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Leukocyte Ig-like receptor 1 (LIR-1) is an inhibitory Ig superfamily receptor with broad speci-
ficity for MHC-| expressed on leukocytes including natural killer (NK) and T cells. The extent
of LIR-1 expression on NK cells is quite disparate between donors but the regulation of
LIR-1 in NK cells is poorly understood. We examined expression profiles of LIR-1 on NK
and T lymphocytes in 11 healthy donors over 1 year. Four of the 11 donors demonstrated
substantial increases in LIR-1T NK cells. High levels of LIR-1 expression were not corre-
lated with exposure to human cytomegalovirus or the fraction of CD57% NK cells in the
donor. LIR-1 levels on ex vivo NK and CD56™ T cells were increased in vitro by short term
exposure to Il:2 or 115 compared to control but not with various other cytokines tested.
Sorted CD56PM9"t NK cells also increased LIR-1 expression when cultured in IL-2. Main-
tenance of LIR-1 on longer term NK cells was also dependent on continuous stimulation
by =15 or IL=2. While we could not detect increases in total LIR-1 mRNA in response to
cytokine treatment by qPCR, we observed a shift in activity of LIR-1 promoter reporter
constructs in the presence of |l-2 favoring the more translationally active transcript from
the proximal promoter. Together these results show LIR-1 on NK cells is under the control
of cytokines known to drive NK cell maturation and activation and suggest availability of
such cytokines may alter the NK repertoire in vivo as we observed in several donors with

fluctuating levels of LIR-1 on their NK cells.
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INTRODUCTION

Leukocyte Ig-like receptors (LIR) regulate a diverse array of func-
tions within the immune system (Colonnaetal., 1999; Brown et al.,
2004). The LIR family contains 11 functional members encoded
within the Leukocyte Receptor Complex on human chromosome
19 (Wende et al., 1999). The LIR family includes both activating
and inhibitory receptors, but the ligands and functions for many
of these receptors have not yet been elucidated. Leukocyte Ig-like
receptor 1 (LIR-1/ILT2/CD85j/LILRB1) is an inhibitory member
of the Leukocyte Ig-like receptor family widely expressed in the
immune system. The extracellular region of LIR-1 has four Ig
domains and the cytoplasmic tail contains two ITIM motifs, as
well it has other potential signaling motifs and has been shown
to associate with the SH2 domain-containing phosphatase SHP-1
(Cosman et al., 1997; Bellon et al., 2002). LIR-1 was first identified
as a receptor for MHC-I with broad specificity for both classi-
cal and non-classical forms (Colonna et al., 1997; Cosman et al.,
1997; Samaridis and Colonna, 1997). The interaction with MHC-
I has been well characterized and involves the first and second Ig
domains of LIR-1 making contact with highly conserved regions
of the a3-domain and B2-microglobulin, thereby explaining its
ability to bind to a wide range of MHC-I alleles (Chapman et al.,
1999, 20005 Shiroishi et al., 2003). The strongest MHC-I ligand is
HLA-G, a non-classical MHC-I molecule, which is expressed in a
restricted manner on placental trophoblasts, various tumors and

perhaps induced on endothelial cells (Apps et al., 2008). LIR-1 is
also believed to be a target of immune evasion as it is bound by
the human cytomegalovirus (HCMV)-encoded MHC-I homolog,
UL18, with an affinity orders of magnitude higher than for MHC-I
(Cosman et al., 1997; Shiroishi et al., 2003). Recently, LIR-1 was
also reported to bind to several types of bacteria although the
details of this interaction and its role in infection remain to be
determined (Nakayama et al., 2007).

Leukocyte Ig-like receptor 1 is expressed on monocytes, den-
dritic cells (DC), B and T lymphocytes, and natural killer (NK)
cells (Borges et al., 1997; Colonna et al., 1997; Cosman et al., 1997;
Fanger etal., 1998). It has been reported to be capable of inhibiting
the activation of T cells (Saverino et al., 2000, 2002; Dietrich et al.,
2001; Merlo et al., 2001), B cells (Merlo et al., 2005), DC (Tenca
et al., 2005; Apps et al., 2007; Young et al., 2008), and NK (Vitale
etal., 1999; Kirwan and Burshtyn, 2005; Prod’homme et al., 2007;
Morel and Bellon, 2008). B cells and monocytes uniformly express
high levels of LIR-1, whereas the surface expression of LIR-1 on T
and NK cells is low and only on a subset of the cells. For T cells, LIR-
1 expression is correlated with an effector/memory cell phenotype
(Young et al., 2001). The expression of LIR-1 on NK cells displays
a pattern that varies largely between individuals, similar to cer-
tain killer cell Ig-like receptors (KIR) such as KIR3DLI1 (Li et al,,
2008; Thomas et al., 2008). KIR expression profiles are dictated
by the various KIR genotypes and are believed to remain quite
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stable in an individual (Valiante et al., 1997; Shilling et al., 2002;
Pascal et al., 2004). We have previously found that the different
LIR-1 phenotypes on NK cells between individuals associates with
polymorphisms within the putative promoter region of the gene
encoding LIR-1, LILRBI1, and the level of transcript (Davidson
et al., 2010). Sequencing analysis on a panel of donors identi-
fied 10 different alleles producing 9 protein variants, and while
variability was also observed within the coding region of LILRB1,
donor NK cell LIR-1 expression profiles were more strongly cor-
related with promoter region polymorphisms. However, very little
is known regarding transcriptional control of LIR-1 expression.
LIR-1 expression can be driven by the activity of two distinct pro-
moters, a proximal promoter and a distal promoter located 13 kb
further upstream that leads to inclusion of an additional exon
(Lamar et al., 2010). Lymphocytes including NK cells preferen-
tially employ the distal promoter, which accounts in part for lower
levels of expression compared to myeloid cells due to the presence
of elements encoded in the upstream exon that repress translation
(Lamar et al., 2010). There is also some evidence that LIR-1 on
NK cells can be modulated in vitro by ligands such as HLA-G and
in vivo during infection by HCMV (LeMaoult et al., 2005; Wagner
etal., 2007).

Here we assessed the stability of LIR-1 expression on NK cells in
11 healthy individuals over the course of 1 year, and the influence
of particular cytokines on LIR-1 expression in NK cells. While most
donors displayed a stable pattern of expression over time, we did
observe a substantial increase in a subset of the donors, suggesting
these cells had arisen due to selective expansion or induction of
LIR-1 in vivo. Of a variety of pro- and anti-inflammatory cytokines
we examined, we found that only IL-2 and IL-15 were capable of
increasing the proportion of LIR-17 NK cells in vitro. The increase
in LIR-1 expression by this family of cytokines was correlated with
enhanced activity of the proximal promoter, suggesting a shift
to the more translationally active transcript might enhance LIR-
1 expression in NK cells. Therefore while certain NK cell LIR-1
phenotypes may be dictated by LILRBI1 genotypes, our data sug-
gests there are additional levels of regulation beyond the inherent
genetic control for this receptor.

MATERIALS AND METHODS

HUMAN SUBJECTS, BLOOD SAMPLES, AND CELL LINES

Blood samples were drawn from healthy individuals over the
course of this study. Written consent was obtained from all donors
and all procedures were performed as approved by the Health
Research Ethics Board at the University of Alberta. For lon-
gitudinal study, the donors answered a short questionnaire on
health status at the time of each sampling. The study was initi-
ated between February and June for all of the donors involved,
and donors typically gave blood in the morning on various days
of the week. All donors were self-declared as healthy and not
involved in endurance training at the time of donation. Primary
human peripheral blood mononuclear cells (PBMC) were iso-
lated from blood using Lympholyte-H (Cedarlane, Burlington,
ON, Canada) density gradient separation medium. Primary NK
cells were further isolated from PBMC using the EasySep Human
NK Cell Enrichment Kit (Stem Cell Technologies, Vancouver, BC,
Canada) as directed by the manufacturer. In brief, PBMC were

resuspended in sterile phosphate buffered saline (PBS) with 2%
fetal bovine serum and 1 mM EDTA at a concentration of 5 x 107
cells/ml prior to NK cell separation. Cells were then incubated with
EasySep Negative Selection Human NK Cell Enrichment Cocktail
(Stem Cell Technologies) at 50 pl/ml followed by EasySep Mag-
netic Microparticles (Stem Cell Technologies) at 100 wl/ml. For
short term cultures, NK cells were then isolated by immunomag-
netic separation using an EasySep Magnet (Stem Cell Technolo-
gies). Total PBMC or isolated NK cells were cultured in assay
medium consisting of Iscoves (Invitrogen, Carlsbad, CA, USA),
10% Human Serum (Sigma, Oakville, ON, Canada), 2 mM gluta-
mine, gentamicin, penicillin—streptomycin, and anti-mycotic (all
from Invitrogen). For in vitro expansion, NK cells were purified
from total PBMC using the StemSep Human NK Cell Enrichment
Kit (Stem Cell Technologies). NK cells were then resuspended in
Iscoves, medium 10% human serum, and 2 mM glutamine and
provided with irradiated 721.221 cells as feeders cells, 0.5 pg/ml
phytohaemagglutinin (PHA), and 200 U/ml rIL-2. CMV IgG test-
ing was performed using the Siemens Behring Enzygost®CMV IgG
assay as per manufacturer’s instructions. Once dividing, NK cells
were maintained in culture media with 100 U/ml rIL-2. 721.221
cells were cultured in Iscoves medium, 10% FBS, and 2 mM glut-
amine. The YTS cell line was maintained in Iscoves medium, 15%
FBS, 2 mM glutamine, and 50 WM B-mercaptoethanol.

ANTIBODIES AND FLOW CYTOMETRY

APC Anti-Human CD3 (HIT3a), PE-Cy5 Anti-Human CD85j
(GHI/75), FITC Anti-Human CD57 (HNK-1) were purchased
from BD Biosciences (Mississauga, ON, Canada). FITC Anti-
Human CD69 (FN50) and PE Anti-Human CD56 (MEM188)
were purchased from eBiosciences (San Diego, CA, USA). Iso-
type matched controls were obtained from the same companies as
staining antibodies. For the time course studies of LIR-1, 1 x 10°
cells were stained ex vivo with 5l of each antibody in a mini-
mal volume (<50 pl) for 30—60 min at 4°C. Cell surface staining
analysis was performed using adjusted settings to obtain over-
lapping staining for the isotype matched control antibodies and
analyzed using a FACSCanto or FACSCanto II (BD Biosciences).
Subsequent experiments were also analyzed on a LSRII ana-
lyzer (BD Biosciences). Data analysis was performed using BD
FACSDiva Software and FlowJo (Tree Star Inc.). For intracellu-
lar phospho-STAT5 staining, cells were permeabilized using the
Cytoperm/Cytofix kit (BD Biosciences) and then stained with
AF647 Anti STATS5 (pY694; Clone 47) or isotype matched control
(BD Biosciences). Cell sorting was performed on a BD FACSAria
cell sorter.

CYTOKINE STIMULATIONS

Total PBMC were resuspended in assay media and plated out
in a 48-well plate with 2 x 10° cells per well in a volume of
400 pl. For purified NK cell stimulations, cells were cultured in
a 96-well plate with 5 x 10° cells in a volume of 200 ul. Cells
were stimulated with human recombinant IL-2 (200 U/ml; Invit-
rogen),IL-12 (20 ng/ml), IL-15 (30 ng/ml), IL-10 (10 ng/ml), IFNa
(5U/ml), IFNB (5U/ml), IFNy (1 U/ml; R&D Systems, Burling-
ton, ON, Canada), IL-18 (100 ng/ml; MBL International, Woburn,
MA, USA). Cytokine cultures with expanded NK cell populations
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were performed in the presence of low dose IL-2 (20 U/ml). Cells
were then incubated at 37°C and 5% CO,; for 24 or 72h. The
statistical significance of changes in LIR-1 expression following
cytokine culture was determined by applying a two-sample ¢-test
assuming equal variances comparing culture conditions with con-
trol using Microsoft Excel software. Changes were considered to be
statistically significant when they yielded P-values less than 0.05,
corresponding to a 95% confidence interval.

QUANTITATIVE REAL-TIME PCR AND LUCIFERASE ASSAYS

Total RNA was purified using the RNeasy kit (Qiagen, Mississauga,
ON, Canada) with DNase digestion performed as directed using
the RNase-free DNase Set (Qiagen), and cDNA synthesized using
qScript cDNA SuperMix (Quanta Biosciences, Gaithersburg, MD,
USA). The LIR-1 quantitative real-time polymerase chain reaction
was performed as previously described (Davidson et al., 2010).
The RPL24 transcript was detected using primers RPL24FOR
(5'-GGACCGACGGGAAGGTTTTCCAG-3') and RPL24REV (5'-
GGAATTTGACTGCTCGGCGGGT-3'). The distal (—14086 to
—13793) and proximal (—1287 to —1) promoter regions (rela-
tive to the translation start) were amplified by PCR from D258
genomic DNA using the appropriate primers with the addition of
Kpnl and Nhel restriction sites. The fragments were ligated into the
PCRII TOPO vector (Invitrogen) and verified by sequence analy-
sis. The fragments were excised using Kpnl and Nhel and cloned
into the pGL3 vector (Promega, Madison, WI, USA) upstream
of the firefly luciferase gene. YTS cells were cultured for 22h in
the presence or absence of IL-2 (1000 U/ml), and 5 x 10° cells
per sample were then transfected with 2.5 g of pGL3 with and
without the insert, and 10 ng of the pRL-TK plasmid using the
Amaxa nucleofection system (AMAXA Biosystems, Gaithersburg,
MD, USA) on program T-020 using Kit R. Transfected cells were
then cultured for an additional 16 h with or without IL-2 before
collection and analysis using the Dual-Luciferase reporter assay
system (Promega). Firefly luciferase activity was normalized to
the pRL-TK vector and is expressed relative to pGL3 alone.

RESULTS

FLUCTUATIONS IN LIR-1 EXPRESSION PROFILES ON HUMAN NK CELLS
To measure LIR-1 expression on human peripheral blood NK
cells and T cells, surface expression was assessed by flow cytom-
etry on freshly isolated PBMC with directly coupled antibod-
ies. Figure 1 displays representative LIR-1 expression profiles on
NK (CD56TCD3™%), T cells, and CD56™ T cells for two donors
exhibiting markedly different NK cell LIR-1 phenotypes. Typi-
cal NK cell profiles observed for our donors appeared biphasic,
but with poor resolution of high and low expressing cells within
the population, and often the LIR-19™ subset overlapping with
isotype matched control. As previously reported, both the fre-
quency of LIR-17 cells and the intensity of LIR-1 staining on NK
cells can vary dramatically between individuals. The frequency
of LIR-17CD56™ T cells was also quite variable between donors
(Figure 1). Typically, this population of T cells exhibited a much
more pronounced biphasic LIR-1 staining compared to NK cells.
As expected, the frequency of LIR-1T CD56"8 T cells was consis-
tently lower than the other two subsets with the majority of the
cells appearing truly negative (Figure 1).

CD56'T Cells

SSC
CD56

gcytes|

CD3

B NK Cells
D252

CD56'T Cells T Cells

77% 88% 55%

"LIR-1 " LIR-1 " LIR-1

D257

28% 26% 6%

LIR-1 LIR-1 LIR-1
FIGURE 1 | Comparison of LIR-1 expression on primary peripheral
blood lymphocyte subsets. Freshly isolated PBMC were stained with
antibodies to LIR-1, CD3, and CD56. See the Section “Materials and
Methods" for details. (A) The gating strategy depicted was used to
generate the LIR-1 staining profiles for the three lymphocyte subsets
shown. (B) Representative results for a high donor D252 (top row) and a
low donor D257 (bottom row) based on NK cell LIR-1 expression are shown.

To assess the stability of LIR-1 expression patterns on periph-
eral blood NK cells, we profiled 11 donors at intervals over
the course of 1year. These 11 donors presented a gradient of
expression levels ranging from 24.8 to 69.1% LIR-11 NK cells
based on their initial samples. The average percent LIR-11 cells
for the panel at the completion of our time course are shown
for the NK, CD56" T, and CD56"% T cells (Figure 2A). For
the 12-14-month period they were followed, the percentage
of LIR-1T NK cells in peripheral blood was relatively stable
in most donors as indicated by the standard deviation (SD)
(Figure 2A). Consistent staining was observed for each time
point in most donors with either high or low initial LIR-1 fre-
quency as illustrated with D105 and D177 (Figure 2B). How-
ever, 5 of the 11 donors had an obviously larger SD of the
mean LIR-1 frequency (greater than 7%) compared to other
donors. In these donors (D230, D224, D226, D225, and D227)
the range of values varied >15% positive over the time course.
When we assessed the trends over time, these changes occurred
either as a large single increase between consecutive bleeds as
shown for D227, or as stepwise increments over time as seen
in D226 (Figure 2B). Interestingly with D227, following the
large increase at month 3, the new LIR-1 frequency stabilized
for the remaining 9 months of the study. One donor out of the
11 monitored (D224) exhibited a noticeable, sustained decrease
in the proportion of LIR-1T NK cells over time, although by
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FIGURE 2 | Fluctuations of LIR-1 expression over time. The Donors are in order of increasing NK cell LIR-1 expression from left to
frequency of LIR-1 expression in the three lymphocyte subsets were right. The number of bleeds for each donor is included in parenthesis
examined on ex vivo PBMC by flow cytometry as depicted in Figure 1 underneath the x-axis labels. Error bars indicate the SD. (B) LIR-1
for the panel of donors. (A) The average frequency of LIR-1* cells for frequency in each cell subset with respect to the time of bleed is
each subset was calculated for each donor for all time points collected. plotted for representative donors.

the completion of the time course it had returned to the initial
frequency.

The range of the mean LIR-1 frequency in the CD56™1 T cell
subset was 41.9-71.2% and fluctuation in the LIR-1 expression
on these cells was also evident in our panel of donors. However,
unlike the NK cell changes we observed, where expression mostly
increased, the population of LIR-17CD56™ T cells expanded and
contracted over time in a number of donors (Figure 2B). The
observed changes in the LIR-1TCD56™ T cell population did not
always parallel what was seen in the NK cells from the same donor,
and there was no overall correlation between the frequency of LIR-
17CD56™ T cells and the LIR-1 NK cells. The average frequency
of LIR-17CD56"¢ T cells was more similar between donors com-
pared to other cell types (Figure 2A). The mean frequency of
LIR-1 in this subset was 29.3% positive across the donor panel

(range =16.2% positive) and varied between samples in most
donors but with no particular trends (Figure 2B).

HCMV AND CD57 ARE NOT CORRELATED WITH HIGH LIR-1*+ NK

We next wanted to determine what factors might influence or be
correlated with LIR-1 expression on NK cells in vivo. In our data
set, there was no obvious correlation with either sex or age of the
donors and no donors reported any severe illnesses during the
course of the study (Figure 3A and data not shown). Illnesses that
were reported by donors during the time course included aller-
gies and common cold symptoms. Importantly, no illnesses were
reported by donors between bleeds where dramatic increases in
the proportion of LIR-1* NK cells were observed. However, the
age range of our cohort allowed for the possibility that the donors
might have acquired HCMV infection during the period of our
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study. Several studies have suggested HCMYV infection can alter
the NK repertoire (Guma et al., 2004) and LIR-1 profiles (Wag-
ner et al., 2007). To address the possibility that HCMV exposure
was responsible for the changes in LIR-1 expression we observed,
serum samples were collected from the donors only at the con-
clusion of the time course and tested for the presence of HCMV
antibody. Only 3 of 11 donors were found to be HCMV seropos-
itive: D177, D183, and D227 (Figure 3A). While D227 was one
of four donors who exhibited expansion in the LIR-1* subset,
none of the other donors with high levels of LIR-1 were found
to be HCMV seropositive. Therefore HCMV exposure does not
appear to be required to induce or maintain a high frequency of
LIR-1" NK cells. However, there are many other pathogens that
might drive a selective expansion or general maturation of NK
cells. Recently, work from Lanier and colleagues has implicated
the CD57 epitope as a marker of more mature NK cells and these
authors found a high frequency of LIR-1 expression within the
CD577 subset (Lopez-Verges et al., 2010). We performed a simi-
lar analysis to determine if there was a correlation between CD57
and LIR-1 expression in NK cells in our donors. Analysis of CD57
and LIR-1 expression on ex vivo NK cells from a number of our
donors revealed that some donors present a high degree of co-
expression, but this was not exclusive as a number of donors also
possessed large single positive NK cell subsets (Figure 3B). Fur-
thermore in a number of our donors, we found that the brightest
LIR-1 expressing NK cells were in fact within the CD57"°¢ subset.
When comparing the expression of LIR-1 on CD57%¢% and CD57"
NK cell subsets between our donors, we observed a slightly lower
mean LIR-1 frequency on the CD57 expressing cells (Figure 3C).
Thus overall, we detected no significant correlation between the

degree of CD57 expression and LIR-1 on NK cells in our donors.
These results suggest the frequency of LIR-1 on NK is not linked
to the overall state of maturation in NK cells.

IL-15 AND IL-2 INCREASE LIR-1* CD56*T CELLS IN PBMC CULTURES

In an attempt to understand what factors might alter LIR-1 expres-
sion profiles in vivo, we investigated the ability of cytokine stimula-
tion to affect LIR-1 expression on peripheral blood lymphocytes ex
vivo. We first examined the effects of the NK stimulatory cytokines
IL-2,1L-15, and IL-12. Freshly isolated PBMC were cultured in the
presence of each cytokine for 24 h, after which cell surface expres-
sion of LIR-1 on different cell types was measured by flow cytom-
etry and compared to control cultures. In the majority of donors
tested, these cytokines failed to significantly affect LIR-1 expres-
sion on NK cells despite their ability to induce the early activation
marker CD69 (Figures 4A,B; Table 1). While the IL-12 induction
of CD69 was modest on donor NK cells, we confirmed its ability
to markedly increase expression of NKG2A, as has been previ-
ously reported (data not shown; Saez-Borderias et al., 2009). IL-15
stimulation increased NK cell LIR-1 expression slightly in most
donors, but increases were found to reach statistical significance
compared to control in only two of eight donors (Table 1). The
CD56™ T cells were also unresponsive to cytokine stimulation in
all donors tested in terms of affecting the expression of both LIR-
1 and CD69 (Figure 4A, and data not shown). However, for the
CD56™ T cell subset, both IL-15 and IL-2 were able to significantly
increase the percentage of LIR-17 cells (Figure 4A; Table 1). IL-15
stimulation significantly increased LIR-1 relative to control in all
eight donors tested, and IL-2 in 5/8 donors (Table 1). Whether
these responses represent LIR-1 induction, selective survival, or

A Donor # 177 183 224 230 226 190 225

Avg % LIR-1" NK 227 37.6 404 40.6 41.8 482 51.0

Range > 15% = = + + + R +
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Reported Illness - - () - A A -
B D227 D229 c

19.1 335 117.5 36.7

e

0 a
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CD57

FIGURE 3 | Natural killer cell LIR-1 expression, demographics, and
maturation. (A) The sex and HCMV status is shown relative to the average
percent of LIR-1* NK cells for the same set of donors in Figure 2. The HCMV
status was determined at the end of the study. The “+" indicates positive
serology for HCMV (see Materials and Methods for details). All donors fall
within the age range of 20-40 years old. For reported illnesses A represents
common cold symptoms reported and ® represents reported allergy
symptoms at the time of a donation. (B) High LIR-1 expression does not
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correlate with high CD57 staining. Ex vivo PBL were examined for the
co-expression of LIR-1 and CD57 on NK cells as described in the Section
“Materials and Methods.” Representative profiles from two donors are
shown. (C) The frequency of CD57 is plotted against the frequency of LIR-1
examined on donor NK cells. Each point represents an individual donor (left
panel). The proportion of LIR-1 positive cells on CD57+ and CD57"¢ NK cells
from the same donors is shown with the mean frequency indicated (right
panel).
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expansion of the LIR-17 subset remains to be investigated. IL-12
culture appeared to slightly increase LIR-1 expression in this T
cell subset, but only one donor exhibited a statistically significant
increase in expression. We also tested the ability of IL-12 in com-
bination with IL-18 to augment LIR-1 expression, but found no
change relative to control despite inducing IFN-y expression by
NK cells (data not shown). Alternatively, we tested the effect of the

A 75 * W Control
* oiL-15
) olL-2
miL-12
LI
50 /TN
+-—I vy B \I Control
' sotype
= CD69
—
X CD56'T
25
0 T T /7| ———— Control
NK CD56'T T J Isotype

CD69

FIGURE 4 | IL-15 and IL-2 increase LIR-1* CD56T cells in PBMC cultures.
(A) Donor peripheral blood mononuclear cells were stimulated ex vivo with
115, 1L-2, 11-12, or media alone for 24 h and the three lymphocyte subsets
were then examined for LIR-1 expression by flow cytometry. Error bars
indicate the SEM (n=D5). Representative results for D230 are shown

(*P < 0.05). (B) CD69 expression profiles of NK cells and CD56 +T cells
following 24 h cytokine stimulation. Representative results from an assay
with D230 are shown. T cell histograms are excluded as CD69 expression
was not induced over 24 h culture under all conditions.

anti-inflammatory cytokine IL-10, but once again LIR-1 expres-
sion on primary NK cells was unaffected (data not shown). When
cytokine cultures were extended to 72 and 120h, LIR-1 expres-
sion on NK cells remained comparable with control (data not
shown).

IL-15 AND IL-2 INCREASE LIR-1 ON PURIFIED NK CELLS

In our donors we observed a slight trend toward increased surface
expression of LIR-1, on NK cells treated with IL-15 in PBL cultures
though largely not statistically significant (Table 1). To further
investigate this we performed similar stimulations on purified NK
cells. Freshly isolated NK cells were placed in culture in the pres-
ence of IL-15, IL-2, or media alone. Both cytokines were used at
a high enough concentration to signal through the intermediate-
affinity IL-2/15 receptor thereby overcoming the requirement for
trans-presentation of IL-15 (Pillet et al., 2009). Following 72h
treatment of purified NK cells, the proportion of LIR-1T cells
was observed to significantly increase with both IL-15 and IL-2,
and these increases correlated with increases in the fluorescence
intensity of LIR-1 staining as well (Figures 5A,B). This increase
in LIR-17 cells was greater in stimulated purified NK cultures
compared to that observed in PBL cultures. Consistent with our
observations following PBL stimulation, the effect of IL-15 was
greater than the effect of IL-2 on enhancing LIR-1 expression
on purified NK cells. This effect of IL-15 treatment on purified
NK cells was reproducible among different donors of varying
LIR-1 phenotypes to different degrees and there was a significant
increase in both the frequency of positive cells and the intensity of
expression in the treated group collectively (Figure 5C). Altogether

Table 1 | The effect of cytokine stimulation on cell surface LIR-1 expression in lymphocyte subsets isolated from various healthy donors and

cultured for 24 h.
Donor n Control IL-15 IL-2 IL-12

% LIR-1* % LIR-1* P-value % LIR-1* P-value % LIR-1* P-value
NK CELLS
177 4 178 22.9 0.093 178 0.991 16.6 0.464
230 5 35.0 40.7 0.224 36.9 0.667 35.7 0.898
226 5 39.3 40.8 0.72 378 0.736 35.8 0.289
105 5 49.5 59.0 0.017 53.0 0.166 50.5 0.837
225 5 50.5 55.1 0.081 52.3 0.498 50.2 0.905
227 5 55.4 66.0 0.016 62.5 0.099 60.0 0.32
229 5 573 61.3 0.514 58.8 0.815 60.3 0.605
228 5 61.2 68.7 0.347 673 0.448 65.6 0.59
CD56+ T CELLS
177 4 479 68.3 0.008 64.0 0.029 54.9 0.202
230 5 53.7 70.4 0.024 679 0.029 574 0.535
226 5 40.1 55.1 0.001 477 0.121 43.2 0.282
105 5 70.2 83.3 <0.001 80.6 0.001 776 0.015
225 5 425 61.6 <0.001 56.5 0.001 473 0.121
227 5 56.1 85.6 <0.001 76.2 0.001 65.0 0.085
229 5 62.3 815 0.014 72.5 0.182 64.7 0.799
228 5 29.7 53.6 0.009 46.8 0.086 33.9 0.582

Bold indicates statistical significance as determined using a paired two-sample t-test assuming equal variance.
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FIGURE 5 | IL-15 and IL-2 increase LIR-1 expression on purified NK cells.
(A) NK cells were isolated from donor PBMC and stimulated ex vivo with
115, 1L-2, or media alone for 72 h and then examined for LIR-1 expression
by flow cytometry. Representative histograms are shown for assays with
D270 and D230. (B) The proportion of LIR-1+ NK cells and the geometric
mean fluorescence intensity in each sample from the assays with D270 and
D230 depicted in (A) with the background subtracted. (C) Changes in LIR-1
expression on NK cells stimulated with 1115 are shown for various donors.
The left panel shows changes in the frequency of LIR-1* cells while the
right hand panel shows the changes in the geometric MFI. The P-values are
for the differences in the means between the stimulated and unstimulated
samples.

these data suggests that IL-15 and IL-2 stimulation increase the
expression of LIR-1 on both NK cells and CD56™ T cells in vitro.

We next examined whether activated NK cells would respond
similarly to cytokine stimulation. Peripheral NK cell populations
were isolated from whole blood with high purity and cultured with
mitogen, irradiated feeder cells, and IL-2 to support cell growth
and division. We investigated the ability of IL-15 and a number
of other cytokines to increase LIR-1 expression in these activated

populations. Following expansion, NK cells were removed from
culture and rested out of cytokine for a period of 48 h. All cultured
NK cells were then placed in a low dose of IL-2 (20 U/ml) alone
(control) to maintain survival of cells in culture with or without
additional cytokine and examined for LIR-1 expression on day 3.
NK cells cultured in low dose IL-2 appeared to lose a bit of LIR-
1 expression on a subset of cells, indicated by the appearance of
biphasic staining on day 3 (Figure A1A in Appendix). However, the
majority of cells in low dose IL-2 cultures maintained their level
of expression comparable to day 0. When cultured in high dose
IL-2 or IL-15, both culture conditions were able to increase LIR-1
expression relative to control (Figure A1A in Appendix). Similar
to the results obtained from cultures of donor PBL, culture of IL-
2 starved NK cells in the presence of IL-12, IL-18, IL-10, IFN-a,
-B, -y for a period of 72 h were all unsuccessful in increasing the
proportion of LIR-17 cells beyond control (Figure A1A in Appen-
dix). For comparison we included combined staining for KIR on
expanded NK cells (KIR3DL1, KIR2DL1/S1) in cytokine cultures
(Figure A1B in Appendix). Overall, the staining of KIR remained
comparable between control treated and cytokine treated sam-
ples, although there did appear to be slight upregulation between
control and samples treated with IL-15. Therefore IL-15 and IL-2
appear to be able to increase LIR-1 expression on activated NK
cells as well.

We also assessed the ability of triggering different activating
receptors, alone or in combination with IL-15, to modify LIR-1
expression on ex vivo NK cells. Peripheral blood NK cells were iso-
lated and stimulated with plate-bound antibody directed against
the activating receptors NKG2D and NKp46, separately and in
combination, in the presence and absence of IL-15 for 72 h. As
a positive control for activation, NK cell expression of CD69
was examined following culture (Figure A2A in Appendix). With
antibody stimulation, the triggering of both NKG2D and NKp46
together caused the greatest induction of CD69 over unstimu-
lated or singly triggered NK cells, though the highest level of
activation was still observed following IL-15 treatment. Antibody
stimulation in the presence of IL-15 was not able to increase CD69
expression beyond that of IL-15 treatment alone in this assay (data
not shown). When examining LIR-1 expression following culture,
consistent with previous results IL-15 was able to increase the
proportion of LIR-17 cells, and this increase was not dramati-
cally enhanced with the additional triggering of NKG2D and/or
NKp46 (Figure A2B in Appendix). The triggering of these acti-
vating receptors in the absence of IL-15 was also unable to induce
LIR-1 expression on NK cells beyond control.

The observed shifts in profiles we detected could be due to
either the upregulation of LIR-1 expression or selective expansion
of LIR-17 cells. To examine if increases in LIR-1 were associated
with cell division, cells were labeled with Cell Trace proliferation
dye on day 0 without starvation and examined on day 3 for expres-
sion of LIR-1 (Figure 6A) and dilution of the dye (Figure 6B). By
day 3, we found that control (low dose IL-2) cells did not dilute
their cytoplasmic dye indicating that cell division had not occurred
over the 72-h period in these cells (Figure 6B). Under these condi-
tions, IL-15 treated cells also demonstrated very little cell division
over the same time period, although greater Cell Trace dilution
was evident relative to control. When IL-15 treated NK cells were
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FIGURE 6 | Leukocyte Ig-like receptor 1" NK cells do not proliferate
preferentially in vitro. Expanded NK cell populations were labeled with
Cell Trace Violet proliferation dye and then placed in culture in the presence
of I1:15 plus low dose I1-2 or low dose Il-2 alone (control) for 72 h and
examined by flow cytometry. (A) LIR-1 expression profiles. (B) Cell Trace
signal for the same samples as in (A). (C) LIR-1 expression profiles for the
I:15 stimulated NK cell populations depicted in (B) divided into Cell Trace
Violet bright and dim populations as shown in insert panel. Representative
results from experiments with D258 and D270 are shown (n > 3).

divided into Cell Trace bright and dim populations and LIR-1
expression examined, we observed that the LIR-1 levels were com-
parable between the two populations (Figure 6C). In fact, between
the two populations, the cells that possessed the highest level of
LIR-1 expression were cells that had not diluted their Cell Trace
over the 72-h period, suggesting selective expansion of LIR-1" NK
cells in IL-15 culture is not the main mechanism responsible for
the observed increase in LIR-1 frequency.

We observed that CD56°"18h NK cells typically displayed lower
to dim expression of LIR-1 compared to CD564™ NK cells ex
vivo. However, following cytokine culture we were unable to dif-
ferentiate the two NK cell populations given the fact that with
activation, CD56P"8t NK decrease CD56 expression and CD56dim
NK gain expression. To determine whether the two NK cell
subsets respond differently to cytokine stimulation, we sorted
CD56%m and CD56Pright NK (Figure 7A) and cultured them in
the presence of IL-2 for 5 days. Following culture we observed that
the CD56"8" population had increased LIR-1 expression and
acquired the profile of the CD56%™ subset (Figures 7B,C).
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FIGURE 7 | Leukocyte Ig-like receptor 1 expression can be induced on
CD56"9" NK to match the profile of CD56“™ NK cells. D231 NK cells
were sorted on day 0 into CD569™ and CD56°" populations and cultured in
|2 for 5 days. NK cells were provided with fresh 11-2 on day 3. (A)
Peripheral blood NK cells were isolated from D231 and examined for CD56
and LIR-1 expression. (B) LIR-1 expression profiles for D231 NK cells as
gated in (A) are shown in the upper panel and NK cell LIR-1 expression on
both subsets on day 5 are shown in the lower panel. (C) Mean fluorescence
intensity of LIR-1 staining from the NK cells shown in (B). Data is
representative of two separate experiments with different donors.

IL-2 REGULATION OF THE LIR-1 PROMOTERS

The simplest mechanism for IL-2 or IL-15 to regulate LIR-1 expres-
sion is through regulation of LIR-1 transcription. IL-2 and IL-15
signal through the same signaling chains on NK cells leading to
activation of the transcription factor STATS5. Therefore, we first
examined if the loss or induction of LIR-1 expression was cor-
related with the degree of phosphorylated STAT5 in the cells.
In vitro expanded NK cell populations were washed with media
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and plated in the absence of IL-2 for 48 h leading to a decrease
in LIR-1 expression (Figure 8A left panel). As expected, those
cells cultured in 200 U/ml IL-2 for 48 h maintained a high level
of phospho-STAT5. However, NK cells cultured in the absence
of IL-2 exhibited a decrease in phopho-STATS5 levels which coin-
cided with the observed decrease in LIR-1 expression (Figure 8A
right panel). Notably, the pSTATS5 levels did not return to base-
line suggesting pSTAT5 is maintained in the cells for some time
following the cessation of receptor signaling. We then examined
the amount of LIR-1 message in ex vivo NK cells stimulated with
IL-15 by qPCR for the amount of total transcript, as well as the
longer lymphocyte specific form of the transcript. Total RNA was
extracted from ex vivo NK cells isolated from D258 and D270,
cultured in the presence or absence (control) of IL-15 for 72h
(Figure 8B), and used for cDNA synthesis. Interestingly, despite
observing increased LIR-1 surface expression on the stimulated
NK cells, we were unable to detect a correlation with increased
levels of transcript (Figure 8C). When quantifying total LIR-1
transcript from these donors, we found that levels were slightly
decreased in IL-15 treated NK cells compared to control cul-
tured cells. These experiments were performed with a number

of other donors and though we did detect increases in total LIR-1
transcript with cytokine stimulation with some, this was not con-
sistently observed. We did note a trend toward a greater loss of
signal from the distal promoter in many of the repetitions. How-
ever, the effects on transcription of LIR-1 in these types of assays
may be masked by overall effects of the cytokines on transcription
in general making the normalization difficult as RPL24, actin and
GAPDH all exhibited some increase in absolute amounts (data not
shown). Therefore as an alternative approach, we looked directly
at the ability of cytokine signaling to affect transcription from
the two different promoters using luciferase assays (Figure 8D).
For these experiments we exploited the IL-2-independent NK-
like cell line YTS that is able to respond to exogenous IL-2. We
observed a dramatic decrease in the activity of the distal pro-
moter when the cells were stimulated with IL-2, while the activity
of the proximal promoter was increased (Figure 8E). The data
presented is representative of the results from two out of three
independent experiments, with the third repeat yielding only a
slight change in activity. The results suggest that IL-2 stimu-
lation is able to enhance expression from the proximal LIR-1
promoter.
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FIGURE 8 | IL-2 regulation of pSTAT5 and LIR-1 promoter activity. (A)
Activated primary NK cell populations were removed from culture, washed
with media, and re-plated in the presence or absence of IL-2 for 48 h. LIR-1
expression and phospho-STAT5 levels were examined following culture by
flow cytometry. Representative results for D258 are shown (n > 3).
(B) Ex vivo NK cells were cultured in the presence or absence of 1115 for RNA
extraction and qPCR analysis. (C) Representative results from quantitative
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DISCUSSION

We have previously reported that the expression patterns of LIR-1
on NK cells in different individuals is linked to genetic variation
within the LILRB1 gene (Davidson et al., 2010). In the present
study we investigated the stability of differential expression of
LIR-1 on NK cells between individuals and we observed marked
increases in the NK cell LIR-1 frequency over the course of just
lyear in several individuals. Increases in LIR-1T NK cells have
been observed during virus infection (O’Connor et al., 2007; Wag-
ner et al., 2007), as well the proportion of LIR-1T NK cells was
reported to be larger in old aged individuals compared to new-
borns and middle aged donors (Le Garff-Tavernier et al., 2010).
However this is the first observation that this subset of NK cells
can increase in the periphery of “healthy” individuals during short
term monitoring. There are at least three plausible mechanisms
that could lead to differences in the LIR-1 profile on NK cells within
an individual: (1) induction on mature or developing NK cells by
environmental stimuli such as cytokines; (2) induction during
stimulation by antigen-presenting cells or target cells; (3) expan-
sion of LIR-17 cells following stimulation. Other NK cell receptors
can be modified in vitro by cytokines, such as the transient expres-
sion of CD94/NKG2A in response to IL-12 (Saez-Borderias et al.,
2009), and changes have been observed in vivo such as NKG2C in
HCMV carriers (Guma et al., 2004). Induction of LIR-1 in human
NK cells has been shown in response to interactions with HLA-G
in vitro (LeMaoult et al., 2005), but the healthy and non-pregnant
status of our donors make it unlikely that contact with HLA-G is
responsible for the changes we observed. The relationship of LIR-1
expression with chronic infection is perhaps the most interesting.
Increases in the fraction of NK cells expressing LIR-1 have been
reported in long-term non-progressing HIV patients (O’Connor
et al., 2007) and transiently in post-transplant patients prior to
the development of CMV disease (Wagner et al., 2007). These
differences were remarkably detected in comparison with healthy
subjects despite the huge variation one expects the healthy popula-
tion to exhibit. Although our sample size is relatively small, we did
not observe any correlation in those donors exhibiting increases in
LIR-1 with a known serious infection or HCMYV status. In fact, two
out of the three HCMV™ individuals were the lowest for LIR-1 on
NK cells. A larger survey that includes HCMYV status at the outset
and end, and including greater numbers, might reveal a long-term
influence of HCMV on LIR-1 expression.

Influences of infection on the NK repertoire might be due to
either alterations in the cytokine milieu or perhaps the selec-
tive expansion of particular NK subsets that are involved in the
response to a pathogen. MCMYV infection drives expansion of
mouse Ly49H' NK cells that remain marked phenotypically as
more mature and remain in circulation for a long time (Sun et al.,
2009). To date there is no evidence selective expansions occur
in humans, but an intriguing possibility is that the changes we
observed in the LIR-1 profiles might be due to LIR-1 being coinci-
dently expressed in responding NK cells. If selective expansions of
NK cell populations do occur in humans, it would likely affect the
KIR repertoire as well, however, these changes might not have been
detected to date in the types of studies that have examined KIR
stability within healthy donors, as those analyses, similar to the one
presented here for LIR-1, only profiled five donors (Shilling et al.,

2002) and examined just two time points (Pascal et al., 2004).
It has been very recently reported that NK cells in the periph-
ery which express the T cell maturation marker CD57, represent
a highly mature, and possibly terminally differentiated subset in
humans (Lopez-Verges et al., 2010). These CD57" NK cells exhib-
ited a more mature phenotype, were present at higher frequency
with increasing age, and possessed a lower proliferative capacity.
Interestingly, LIR-1 was also shown to be highly co-expressed with
CD57 and the expression of CD57 could be induced on CD57"¢¢
NK cells with IL-2 treatment. In our donors a higher frequency of
“mature” NK cells is not correlated with more LIR-1" NK cells as
we did not observe a strong correlation of high LIR-1 with high
CD57 in our panel of donors. However, it should be noted that our
donors tended to have relatively high levels of CD57. In addition to
CD57 expression, the down-regulation of the TNF receptor family
member CD27 has been implicated in the late stage maturation
of human NK cells, as the majority of CD27"% NK cells present
in peripheral blood are CD56%4™, and the small subset of CD27+
NK cells are primarily found within the CD56*"8" population
(Vossen et al., 2008). It has been recently reported that LIR-1 is
preferentially expressed on the CD27"¢ subset of NK cells, and
that only a very small proportion of peripheral blood NK cells
co-express these two receptors (Romo et al., 2011), further sup-
porting the possibility that LIR-1 is more highly expressed on the
subset of “mature” NK cells that have been suggested to accumulate
over time.

The fluctuations we observed in the amount of LIR-1tCD56™
T cells in vivo are likely correlated with ongoing immune responses
as several studies have shown increases of LIR-1 on antigen specific
T cells with various infections (Merlo et al., 2001; Anfossi et al.,
2004; Ince et al., 2004; Poon et al., 2005). We observed that the fre-
quency of LIR-1 expression was significantly increased for CD56™
T cells in response to IL-15 and IL-2. This increase could represent
selective survival, proliferation of LIR-17 cells, or specific induc-
tion on LIR-1"%8 cells. CD56™ T cells are reported to represent the
circulating effector cytotoxic T lymphocyte pool in the periphery
(Pittet et al., 2000), but the role of LIR-1 on these cells is not fully
understood. Interestingly, activation-induced expression of CD56
on peripheral blood T cells is associated with the acquired ability to
lyse targets in an MHC-unrestricted manner (Kelly-Rogers et al.,
2006). Given this profile and the ability of LIR-1 to inhibit T cell
functions (Saverino et al., 2000), it is fitting that this subset of T
cells would be able to increase their LIR-1 frequency in response to
cytokine stimulus. Increased expression of the inhibitory LIR-1 on
CD56™ T cells in the periphery would provide an additional level
of regulation during an immune response. It is also interesting to
note that in the few donors we assessed, the vast majority of CD56™
T cells in the periphery were CD8™" (data not shown) and there-
fore LIR-1 on these cells would also compete for binding to the
same region of MHC-I (Shiroishi et al., 2003). In the future it may
be interesting to define the signaling pathways required to induce
LIR-1 expression on CD8™ T cells in comparison with NK cells.

Of the cytokines we examined, only IL-2 and IL-15 were able
to influence LIR-1 expression. IL-2 and IL-15 have recently been
demonstrated to be able to modify the cell surface repertoire of
mature NK cells cultured in vitro (Huenecke et al., 2010; de Rham
et al., 2007). In these studies, the NK cell receptors examined
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included KIR, NCR, CD16, NKG2D, and NKG2A and all were
found to be modified by cytokine culture. We have demonstrated
that similar to these receptors, the expression of LIR-1 is also
enhanced on ex vivo NK cells cultured in the presence of IL-2
and IL-15. We found that, despite signaling through the same cell
surface receptor complex, IL-15 was able to increase the propor-
tion of LIR-17 cells in culture more effectively than IL-2. This is
in line with the report that IL-15 is a more potent cytokine on
human NK cells compared to IL-2 (Pillet et al., 2009). When we
examined the proliferation of NK cells cultured in the presence of
IL-15, we observed that cell division was minimal over 72 h cul-
tures. Furthermore, when we examined the expression of LIR-1
on cells that had diluted Cell Trace proliferation dye compared
to those that did not, we found that the expression of LIR-1 was
comparable suggesting that selective expansion of LIR-17 cells
was not the main mechanism of increase. Instead, we found that
the CD5678M subset of NK cells, which proliferate vigorously
in response to IL-2 induce LIR-1, similar to the report that they
acquire KIRs as they mature (Romagnani et al., 2007).

Differences in the surface expression of NK cell LIR-1 between
donors is correlated with differences in the amount of LIR-1
message (Davidson et al., 2010), although we could not detect dif-
ferences in LIR-1 message following cytokine treatment by qPCR.
Our results suggest changes in LIR-1 surface phenotype on NK
cells within donors may be associated with a coordinated switch
in promoter choice, allowing for enhanced expression driven by
the proximal LIR-1 promoter and suppressed expression from the
distal. Analysis of the proximal promoter region has identified
a putative STAT5 binding site, which would allow for enhanced
expression of the shorter LIR-1 transcript in response to IL-15 and
IL-2. It remains also possible that additional mechanisms influ-
ence cell surface expression of LIR-1 such as post-translational
modifications, trafficking, or regulation by microRNA.

We have previously established that heritable features of the
LIR-1 gene influence expression on NK cells (Davidson et al.,
2010), and have now demonstrated that this level of expression

can be further enhanced in vitro by cytokine stimulation, and that
there are detectable changes in some cases on NK cells in vivo.
At this stage it is not clear if exposure to IL-15 is linked to the
changes we observed in the frequency of circulating LIR-1" NK
cells. Regardless, our studies demonstrate that this cytokine can
transiently influence the amount of LIR-1 expressed by NK cells,
and might therefore increase NK cell sensitivity to MHC-I ligands
in various scenarios. Therefore, while an individual’s genotype
may initially direct a certain LIR-1 phenotype, there may be addi-
tional levels of regulation involved, allowing for expression to
be enhanced, perhaps temporarily, under specific environmental
conditions. The concept of combined genetic and environmental
regulation of expression of NK cell receptors has previously been
proposed for KIR3DLI, in which multiple overlapping transcrip-
tion factor binding sites were identified in the promoter allowing
for the maintenance of expression in diverse cellular environments
(Presnell et al., 2006). Differences in LIR-1 on NK cells may have
important consequences to the host, as having too many LIR-
1T NK cells would increase vulnerability to immune evasion by
pathogens such as HCMV. Furthermore, higher levels of inhibitory
receptor per cell might raise the threshold for activation too high,
while lower levels might be associated with autoimmune type
pathologies, such as those already noted for rheumatoid arthri-
tis (Kuroki et al., 2005). Therefore, there is a need to differentially
regulate the expression of this receptor in a variety of cell types
and it will be useful to gain a more complete understanding of the
tight regulation of this receptor.
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FIGURE A1 | Cytokine stimulation of activated peripheral blood NK cell in combination with the cytokines indicated and examined for LIR-1
populations. (A) Expanded D258 NK cells were rested out of Il-2 for 48h and  expression compared to control. (B) D258 NK cells were cultured as in (A)
placed into culture for 72 h in the presence of low dose Il-2 alone (control) or and examined for pooled KIR expression on day 3.
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FIGURE A2 | Triggering activating receptors on NK cells does not
increase LIR-1 expression. (A) D183 NK cells were isolated from
peripheral blood and purity was assessed by CD56 and CD3 expression
(data not shown). Anti-human NKG2D (1D11) and anti-human NKp46
(195314) were used at 10 wg/ml to coat wells of a 96-well plate for NK cell
stimulation. NK cells were plated in the presence and absence of I:15 and
incubated for a period of 72 h. On day 3, cells were harvested and
examined for expression of CD69. The shaded histogram represents the
staining profile with an isotype control antibody. (B) NK cells shown in (A)
were co-stained for LIR-1 expression.
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