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According to the “two-step model,” the intrathymic generation of CD4™ regulatory T (Treg)
cells segregates into a first, T cell receptor (TCR)-driven phase and a second, cytokine-
dependent phase. The initial TCR stimulus gives rise to a CD25%Foxp3~ developmen-
tal intermediate. These precursors subsequently require cytokine signaling to establish
the mature CD25%Foxp3* Teq cell phenotype. In addition, costimulation via CD28/B7
(CD80/86) axis is important for the generation of aTeg cell repertoire of normal size. Recent
data suggest that CD28 or B7 deficient mice lack CD25%Foxp3™ Teg cell progenitors. How-
ever, these data leave open whether costimulation is also required at subsequent stages
of Treg differentiation. Also, the fate of “presumptive” Treqg cells carrying a permissive TCR
specificity in the absence of costimulation remains to be established. Here, we have used
a previously described TCR transgenic model of agonist-driven Treq differentiation in order
to address these issues. Intrathymic adoptive transfer of Teg precursors indicated that cos-
timulation is dispensable once the intermediate CD25%Foxp3~ stage has been reached.
Furthermore, lack of costimulation led to the physical loss of presumptive Treg cells rather
than their escape from central tolerance and differentiation into the conventional CD4+ T
cell lineage. Our findings suggest that CD28 signaling does not primarily operate through
enhancing the TCR signal strength in order to pass the threshold intensity required to initi-
ate Treg cell specification. Instead, costimulation seems to deliver unique and qualitatively
distinct signals that coordinately foster the developmental progression of Treg precursors
and prevent their negative selection.
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INTRODUCTION

CD4™ regulatory T (Treg) cells expressing the transcription factor
Foxp3 exert an essential function for the maintenance of self-
tolerance and immune homeostasis (Sakaguchi, 2004). There is
good evidence that a substantial fraction of the T, cell repertoire
originates from the thymus; for instance, there is a large degree of
sequence-overlap between the T cell receptor (TCR) repertoires of
thymic and peripheral Foxp3™ cells (Hsich et al., 2006; Pacholczyk
et al., 2006; Lio and Hsieh, 2011).

Entry into the Ty, cell lineage during thymocyte development
is believed to depend upon instructive processes ensuing from self-
antigen recognition (Wirnsberger et al., 2011). Evidence for this
has been obtained in TCR/neo-self-antigen double transgenic sys-
tems (Jordan et al., 2001; Apostolou et al., 2002; Kawahata et al.,
2002; Aschenbrenner et al., 2007) and also stems from observa-
tions that polyclonal thymocytes bearing superantigen-reactive
TCRs are substantially enriched in Foxp3™ cells (Papiernik et al.,
1998; Ribot et al., 2006). The exact parameters and modalities of
antigen recognition that specify whether an autoreactive MHC
II-restricted thymocyte enters the T, lineage or is subject to neg-
ative selection remain to be established; however, there is some
consensus that interactions of intermediate avidity may favor Tyeg

cell differentiation over clonal deletion (Feuerer et al., 2007; Ati-
balentja et al., 2009; Picca et al., 2009; Hinterberger et al., 2010).
Furthermore, co-signals provided by common y-chain cytokines
[interleukin (IL)-2 in particular, but also IL-7 and -15; Fontenot
et al., 2005a; Mayack and Berg, 2006; Yao et al., 2007; Bayer et al.,
2008; Vang et al., 2008] as well as costimulation through CD28/B7
interactions are required for efficient intrathymic differentiation
of Treg cells.

Mice deficient in CD28 or its ligands CD80 and CD86 (B7.1
and B7.2, respectively) display a significant decrease in the num-
ber of thymic and peripheral Treg cells (Salomon et al., 20005
Tang et al., 2003; Lohr et al., 2004; Tai et al., 2005). Although
costimulation has been implicated in IL-2 production (Lindstein
et al., 1989; Fraser et al., 1991; Jenkins et al., 1991), the failure of
Cd28~'~ or Cd80/Cd86~'~ mice to generate a Treg cell pool of
normal size is not directly linked to cytokine deprivation. Thus,
the inefficient entry of Cd28~'~ thymocytes into the Tyeg lin-
eage is not “rescued” by the presence of bystander Cd28/+ cells
in mixed bone marrow chimeras, indicating that the paucity of
thymic Treg cells in costimulation deficient mice primarily reflects
a T cell-intrinsic function of the CD28 signaling axis (Tai et al.,
2005).
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The “two-step model” of intrathymic Ty differentiation sug-
gests a sub-division into an antigen-driven instruction phase and a
cytokine-dependent (but largely antigen independent) consolida-
tion phase. Accordingly, CD25" Foxp3™~ CD4 single-positive (SP)
cells represent TCR-instructed, Treg lineage committed intermedi-
ates that require continual cytokine (IL-2,IL-7, or IL-15) signaling,
but are largely independent of TCR stimulation, for their differ-
entiation into “mature” CD25" Foxp3™ Treg cells (Burchill et al.,
2008; Lio and Hsieh, 2008). Recent data support the idea that CD28
costimulation and common y-chain cytokine signaling operate
at distinct stages of intrathymic Ty, differentiation. Specifically,
polyclonal CD25% Foxp3™~ cells, which are believed to contain Treg
precursors that arise through TCR-mediated instruction (“step
one”) are strongly diminished in the thymus of Cd28~/~ mice
(Lio et al., 2010; Vang et al., 2010).

The principle requirement for costimulation during intrathymic
generation of the Tyeg cell pool has been well documented in poly-
clonal systems. However, assessing the number of Foxp3™ cells in
a diverse TCR repertoire does not reveal insights into the “alterna-
tive” fate of presumptive Treg cells in the absence of costimulation.
Thus, it is as yet unclear whether the respective TCR specificities
are physically lost from the repertoire, i.e., negatively selected, or
whether these cells instead escape from central tolerance induc-
tion and enter the pool of mainstream CD4 T cells. To address this
issue, we have made use of a previously described TCR transgenic
model of agonist antigen-driven Tieg differentiation.

MATERIALS AND METHODS

MICE

T cell receptor-hemagglutinin (HA; Kirberg et al., 1994) and
AIRE-HA (Aschenbrenner et al., 2007) have been described pre-
viously. Foxp38® reporter mice (Fontenot et al., 2005b) were
kindly provided by A. Rudensky (Memorial Sloan Kettering Insti-
tute, New York). Cd28~/~ (Shahinian et al., 1993), CD80/86 /'~
CD80~'~, and CD86 '~ mice (Borriello et al., 1997) were pur-
chased from Jackson Laboratories. BALB/c mice were purchased
from Charles River. Mice were maintained in individually ven-
tilated cages. Animal studies were approved by local authorities
(Regierung von Oberbayern, 55.2.1.54.2531-7-08).

INTRATHYMIC TRANSFER

About 5 x 10° CD4 SP thymocytes or 4 x 10° cells of sorted sub-
populations from TCR-HA x AIRE-HA donors (CD45.1) were
injected in 3 1l PBS into one thymic lobe of CD45.2 recipients of
the indicated genotype. The analysis of injected thymi was carried
out by depletion of CD8™ cells, staining for the indicated surface
markers and analysis of the entire thymus by flow cytometry.

ANTIBODIES AND FLOW CYTOMETRY

Phycoerythrin-conjugated annexin-V, phycoerythrin-conjugated
monoclonal antibodies (mAbs) to GITR (DTA-1) and
PD-1 (J43), cychrome-conjugated mAb to CD8 (53-6.7),
phycoerythrin-indotricarbocyanine-conjugated mAb to CD25
(PCé61), allophycocyanin-conjugated mAb to CD45.1 (A20),
allophycocyanin-conjugated mAb to BrdU (Cat. No. 51-
23619L), and allophycocyanin indotricarbocyanine-conjugated
mAb to CD4 (GK1.5) were obtained from Becton Dickinson.

Phycoerythrin-conjugated mAb to Foxp3 (FJK-16s) was from
eBiosciences. The mAb to the TCR-HA was purified from
hybridoma (6.5) supernatants and conjugated to phycoerythrin
or Alexa Fluor 647 in our lab.

BRDU LABELING

One milligram of BrdU (Becton Dickinson) in 200 ul PBS was
intraperitoneally injected into recipient mice. 24 h after injec-
tion mice were sacrificed and thymocytes were stained with the
indicated surface markers. Subsequently cells were fixed, perme-
abilized, treated with DNase I, and stained with a mAb specific to
BrdU according to the manufacturers protocol (BrdU Flow Kit,
Becton Dickinson).

BONE MARROW CHIMERAS

Bone marrow was depleted of T cells with biotinylated mAbs to
CD8 and CD4 followed by depletion with streptavidin MACS
beads (Miltenyi Biotec) according to standard procedures. BALB/c
recipient mice were irradiated with two split doses of 450 rad and
were reconstituted with 8 x 10® bone marrow cells.

PURIFICATION OF CD4 SP CELLS OR Tgegc PRECURSORS

CD4 SP cells or subpopulations of CD4 SP cells (Tyeg precur-
sors) were purified by CD8 depletion, staining for the indicated
surface markers, and sorting with a FACSAria cell sorter (Becton
Dickinson).

STATISTICAL ANALYSIS
Statistical significance was assessed by the two-tailed Student’s
t-test with unequal variance.

RESULTS
LOSS OF PRESUMPTIVE Tgeg CELLS IN THE ABSENCE OF
COSTIMULATION
Studies in polyclonal systems have clearly indicated a substantial
reduction in the thymic production of Ty cells in the absence of
costimulation (Bour-Jordan et al., 2011). However, these analyses
did not reveal the fate of presumptive Tyeg cells under these cir-
cumstances, that is, whether the respective TCR specificities are
physically lost from the repertoire or instead enter the naive pool
of CD4 T cells. To address this issue, we used TCR-HA x AIRE—
HA double transgenic mice. In these animals, expression and
presentation of cognate antigen by medullary thymic epithelial
cells (mTECs) promotes the negative selection of the majority of
influenza HA specific CD4 SP thymocytes, while at the same time
a distinct and traceable cohort of HA-specific CD4 SP cells dif-
ferentiate into Tyeg cells (Aschenbrenner et al., 2007; Hinterberger
et al,, 2010). T cells expressing the HA-specific TCR (TCR-HA)
can conveniently be traced using the anticlonotypic antibody 6.5.
In the absence of cognate antigen, about 30% of CD4 SP
cells express the HA-specific TCR-HA (Figure 1A). Expectedly,
in TCR-HA single-transgenic mice, the fraction of TCR-HA™
CD4 SP thymocytes was indistinguishable irrespective of whether
costimulation was provided or not (data not shown). By con-
trast, when TCR-HA x AIRE-HA mice were bred onto a CD28
or CD80/CD86 deficient background, we observed a signifi-
cantly altered thymic phenotype. Specifically, there was a sub-
stantially decreased frequency of TCR-HA™ cells among CD4 SP
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FIGURE 1 | Loss of HA-specific thymicT,., precursor cells in costimulation
deficient mice. Thymocytes from 6-week-old TCR-HA single-transgenic mice
and TCR-HA x AIRE-HA mice on a costimulation sufficient (=WT), Cd28~~ or
Cd80/86~"- background were stained for CD4, CD8, TCR-HA, CD25, and
Foxp3 (n=5 for TCR-HA, n=236 for WT TCR-HA x AIRE-HA, n= 14 for
Cd28~'-/ TCR-HA x AIRE-HA, n=13 for Cd80/86~'- TCR-HA x AIRE-HA).

(A) Frequency of TCR-HA* cells (£SD) among CD4 SP cells (P =3 x 10" for
WT vs. Cd28~'- and P=2 x 107 for WT vs. Cd80/Cd86~'-). (B) Expression of
CD25 and Foxp3 by gated TCR-HA* CD4 SP thymocytes. (C) Relative
abundance (£SD) of TCR-HA positive CD25 Foxp3~ and CD25*Foxp3~ T,

precursor subpopulations and mature CD25*Foxp3* T, cells among

gated CD4 SP thymocytes (CD25-Foxp3~ subsets: P =0.0002 for

WT vs. Cd28~'- and P =0.3 for WT vs. Cd80/Cd86~'-; CD25*Foxp3~
subsets: P=5 x 107" for WT vs. Cd28~"- and P=1 x 107" for WT vs.
Cd80/Cd86-'-; CD25*Foxp3+ subsets: P =3 x 10-" for WT vs. Cd28~'-; and
P =4 x10" for WT vs. Cd80/Cd86~"-). The relative and absolute
abundance of CD4 SP thymocytes was not significantly different

between the various genotypes (data not shown). (D) Expression of CD25
and TCR-HA by gated CD4* T cells from peripheral lymph nodes of the
indicated genotype.

thymocytes when compared to costimulation competent TCR-
HA x AIRE-HA controls (Figure 1A). These somewhat surprising
initial findings indicated that lack of costimulation augmented the
antigen-driven loss of HA-specific CD4 SP cells.

Among TCR-HAT CD4 SP thymocytes of costimula-
tion sufficient TCR-HA x AIRE-HA mice, we found that
CD25 Foxp3~, CD25%Foxp3™, and CD25" Foxp3™ cells
are represented at roughly equal proportions (Figure 1B,

and Wirnsberger et al., 2009). Consistent with the “two-
step” model of Ty cell development (Lio and Hsieh,
2008), we have shown previously that these subsets repre-
sent consecutive stages of agonist induced Treg cell devel-
opment (CD25~ Foxp3~ — CD25%Foxp3~ — CD25" Foxp3*;
Wirnsberger et al., 2009). In the absence of CD28 or CD80/CD86
costimulation, the percentage of “mature” CD25"Foxp3™
Treg cells among TCR-HAT CD4 SP thymocytes and their
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immediate CD25" Foxp3™ precursors was considerably decreased
(Figures 1B,C). Instead, the majority of residual TCR-HA™
CD4 SP cells were CD25~ Foxp3~, suggesting a developmen-
tal bottleneck at the transition from a CD25  Foxp3~™ to a
CD25%Foxp3™ phenotype, i.c., at the TCR-driven “step one” of
Theg cell differentiation.

The CD25~Foxp3~ surface phenotype of the majority of TCR-
HA™ CD4 SP cells in costimulation deficient mice might have
indicated that these cells are naive cells that have not received
a “Treg instructing” TCR signal of appropriate strength. Poten-
tially, such cells might escape from central tolerance induction and
seed peripheral lymphoid organs. If this were the case, one might
expect to find TCR-HA™ non-Tyeg CD4™ T cells in the periphery
of costimulation deficient TCR-HA x AIRE-HA mice. However,
inspection of peripheral CD4 T cell compartments revealed the
complete absence of TCR-HA™ cells in costimulation deficient
mice (Figure 1D). Specifically, not only was the distinct popula-
tion of TCR-HA™ CD25" Ty, cells that is seen in costimulation
sufficient mice absent, but there was also no discernible emer-
gence of TCR-HA™ CD25 cells in peripheral lymphoid organs
(Figure 1D).

In order to address in how far either CD80 or CD86 pro-
vided the essential signals for Ty cell differentiation, we bred the
TCR-HA x AIRE-HA system onto the respective single knock-
out background. This revealed a degree of redundancy of the two
B7 family members in that both Cd80~/~ and Cd86~/~ mice only
showed a relatively mild reduction of CD25% Foxp3™ precursors
and their “mature” CD25%Foxp3* progeny among TCR-HA™
CD4 SP thymocytes (Figures 2A,B).

In sum, these observations are consistent with a role of cos-
timulation in the TCR-driven development of early intermediates
of thymic Ty development. A similar conclusion has recently
been drawn from the absence of CD25TGITRTCD122" cells
among polyclonal CD4 SP cells of Cd28~/~ mice (Lio et al.,

2010; Vang et al., 2010). Importantly, our data suggest that lack
of costimulation, rather than allowing these presumptive Tyg cells
to escape from clonal deviation and to enter the naive repertoire,
leads to physical loss of the respective specificities. In other words,
under conditions that are otherwise permissive for Treg cell dif-
ferentiation (i.e., appropriate strength of TCR stimulus), lack of
costimulation results in the conversion of Ty differentiation into
negative selection.

THE FUNCTION OF COSTIMULATION EXTENDS BEYOND IL-2
SIGNALING AND IS CELL-INTRINSIC

CD28 costimulation has been implicated in IL-2 production
(Lindstein et al., 1989; Fraser et al., 1991; Jenkins et al., 1991).
Hence, its abrogation may impinge on Tieg cell differentiation
through lack of IL-2 mediated cell extrinsic survival and/or differ-
entiation signals that orchestrate the cytokine-dependent “second”
phase of Tyeg cell differentiation (Burchill et al., 2008; Lio and
Hsieh, 2008; Wirnsberger et al., 2009). However, upon breeding
onto an 127/~ background, thymi of TCR-HA x AIRE-HA mice
— in contrast to what was observed in Cd28~/~ or Cd80/86~'~
mice — did not show a reduction of TCR-HA™ CD4 SP cells and
of mature CD25™ cells within this population (Figure 3). This is
consistent with earlier observations that IL-2 acts on thymic Theg
cell differentiation in an at least partly redundant manner with
other common y-chain cytokines such IL-7 or IL-15 (D’Cruz and
Klein, 2005; Fontenot et al., 2005a; Vang et al., 2008) and indicates
that the apparent developmental blockade and loss of TCR-HA™
Treg cells in CD28 or CD80/86 deficient TCR-HA x AIRE-HA
mice cannot be explained by an eventual requirement of CD28/B7
costimulation solely for IL-2 production.

In order to test whether the requirement for costimulation was
cell-intrinsic, we generated mixed bone marrow chimeras. Irra-
diated AIRE-HA mice or wild-type controls were reconstituted
with a 1/1 mixture of TCR-HA transgenic Cd28*/* and Cd28~/~
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FIGURE 2 | Partially redundant role of CD80 and CD86 for intrathymic T,
development. Thymocytes from 6-week-old TCR-HA x AIRE-HA mice on a
Cd80~"~ (n=14) or Cd867'- (n=20) background were stained for CD4,

CD8, TCR-HA, CD25, and Foxp3. (A) Frequency of TCR-HA* cells

(£SD) among CD4 SP cells (P =0.09 for WT vs. Cd80~'~ and

P =0.03 for WT vs. Cd86~"~; upper panel). The lower panel depicts the
expression of CD25 and Foxp3 by gated TCR-HA* CD4 SP thymocytes.
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(B) Relative abundance (+£SD) of TCR-HA positive CD25~Foxp3~ and
CD25"Foxp3~ T, precursor subpopulations and mature CD25*Foxp3* T e,
cells among gated CD4 SP thymocytes (CD25 Foxp3~ subsets: P =0.8 for
WT vs. Cd80~"- and P=0.4 for WT vs. Cd86~'~; CD25"Foxp3~ subsets:

P =0.003 for WT vs. Cd80~~ and P =0.0002 for WT vs. Cd867"-;
CD25*Foxp3* subsets: P=0.08 for WT vs. Cd80~"- and P =0.06 for WT vs.
Cd80/Cd867"-).
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FIGURE 3 | Efficient intrathymicT,, differentiation in IL-2 deficient
TCR-HA x AIRE-HA mice. Thymocytes from 3-week-old

TCR-HA x AIRE-HA mice on an /[2+/* (n=23) or /I27- (n= 3) background
were stained for CD4, CD8, TCR-HA, CD25, and Foxp3. Numbers indicate
the average frequency (£SD) of cells within gates.

bone marrow cells (Figure 3). As expected, in the absence of
cognate antigen, Cd28%/*, and Cd28~/~ cells equally contributed
to all thymocyte subsets (not shown). In the presence of cognate
antigen, TCR-HA™ cells represented about 6% of Cd28%/* cells
among CD4 SP thymocytes and segregated into CD25~ Foxp3~,
CD25%Foxp3~, and CD25" Foxp3™ subsets similar to what was
observed in TCR-HA x AIRE-HA mice (Figure 4B; compare
Figures 1A,B). By contrast, TCR-HA™ cells made up for only
about 3% of Cd28~/~ cells among CD4 SP cells, and the majority
of these cells had a CD25~ Foxp3 ™~ phenotype (Figure 4B). Overall,
the contribution of Cd28%/* and Cd28~/~ cells to CD25~ Foxp3~
TCR-HA™ thymocytes reflected the 1/1 input ratio, whereas
Cd28~'~ cells were strongly underrepresented among the subse-
quent CD25%Foxp3™ “intermediate” population and were barely
detectable within the “mature” CD25" Foxp3™ subset (Figure 4C).

Together, these findings clearly indicated that costimulation
sufficient bystander cells do not rescue the progression of CD28
deficient cells toward a mature Tyeg cell phenotype, for instance
through provision of IL-2 or other factors in trans. Instead, there
is a cell-intrinsic requirement for CD28 signaling at the earliest
stages of Treg cell differentiation that is unrelated to the presumed
role of IL-2 at a subsequent stage of this process.

CD28 DEFICIENT HA-SPECIFIC CD25- FOXP3~ CELLS ARE NOT NAIVE
Our results so far revealed that in the presence of cognate antigen,
HA-specific CD4 SP cells with a CD25~ Foxp3~ phenotype could
be found in similar proportions irrespective of whether or not
CD28/B7 costimulation was available, whereas CD25% Foxp3~and
CD25" Foxp3™ cells were strongly reduced in the absence of cos-
timulation. This suggested a developmental blockade at the tran-
sition to a CD25 Foxp3™~ phenotype, i.e., at “step one” of Treg cell
differentiation. Alternatively, it was possible that CD25~Foxp3~
CD4 SP cells only in a costimulation sufficient environment repre-
sented a true Treg intermediate downstream of the initiating TCR
stimulus, whereas in the absence of costimulation, CD25~ Foxp3 ™~
CD4 SP cells may instead actually be naive cells.

In order to distinguish these two possibilities, we performed a
more detailed surface marker analysis of Cd28"/* and Cd28~/~
CD25 Foxp3~ CD4 SP thymocytes in the mixed bone marrow
chimeras depicted in Figure 4A and compared their phenotype
to bona fide “naive” CD25 Foxp3~ CD4 SP thymocytes from
TCR-HA single-transgenic mice (Figure 4D). Both Cd281/* and

Cd28~/~ CD25 Foxp3~ CD4 SP thymocytes displayed a similar
up-regulation of the surface molecules PD-1 and GITR, whereas
truly naive CD4 SP cells were PD-1 negative and GITR'Y. In
further support that Cd287/* and Cd28~/— CD25 Foxp3~ CD4
SP thymocytes had received a similar TCR stimulus, expression
of the TCR was similarly down-regulated on either population,
presumably as a result of cognate antigen encounter (Figure 4D).

In sum, these findings provided further evidence that in the
absence of costimulation, HA-specific cells do not escape as naive
T cells. Instead, our observations support the idea that irrespective
of whether or not costimulation is provided, TCR-HA™ progeni-
tors receive a TCR signal that is sufficient to mediate the acquisition
of an “early” Treg progenitor phenotype. However, in the absence of
CD28 signals, these cells only very inefficiently progress toward the
subsequent CD25" Foxp3~ stage and the mature CD25" Foxp3™
Treg phenotype.

COSTIMULATION DOES NOT ACT VIA PROLIFERATIVE EXPANSION OF
Trec CELL PRECURSORS

So far, we have considered that in the absence of costimulation,
the earliest phase of Ty, differentiation represents a develop-
mental dead end. An alternative explanation for the paucity of
CD25%Foxp3™~ cells and their CD25%Foxp3™ progeny in CD28
or CD80/86 deficient mice would be that costimulation would
orchestrate the entry of Trg cell precursors into cell cycling,
thereby mediating the proliferative expansion of intermediate
Treg precursors rather than their actual developmental progres-
sion. Of note, despite a certain consensus that cycling of “mature”
Foxp3™ thymocytes is barely detectable, it is as yet unclear whether
Treg cell differentiation involves an early expansion phase prior
to Foxp3 expression. This is particularly relevant for the earliest
CD25~ Foxp3~ progenitor stage, because in a polyclonal repertoire
these early Teg precursors are essentially impossible to distinguish
from the bulk of “naive” non-Tig cell precursors.

In order to address this question, we performed BrdU labeling
experiments. 24 h after a single injection of BrdU into Cd28*/*
TCR-HA x AIRE-HA mice, a substantial fraction of TCR-HA*
CD25~ Foxp3™~ cells and to a lesser extent also of CD25" Foxp3™
“intermediate” precursors had incorporated BrdU, whereas BrdU™
cells were very rare among mature Foxp3™ cells (Figure 5A).
In the absence of costimulation (in Cd28~/~ TCR-HA x AIRE~
HA mice), TCR-HA* CD25~ Foxp3~ cells incorporated simi-
lar amounts of BrdU when compared to their counterparts in
Cd28*'* mice, indicating that entry into the cell cycle of this
early Treg cell precursor-population is independent of CD28/B7-
mediated costimulatory signals (Figure 5A). Somewhat surpris-
ingly, the incorporation of BrdU by CD25" Foxp3™ cells and also
by “mature” CD25" Foxp3™ thymocytes was even increased rather
than diminished in the absence of CD28 co-signals (Figures 5A,B).

In order to address whether these observations similarly applied
to non-transgenic polyclonal TCR specificities, we also com-
pared the BrdU incorporation by TCR-HA~™ CD4 SP thymo-
cytes of Cd281/* and Cd28~/~ TCR-HA x AIRE-HA mice. These
cells express endogenously rearranged TCRs, and their even-
tual entry into the Tyeg lineage reflects polyclonal Ty develop-
ment. Indeed, a clear tendency toward more proliferation in the
absence of costimulation was also observed for CD25" Foxp3™ and
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development. (A) Experimental strategy to generate mixed bone marrow
(bm) chimeras. Specifically, 4 x 106 Cd28** TCR-HA bm cells (CD45.1) and
4 x 10° Cd287~ TCR-HA bm cells (CD45.2) were i.v. injected into irradiated
AIRE-HA recipients (n=29). Six weeks after bm-reconstitution, CD8 depleted
thymocytes were stained for CD4, TCR-HA, CD25, CD45.1, CD45.2, and
Foxp3. (B) Frequency of TCR-HA* cells (+SD) among Cd28*+ (CD45.1*) and
Cd287'- (CD45.1-) CD4 SP cells (upper panel; P =0.04). The lower panel
depicts the expression of CD25 and Foxp3 by gated Cd28++ (CD45.1%) or
Cd28-- (CD45.17) TCR-HA* CD4 SP thymocytes. (C) Relative abundance of

— » GITR ———— > TCR-HA

Cd28+* (CD45.1+; depicted in blue) vs. Cd28-"- (CD45.1-; depicted in red)
cells among CD25~Foxp3~ and CD25*Foxp3~ T, precursor subpopulations or
mature CD25%Foxp3* T, cells, gated on all TCR-HA* CD4 SP thymocytes.
Numbers indicate the average frequency (£SD) of cells within gates.

(D) Sub-fractions of cells were also stained for PD-1 or GITR. The expression
of PD-1 or GITR as well as TCR-HA on gated CD25~Foxp3-TCR-HA* CD4 SP
thymocytes of Cd28** (blue histogram) or Cd28~~ (red histogram) origin was
assessed. The gray histogram indicates the expression of the respective
markers on “naive” CD25-Foxp3-TCR-HA* CD4 SP thymocytes from
TCR-HA single-transgenic animals.

“mature” CD25" Foxp3™ cells among TCR-HA~ CD4 SP thymo-
cytes, emphasizing that our observations for TCR transgenic Treg
cells and their precursors faithfully recapitulated the behavior of
polyclonal T cells (Figure 5B).

Taken together, our findings suggest that the early specifi-
cation into the Trg cell lineage indeed coincides with entry
of “pre-Foxp3” Treg precursors into cell cycling. However, our
data strongly argue against a requirement for CD28/B7 costim-
ulation for proliferative expansion of a minute “TCR-primed”
precursor-population.

THE TCR-DRIVEN INSTRUCTIVE BUT NOT THE CYTOKINE-DEPENDENT
CONSOLIDATION PHASE OF Tgec DIFFERENTIATION REQUIRES
COSTIMULATION

A precise assessment of where and when costimulation is required
during intrathymic Treg cell development is difficult to achieve

when studying steady state thymocyte differentiation. For instance,
it is possible that the requirement for costimulation even pre-
cedes the TCR stimulus, whereby costimulation may somehow
prime cells for a subsequent instructive signal. Similarly, an
early bottleneck in Tyeg differentiation may mask a continual
requirement for costimulation also at a subsequent stage of Treg
differentiation.

Our observations so far did not reveal whether the costimula-
tory interactions that support Treg differentiation occur before the
CD4 SP T cell stage, for instance concomitant to positive selec-
tion. We have shown previously that Trg differentiation in the
TCR-HA x AIRE-HA thymus can be dissociated from positive
selection and CD4 lineage commitment. Specifically, injection of
CD4 SP cells from TCR-HA RagZ_/ ~ mice, i.e., truly naive, mono-
clonal cells that did not contain any pre-existing Foxp3™ cells, into
AIRE-HA thymi resulted in a substantial fraction of cells entering
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FIGURE 5 | Proliferation of TCR-HA* T, precursors is not reduced in the
absence of CD28 and recapitulates the behavior of thymocytes
expressing diverse TCRs. 24 h after a single injection of BrdU, thymocytes
from TCR-HA x AIRE-HA mice on a Cd28** (n=4) or Cd287" (n=7)
background were stained for CD4, CD8, TCR-HA, CD25, Foxp3, and BrdU
incorporation. (A) Extent of BrdU incorporation (black open histogram) by
gated TCR-HA* CD4 SP T, precursors (CD25-Foxp3~ or CD25*Foxp3-) or
mature TCR-HA* CD4 SP T, cells (CD25*Foxp3*) in Cd28** (upper panels)
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or Cd287'"= (lower panels) mice. Isotype control staining of the respective
samples are shown as histogram overlay (gray filled; P =0.8 for CD25 Foxp3~
subsets; P =2 x 10~ for CD25*Foxp3~ subsets; P =0.04

for CD25*Foxp3* subsets) (B) Comparison of BrdU incorporation by

Cd28*"* (white bars) or Cd28~~ (black bars) CD25*Foxp3~ or

CD25*Foxp3* CD4 SP thymocytes that either express the transgenic
TCR-HA (left panel) or express endogenously rearranged TCRs (TCR-HA-,
right panel).

the CD25" Foxp3™ Treg cell lineage (Wirnsberger et al., 2009; see
also Figure 6). These finding indicated that self-antigen-driven
intrathymic Tieg differentiation can be initiated in the absence of
“nominal” antigen encounter prior to the CD4 SP stage.

In order to dissociate positive selection in the absence or pres-
ence of CD28/B7 costimulatory interactions from cognate antigen
encounter at the CD4 SP stage in the absence or presence of
costimulation, we intrathymically (i.t.) injected CD28 deficient
Rag2~'~ TCR-HA SP thymocytes into AIRE-HA recipients. In
a “reciprocal” setting, we injected Rag2~'~ TCR-HA SP cells
from costimulation sufficient animals into Cd80/86 '~ recipients
(Figure 6). Both sets of experiments yielded essentially identical
outcomes, namely an almost complete absence of Ty differen-
tiation, suggesting that costimulation is necessary concomitant
to or immediately subsequent to the instructing TCR stimulus
(Figure 6).

Our data so far revealed an essential requirement for cos-
timulation simultaneous to or in close temporal proximity to
the instructing TCR stimulus. When analyzing steady state Tre,

cell development in the absence of costimulation, the early
developmental arrest at the CD25~Foxp3~ stage precludes the
analysis of an eventually continual requirement for CD28/B7
interactions at subsequent stages of Tyeg differentiation. In order
to address this issue, we isolated CD25~ Foxp3~ GITR™ cells
(i.e., the earliest distinct subset of TCR-triggered Treg cell pre-
cursors) and cells at the subsequent CD25"Foxp3™ interme-
diate stage (i.e., cells that require common y-chain cytokines
— but not TCR stimulation — to mature into CD25%Foxp3™
cells) from costimulation sufficient TCR-HA x AIRE-HA mice
and injected them into Cd80/86~'~ recipient thymi (Figure 7A).
This revealed that CD25 Foxp3~GITR™ input cells were strongly
dependent upon persistent costimulation to progress toward
a mature Ty phenotype, whereas CD25TFoxp3~ cells gave
rise to mature Ty cells irrespective of whether or not
continual costimulation was provided in the host microen-
vironment (although Tr; occurred perhaps slightly less effi-
cient in Cd80/86~/~ recipients; Figure 7B). Taken together,
these data support a model whereby B7/CD28 costimulation
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FIGURE 6 | Costimulation is required simultaneous to or in close
temporal proximity to the T, lineage-instructing TCR stimulus at the
CD4 SP stage. 5 x 10° CD4 SP cells from TCR-HA Foxp39® transgenic
animals on a Rag2~"~ background (CD45.1) were intrathymically injected into
Cds80/86*+ (left) or Cd80/86-"- AIRE-HA (right) recipients (CD45.2). In a

> Foxp3

“reciprocal” setting, we injected CD4 SP cells from Cd28~~ TCR-HA Foxp3°®
Rag2-'- mice into the thymus of costimulation sufficient (Cd80/86+*)
AIRE-HA recipients (middle). 6 days after transfer, injected cells were
analyzed for CD25 and Foxp3 expression. Numbers indicate the average
frequency (£SD) of cells within gates (n=4 for all groups).

is tightly linked to the TCR-driven first phase of Tg differ-
entiation, but is dispensable at the cytokine-dependent second
phase.

DISCUSSION

Our findings suggest that the critical function of B7/CD28 cos-
timulation is to support the development and survival of the
CD25%Foxp3™~ intermediate stage of Tyeg differentiation. Further-
more, using adoptive transfer of Tyeg precursors, we could show
that costimulation is largely dispensable once the CD25% Foxp3™
intermediate stage of Tyg differentiation has been reached. Hence,
the B7 co-stimulus is mainly required simultaneous to or in close
temporal proximity to the instructive TCR signal, i.e., at “step
one” of Ty, differentiation. These findings are consistent with
two recent reports indicating that there is a substantial diminu-
tion of polyclonal CD25Foxp3 ™~ Tyeg precursor cells in CD28
deficient mice (Lio et al., 2010; Vang et al., 2010). Importantly,
these analyses of polyclonal Tye; development did not identify the
actual fate of “presumptive” Treg cells in the absence of B7/CD28
costimulation. Here, the use of a TCR transgenic model of cog-
nate antigen-driven Tpg differentiation allowed us to reveal that
lack of costimulation leads to the physical loss of Tyeg precur-
sors from the T cell repertoire. As a net effect, it thus appears
that CD28 signaling protects Treg precursors from clonal dele-
tion and thereby promotes the emergence of a Tyeg repertoire of
normal size.

Our findings have obvious implications for the observation that
autoimmune prone NOD mice on a CD28 or B7 deficient back-
ground develop a more severe and accelerated form of diabetes
(Salomon et al., 2000). Thus, it appears that the aggressive form
of diabetes in this setting is caused by a deficiency in Tyeg cells
rather than by escape of otherwise “vetoed” T cells specificities
from central tolerance. Consistent with this, adoptive transfer of
polyclonal or islet antigen specific Treg cells prevented diabetes in
NOD Cd28~'~ mice (Salomon et al., 2000; Tang et al., 2004).

The avidity model of Tyg differentiation posits that Treg differ-
entiation ensues from cognate antigen interactions whose strength

lies in between the signaling intensity required for positive selec-
tion on the one hand and clonal deletion on the other hand
(Feuerer et al., 2007; Atibalentja et al., 2009; Picca et al., 2009;
Simons et al., 2010). We have recently obtained further evidence
for this hypothesis by attenuating antigen presentation in the TCR-
HA x AIRE-HA model through “designer micro-RNA” mediated
knock-down of MHC class IT on mTECs. This resulted in a dimin-
ished extent of negative selection and an increased emergence of
Treg cells, which is consistent with the notion that intermediate
avidity-interactions favor Ty, differentiation over negative selec-
tion (Hinterberger et al., 2010). Considering the predictions of
the avidity hypothesis, one may have expected TCR-HA™ cells to
escape from negative selection and Tieg induction and to even-
tually enter the naive CD4 T cell pool, if B7/CD28 costimulation
merely were to amplify the strength of an integrated signal down-
stream of the TCR and CD28. However, this is clearly not the case.
Instead, lack of costimulation increases the antigen-driven net loss
of TCR-HA™ cells. Hence, our findings indicate that CD28 signal-
ing does not operate primarily through amplifying the TCR signal,
but through qualitatively changing the interpretation of the TCR
signal and thereby initiating a distinct genetic program. Consistent
with this, we found that in the presence of the AIRE-HA trans-
gene, TCR-HA™ CD25~ Foxp3~cells displayed identical signs of
early activation (up-regulation of PD-1 and GITR and down-
regulation of the TCR) irrespective of whether they were Cd28*/+
or Cd28~/~. Parallel signals emanating from CD28/B7 costim-
ulation may then support the progression toward the cytokine-
dependent “step two” of Tyg differentiation. It remains possible
that the early events associated with entry into the Treg lineage can
even be set off by a TCR signal of matching strength independent
of costimulation.

Generally, CD28 co-signals are thought to stabilize mRNAs
and amplify the activation of nuclear factor of activated T cells
(NFAT) and nuclear factor-kB (NF-kB), thereby supporting T cell
cytokine production, proliferation, survival, and differentiation
(Rudd et al., 2009). Concerning a potential role of CD28 sig-
naling in cytokine production, it is hard to see how this should
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(A) Experimental design: TCR-HA* T, precursor subsets
(CD25Foxp3~GITR* and CD25*Foxp3-) were isolated from CD4 SP
thymocytes of TCR-HA x AIRE-HA animals (CD45.1). 4 x 10° cells were i.t.
injected into Cd80/86** or Cd80/~-AIRE-HA recipients (CD45.2).
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(B) Four days after injection transferred cells were analyzed for

CD25 and Foxp3 expression. Numbers indicate the average
frequency (£SD) of cells within gates (n=3 for transfer of

CD25 Foxp3~GITR™ cells and n=5 for transfer of CD25"Foxp3~ cells;
P =0.0065 for CD25-Foxp3~GITR* input cells and P =0.15 for
CD25*Foxp3-input cells).

account for the block of thymic Ty, development at “step one,”
which is believed to be TCR-driven but cytokine independent.
Along these lines, we and others found that the bottleneck in Tyeg
development caused by CD28 deficiency affects a stage of Trg dif-
ferentiation considerably upstream of the perturbations that are
caused by IL-2 deficiency (Bayer et al., 2005; D’Cruz and Klein,
2005; Fontenot et al., 2005a; Setoguchi et al., 2005; Vang et al.,
2008). As already discussed above, it also appears highly unlikely
that CD28 functions to merely amplify the TCR signal. Sequence
analyzes of polyclonal Treg cells generated in the absence or pres-
ence of costimulation also argue against this scenario (Lio et al,,
2010). Thus, it was found that the residual Tyeg cell repertoire
generated in the absence of CD28 was not dramatically altered

at the level of TCR specificities. Instead, the relative abundance
of individual TCR specificities within the contracted Treg pool of
Cd28~'~ mice resembled that of the WT Threg repertoire, at least
with regard to abundant specificities (Lio et al., 2010). On this
basis, it was suggested that CD28 signaling provides signals (par-
allel to TCR stimulation) that facilitate Tyeg development, but by
themselves are not truly essential (Lio et al., 2010).

An alternative explanation why the polyclonal Tyeg compart-
ment is reduced by about 80% in Cd28~/~ mice would be that
some, but not other TCRs depend upon CD28 co-signals to seg-
regate into the Treg compartment. However, our observations in a
TCR transgenic system are more consistent with the “facilitator”
scenario, as the differentiation of quasi-monoclonal TCR-HA™
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Theg cells is diminished by a factor of about five-fold rather than
being fully abolished (or not being affected at all).

In order to explain why the defect in CD28 or B7 deficient mice
is quantitative rather than qualitative, we considered the hypoth-
esis that costimulation might foster T,y generation through pro-
moting the proliferative expansion of Tyeg precursors rather than
actually instructing their differentiation per se. However, we could
not find any evidence that this was the case. In fact, the prolif-
eration of Tyeg precursors was even increased in the absence of
costimulation, perhaps suggesting a compensatory mechanism.
On the basis of this finding, the most plausible scenario is that
CD28 signaling serves a dual, partly instructive (as bona fide difter-
entiation factor) and partly permissive (as survival factor) function
during Theg differentiation. Of note, neither function appears to be
truly essential, so that the role of costimulation is indeed perhaps
better described as that of a “catalyst.”

The full spectrum of molecular events downstream of CD28
signaling during Ty differentiation remains to be established.
However, recent work has shed light on how costimulation may
support the differentiation of Treg precursors through qualitatively
modulating signaling events downstream of the TCR. CD28 com-
municates with several downstream signaling cascades through
distinct motifs in its cytoplasmic tail that mediate interactions
with Lck and the PI3K pathway, respectively. Several groups have
reported that efficient Tyg cell generation does not require CD28’s
PI3K-binding motif, whereas the Lck-interacting P;g;YAPP motif
seems to be crucial for Ty differentiation (Tai et al., 2005;
Lio et al,, 2010; Vang et al., 2010). Mutations in the CD28
P137YAPP motif strongly diminish TCR/CD28 mediated NF-kB
activation (Sanchez-Lockhart et al., 2008), and the ablation of
genes involved in NF-kB activation (PKC-8, CARMA-1, Bcl-10,
IKK-2) impairs thymic Teg differentiation (Schmidt-Supprian
et al., 2004; Barnes et al., 2009; Medoff et al., 2009). The recent
identification of c-Rel as essential NF-kB family transcription fac-
tor in Ty differentiation may provide important clues as to how
integrated TCR/CD28 signaling activates the transcriptional pro-
gram that controls Treg differentiation (Isomura et al., 2009; Long
et al., 2009; Ruan et al., 2009; Deenick et al., 2010; Visekruna et al.,
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