black)

with top ranked docked pose (gray). (B) Hydrogen bonding map. (C) van der
Waals map. All figures generated in PyMOL.
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around the sulfate binding subsite. Although this subsite has only
been demonstrated to bind sulfated glycans, it may be important
in the dynamics of recognition of non-sulfated glycans by lan-
gerin. Despite this finding, it is clear from the relative intensities
of the langerin site maps that residues involved in binding the
carbohydrate in the crystal structure are more prominent in the
site maps than the additional residues forming the sulfate bind-
ing subsite that is clearly occupied by the top ranked disaccharide
pose (Figures 7A–C). Thus, even when site maps have relatively
low map correctness, they may still be informative about the rela-
tive contributions that residues make to carbohydrate recognition.
This feature is reflected by the clearly increased reproduction val-
ues obtained for site maps (0.81 ± 0.14) when compared to the top
ranked carbohydrate poses (0.69 ± 0.18) across the various lectin
systems (Table 3).

Several of the lectins studied utilize calcium ions to bind their
ligands. An interesting effect observed in the mapping data was
that interactions to the calcium ions were fairly similar across the
range of the structures (Table 4), generally accounting for ∼10% of
the hydrogen bonding/ionic interactions observed. This suggests
that the contribution to binding made by metal ions can effectively
be ignored during mapping if the location of the metal ion is not
known, i.e., in a homology model or low resolution crystal struc-
ture. In these cases, the hydrogen bonding map may be adjusted
by a fixed amount to account for the potential contribution to
binding made by the metal ion.

DISCUSSION
We have shown that considering a top pose from molecular dock-
ing alone is not a suitable tool for investigating carbohydrate
recognition by human lectins. The flexible nature of carbohy-
drates, coupled with the often shallow and broad binding sites
of lectins, makes scoring very difficult for molecular docking pro-
grams. In particular, while Glide and GOLD are able to identify
the correct binding mode, it is not typically scored as the best
result. Alternative scoring strategies are clearly needed to address
this issue in the majority of cases.

While structurally conserved water molecules may be impor-
tant in carbohydrate recognition by the lectins studied (Lemieux,

Table 4 | Contributions to ligand recognition made by metal ions in

lectins.

PDB code Interaction contribution (%)a

1PWB 10.8

1SL5 7.8

2GGU 18.5

2IT6 9.6

3G83 10.9

3P5F 13.6

3P5G 12.6

3P5H 11.8

aPercentage of interactions in hydrogen bonding maps made by the calcium ion

in the binding site.

1996), the contribution to binding made by such water mole-
cules has not been considered in our investigation. A variety of
solvation models which can better take into account the role of
water in ligand binding have been developed such as the General-
ized Born (MM/GBSA) and the Poisson–Boltzmann (MM/PBSA)
models (reviewed in Yuriev et al., 2011). These scoring techniques
allow for the consideration of solvation effects in binding, but
do not explicitly derive the locations of structurally conserved
water molecules. Aside from molecular dynamics simulation in
explicit water, a variety of methods have been developed which
can be used to identify where such water molecules should be
placed (reviewed in De Beer et al., 2010). Of these, the GRID
method has been applied to investigate the role of water in car-
bohydrate recognition by a bacterial enterotoxin (Minke et al.,
1999). Regardless of the effect of water on carbohydrate-binding,
molecular docking in isolation cannot provide information about
the dynamics of binding. Molecular dynamics simulation is rou-
tinely used for such investigation, but is computationally expensive
and time-consuming. The site mapping technique, which consid-
ers information from multiple binding modes, allows for some
consideration of dynamic behavior.

As our results demonstrate, mapping techniques offer promis-
ing strategies for investigating carbohydrate–lectin recognition.
The site mapping technique has successfully identified interacting
residues in the majority of lectin cases. As in our validation of site
mapping of carbohydrate-recognizing antibodies (Agostino et al.,
2009b), the low map correctness in some cases is a point of con-
cern. Low map correctness is generally indicative of the inclusion
of residues, which do not appear to be involved in recognition
in the crystal structures, into the maps. However, such residues,
which are typically deemed as “erroneous,” may be important
for the dynamics of binding. This is highly relevant for lectins,
which generally feature broad and shallow binding sites, and may
either recognize multiple carbohydrate-binding modes, or mul-
tiple types of carbohydrates. Therefore, site mapping provides
a rational approach to identifying residues that are potentially
involved in carbohydrate recognition in a dynamic setting. Fur-
thermore, the speed with which site mapping can be employed is
unparalleled by molecular dynamics simulations.

Underpinning our findings is the importance of the interplay
between computational and experimental techniques in studying
carbohydrate–lectin interactions, and in particular, the impor-
tance of techniques which do not rely on the availability of an
experimentally determined protein structure. In order to accu-
rately identify carbohydrate-binding modes, knowledge of lectin
residues functionally involved in carbohydrate recognition is
extremely useful. Such knowledge can be determined via muta-
genesis studies. In vitro mutagenesis studies may be directly com-
plemented by in silico mutagenesis studies, in particular, compu-
tational alanine scanning (Kortemme et al., 2004; Bradshaw et al.,
2011). In silico mutagenesis has been used to investigate the role of
specific residues in carbohydrate recognition by the Pseudomonas
aeruginosa PA-IIL lectin (Adam et al., 2008). Furthermore, knowl-
edge about the important interacting groups on the carbohy-
drate can be obtained using chemical mapping (Audette et al.,
2003). Although this technique involves time-consuming chemi-
cal modifications to be made to the carbohydrate, it is considerably
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powerful for identifying the key carbohydrate positions involved
in recognition.

While we have demonstrated that site mapping is useful for
investigating carbohydrate–lectin recognition, the technique rep-
resents only one step in the full determination of likely binding
modes. We have developed additional mapping techniques which
analyze binding from the point-of-view of the ligand and, when
combined with site mapping and conformational filtering, were
used to suggest likely carbohydrate-binding modes in their com-
plexes with antibodies (Agostino et al., 2010). Additional work
is needed to evaluate whether ligand-based mapping and confor-
mational filtering can be used to predict preferred carbohydrate-
binding modes in lectins. It will also be important to establish,
with cross-docking and cross-mapping studies, how suitable map-
ping approaches are for examining carbohydrate recognition in the
absence of a crystal structure of the cognate carbohydrate–lectin
complex. Native structures and homology models present a special
challenge for structural studies of ligand binding, as the gener-
ated protein structure may not be appropriately “induced” for the
ligand of interest (Agostino et al., 2009a). Induced-fit models of
ligand binding can be used to provide information about likely
changes in the conformation of the protein, while site mapping
can be used to identify key contacts made by a range of ligand

poses. In this setting, induced-fit modeling and site mapping pro-
vide complementary considerations of the dynamic nature of the
binding event, with induced-fit considering protein dynamics, and
site mapping considering ligand dynamics.

CONCLUSION
The success of site mapping in identifying lectin residues involved
in interactions is an encouraging first step in the application of
in silico techniques to fully characterize carbohydrate–lectin inter-
actions. The present study demonstrates that mapping techniques
are generally applicable to examining carbohydrate recognition
by proteins other than antibodies, including the wide range of
carbohydrate-binding proteins involved in the innate arm of the
immune system.
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APPENDIX
The Tables in Appendix (see below) provide a comparison of inter-
acting residues in the crystal structure, in the top ranked pose and
in the site maps obtained for each test system (denoted by the
PDB code) used in the main manuscript. In the tables, interact-
ing residues in italics participated in the top ranked pose and in
the crystal structure, while residues in bold were found in the site
maps and in the crystal structure.

Table A1 | 1GZW.

Top ranked

pose

residues

Crystal structure

residues

Mapped

residues

His44 His44 His44

Asn46 Asn46

Arg48 Arg48 Arg48

His52 His52

Asn61 Asn61

Gly69

Glu71 Glu71 Glu71

Trp68 Trp68 Trp68

Table A2 | 1W6O.

Top ranked

pose

residues

Crystal structure

residues

Mapped

residues

His1044 His1044 His1044

Arg1048 Arg1048 Arg1048

His1052 His1052 His1052

Asn1061 Asn1061

Trp1068 Trp1068 Trp1068

Glu1071 Glu1071

Table A3 | 1W6P.

Top ranked

pose

residues

Crystal structure

residues

Mapped

residues

His1044 His1044 His1044

Asn1046 Asn1046

Arg1048 Arg1048 Arg1048

His1052 His1052

Asn1061 Asn1061 Asn1061

Trp1068 Trp1068

Glu1071 Glu1071 Glu1071

Arg1073 Arg1073

Table A4 | 2ZKN.

Top ranked

pose

residues

Crystal structure

residues

Mapped

residues

His44 His44 His44

Asn46 Asn46

Arg48 Arg48 Arg48

His52 His52 His52

Asn61

Trp68 Trp68 Trp68

Glu71 Glu71 Glu71

Table A5 | 1KJL.

Top ranked

pose

residues

Crystal structure

residues

Mapped

residues

Arg144

His158 His158 His158

Asn160

Arg162 Arg162 Arg162

Glu165 Glu165

Asn174 Asn174

Trp181 Trp181

Glu184 Glu184 Glu184

Arg186

Table A6 | 4GAL.

Top ranked

pose

residues

Crystal structure

residues

Mapped

residues

Arg31 Arg31

His49 His49 His49

Asn51 Asn51

Arg53 Arg53 Arg53

Asn62 Asn62 Asn62

Trp69 Trp69 Trp69

Glu72 Glu72 Glu72
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Table A7 | 5GAL.

Top ranked

pose

residues

Crystal structure

residues

Mapped

residues

Arg31 Arg31

His33

His49 His49 His49

Asn51 Asn51 Asn51

Arg53 Arg53 Arg53

Asn62 Asn62

Trp69 Trp69 Trp69

Glu72 Glu72 Glu72

Table A8 | 1SL5.

Top ranked

pose

residues

Crystal structure

residues

Mapped

residues

Phe313 Phe313

Asn344 Asn344

Arg345 Arg345

Glu347 Glu347

Asn349 Asn349

Val351 Val351

Glu354 Glu354 Glu354

Glu358 Glu358

Ser360 Ser360

Asn365 Asn365 Asn365

Asp366

Asp367 Asp367

Ca402 Ca402

Table A9 | 2IT6.

Top ranked

pose

residues

Crystal structure

residues

Mapped

residues

Phe313 Phe313 Phe313

Glu347 Glu347

Asn349

Val351 Val351

Glu354 Glu354 Glu354

Glu358 Glu358 Glu358

Ser360 Ser360

Asn365 Asn365

Asp366

Asp367 Asp367

Lys368 Lys368 Lys368

Lys373

Ca406 Ca406 Ca406

Table A10 | 3P5F.

Top ranked

pose

residues

Crystal structure

residues

Mapped

residues

Glu285 Glu285

Asn287

Ala289 Ala289

Glu293 Glu293 Glu293

Lys299 Lys299 Lys299

Asn307 Asn307 Asn307

Asp308 Asp308

Ala309

Lys313 Lys313

Phe315

Pro310

Ca500 Ca500 Ca500

Table A11 | 3P5G.

Top ranked

pose

residues

Crystal structure

residues

Mapped

residues

Pro283

Gly284

Glu285 Glu285 Glu285

Asn287

Ala289

Glu293 Glu293 Glu293

Lys299 Lys299 Lys299

Asn307 Asn307 Asn307

Asp308

Ala309

Pro310 Pro310

Lys313 Lys313

Phe315 Phe315

Ca500 Ca500 Ca500
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Table A12 | 3P5H.

Top ranked

pose

residues

Crystal structure

residues

Mapped

residues

Ile250 Ile250

Glu285 Glu285 Glu285

Asn287 Asn287 Asn287

Ala289

Glu293 Glu293 Glu293

Lys299 Lys299

Asn307 Asn307 Asn307

Asp308

Ala309

Pro310

Lys313 Lys313

Phe315 Phe315

Ca500 Ca500 Ca500

Table A13 | 1PWB.

Top ranked

pose

residues

Crystal structure

residues

Mapped

residues

Glu321 Glu321

Asn323 Asn323 Asn323

Asp325

Glu329 Glu329 Glu329

Phe335

Asn341 Asn341 Asn341

Asp342

Arg343 Arg343 Arg343

Ala344

Ca401 Ca401 Ca401

Table A14 | 2GGU.

Top ranked

pose

residues

Crystal structure

residues

Mapped

residues

Ala290

Glu321

Asn323 Asn323 Asn323

Glu329

Phe335 Phe335 Phe335

Thr336

Asn337

Asn341 Asn341 Asn341

Asp342

Arg343 Arg343 Arg343

Arg349

Ca401 Ca401 Ca401

Table A15 | 3G83.

Top ranked

pose

residues

Crystal structure

residues

Mapped

residues

Glu321

Asn323 Asn323

Asp325 Asp325 Asp325

Gly326

Ser328

Glu329 Glu329 Glu329

Asn341 Asn341 Asn341

Arg343 Arg343

Ala344

Ca401 Ca401 Ca401
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