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Obesity is causally linked to a chronic state of “low-grade” inflammation in adipose tissue.
Prolonged, unremitting inflammation in this tissue has a direct impact on insulin-sensitive
tissues (i.e., liver) and its timely resolution is a critical step toward reducing the prevalence
of related co-morbidities such as insulin resistance and non-alcoholic fatty liver disease.
This article describes the current state-of-the-art knowledge and novel insights into the
role of macrophages in adipose tissue inflammation, with special emphasis on the progres-
sive changes in macrophage polarization observed over the course of obesity. In addition,
this article extends the discussion to the contribution of Kupffer cells, the liver resident
macrophages, to metabolic liver disease. Special attention is given to the modulation of
macrophage responses by omega-3-PUFAs, and more importantly by resolvins, which are
potent anti-inflammatory and pro-resolving autacoids generated from docosahexaenoic and
eicosapentaenoic acids. In fact, resolvins have been shown to work as endogenous “stop
signals” in inflamed adipose tissue and to return this tissue to homeostasis by inducing a
phenotypic switch in macrophage polarization toward a pro-resolving phenotype. Collec-
tively, this article offers new views on the role of macrophages in metabolic disease and
their modulation by endogenously generated omega-3-PUFA-derived lipid mediators.
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OBESITY AND ADIPOSE TISSUE INFLAMMATION
White adipose tissue, once considered a mere storage depot of
energy in the form of fat, is today recognized as an important
endocrine organ. In fact, the adipocyte or fat cell is actively
involved in the balance of our body homeostasis by releasing
a number of factors, collectively known as adipokines (Ouchi
et al., 2011). However, the expansion of adipose tissue mass
seen in obesity inadvertently interrupt the interplay among these
factors and other intracellular components yielding a chronic
“low-grade” inflammatory scenario in this tissue (Ferrante Jr.,
2007; Ouchi et al., 2011). This “low-grade” inflammation, also
known as “metabolic-triggered inflammation” or “metainflam-
mation,” can be described as a long-term inflammatory response
triggered by nutrients and metabolic surplus (Hotamisligil, 2006).
It involves a similar set of molecules/signaling pathways to those
involved in classical inflammation, but in this case these mole-
cules/signaling pathways have a dual role as inflammatory medi-
ators as well as regulators of energy metabolism. In fact, a rise in
pro-inflammatory adipokines such as tumor necrosis factor (TNF)
α, interleukin (IL)-6, IL-1β, monocyte chemoattractant protein
(MCP)-1, leptin, and resistin, accompanied by a reduction in the
anti-inflammatory and insulin-sensitizing adipokine, adiponectin
has been reported to signal the onset of metabolic dysfunction
(Ouchi et al., 2011).

One of the most important sequela of adipose tissue inflam-
mation is insulin resistance (Figure 1). In fact, stress sensors
activate both the c-jun-N-terminal kinase (JNK) and inhibitor of κ

kinase (IKK) pathways through classical receptor-mediated mech-
anisms (Shoelson et al., 2006). JNK and IKK activation induce
insulin resistance by disrupting serine phosphorylation of IRS-1,
a protein that connects the insulin receptor to the PI(3)K sig-
naling cascade. In parallel to the activation of these kinases and
their downstream signaling cascades, there is an increased pro-
duction of pro-inflammatory adipokines (i.e., TNFα, IL-6, and
MCP-1) in obese subjects, whose levels directly correlate with
the degree of insulin resistance (Hotamisligil et al., 1996). Adi-
pose tissue inflammation leading to insulin resistance also has
negative consequences on the liver. In fact, adipose tissue and
liver have immediate access to a vast network of blood vessels
that facilitate a direct connection between these two organs. The
exact mechanisms linking adipose tissue dysfunction and insulin
resistance with metabolic liver disease are not completely under-
stood, but several processes have been implicated. First, increased
lipolysis from visceral fat resulting in increased free fatty acid
efflux to the liver (Sanyal, 2005). Second, increased secretion of
pro-inflammatory and insulin-resistant adipokines (TNFα and
IL-6) by adipose tissue in parallel with a reduced release of
adiponectin (Sanyal, 2005; Figure 1). Finally, a combined hepatic
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FIGURE 1 | Schematic representation of the interplay between adipose

tissue, skeletal muscle, and the liver in the obesity-related perturbation

of systemic metabolic control. Obesity results in expansion of adipose
tissue mass that eventually leads to a characteristic inflammatory response
driven by macrophage infiltration and aberrant production and release of
pro-inflammatory adipokines, accompanied by a reduction in the
anti-inflammatory and insulin-sensitizing adipokine, adiponectin. This altered
profile of adipokine secretion leads to insulin resistance (IR) in the liver and
skeletal muscle, which are the major organs contributing to the
development of peripheral insulin resistance. Hepatic insulin resistance
also triggers the progression of hepatic steatosis or fatty liver.

dysregulation in free fatty acid oxidation and de novo lipogenesis
secondary to altered hepatic insulin sensitivity (Tilg and Moschen,
2008).

MACROPHAGES AND ADIPOSE TISSUE INFLAMMATION
Obesity-induced adipose tissue inflammation is a unique process
characterized by an inflammatory response driven by tissue
macrophages (Lumeng and Saltiel, 2011). In fact, a pathologi-
cal hallmark of obesity is the presence of an increased number of
adipose tissue-infiltrating macrophages, which form the charac-
teristic “crown-like structures” that surround necrotic adipocytes
and perpetuate a vicious cycle of macrophage recruitment and
exacerbated production of pro-inflammatory mediators (Weis-
berg et al., 2003; Wellen and Hotamisligil, 2003; Cancello et al.,
2005; Lesniewski et al., 2007).

Tissue macrophages display an extensive receptor repertoire
and a versatile biosynthetic capacity that confer them the plastic-
ity to adapt to different tissue microenvironments (Gordon and
Taylor, 2005). Accordingly, tissue macrophages are phenotypically
heterogeneous and can exhibit either pro- or anti-inflammatory
properties depending on the disease stage and the signals they
are exposed. Although the classification based on the Th1/Th2
nomenclature needs to be revised, macrophages are broadly char-
acterized by their activation (polarization) state according to the
M1/M2 classification system (Mantovani et al., 2007; Martínez
et al., 2009). According to this classification, the M1 designa-
tion is reserved for classically activated macrophages following
stimulation with interferon (IFN) γ and LPS, whereas the M2
designation is applied to the alternatively activated macrophages
after in vitro stimulation with IL-4 and IL-13 (Figure 2). M1

FIGURE 2 | Schematic representation of macrophage polarization in

the adipose tissue and the actions of resolvins. Obesity promotes the
polarization of macrophages into the M1 phenotype, which are highly
inflammatory in nature and release pro-inflammatory cytokines/chemokines
[e.g., tumor necrosis factor (TNF) α, interleukin (IL)-1β, IL-6, and monocyte
chemotactic peptide (MCP)-1] and superoxide anion (O−

2 ). These
macrophages express inducible nitric oxide synthase (iNOs) and cell
surface markers such as F4/80, CD11b, and CD11c and act as classically
activated macrophages expressing interferon (IFN) γ and lipopolysaccharide
(LPS)-responsive genes. Conversely, resolvins promote the resolution of
inflammation by skewing macrophages toward the M2 phenotype, which
release high levels of IL-10 in parallel with reduced levels of TNFα, IL-6, and
MCP-1. M2 macrophages are alternatively activated macrophages, originally
identified after IL-4 and IL-13 stimulation, that up-regulate scavenger,
mannose (CD206), and galactose (Mgl-1) receptors, resistin-like molecule
(RELM)-α, and chitinases Ym1 and Ym2 expression and arginase 1 activity.

macrophages display enhanced microbicidal capacity and secrete
high levels of pro-inflammatory cytokines (TNFα, IL-1β, and IL-6)
and increased concentrations of superoxide anion (O−

2 ) and oxy-
gen and nitrogen radicals to increase their killing activity (Gordon
and Taylor, 2005). Conversely, M2 macrophages dampen pro-
inflammatory cytokine levels, secrete components of the extra-
cellular matrix, and may be essential for the immune response to
parasites, tissue repair, and resolution of inflammation (Gordon,
2003). In this classification system, M1 and M2 macrophages are
merely regarded as two extremes of a continuum of functional
stages (Mosser and Edwards, 2008). For instance, M2a designa-
tion defines those macrophages stimulated by IL-4/IL-13; M2b
refers to macrophages activated by stimuli such as apoptotic cells
in concert with LPS; and M2c relates to polarization in response
to IL-10, transforming growth factor (TGF)-β, or glucocorticoids
(Martínez et al., 2008). In mice, M1/M2 macrophage polariza-
tion can be monitored by assessing the expression of selected
markers. M1-associated genes include inducible nitric oxide syn-
thase (iNOs), the interferon responsive CXC chemokines, and
classical pro-inflammatory mediators such as TNFα, IL-1β, IL-
6, and MCP-1 as well as increased production of O−

2 (Gordon,
2003; Martínez et al., 2008; Figure 2). M2 macrophages dis-
play up-regulation of scavenger, mannose (CD206), and galactose
(Mgl-1) receptors, arginase 1, which antagonizes iNOS activity,
and IL-10, in parallel with down-regulation of IL-1β and other
pro-inflammatory cytokines (Gordon, 2003; Scotton et al., 2005;
Martínez et al., 2008). In addition, the panel of M2 markers com-
prises up-regulation of other genes with unknown function such
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as chitinases Ym1 and Ym2, and resistin-like molecule (RELM)-α,
also known as FIZZ (Figure 2).

In addition to the augmented infiltration of macrophages into
the adipose tissue, obesity also induces a phenotypic switch in
these cells toward the classically activated M1 phenotype (Olefsky
and Glass, 2010). In fact, the majority of macrophages that accu-
mulate in obese adipose tissue are M1-like and selectively express
the cell surface markers F4/80, CD11b, and CD11c (Lumeng
et al., 2007; Nguyen et al., 2007). In our laboratory, we have
recently gathered data indicating the presence of a specific subset
of macrophages with high expression of the surface glycoprotein
F4/80 (F4/80hi) in adipose tissue from obese mice (Titos et al.,
2011). This finding is consistent with that reported by Bassaganya-
Riera et al. (2009) who identified two functionally distinct subsets
of macrophages in adipose tissue based on their surface expres-
sion of F4/80 (F4/80lo macrophages predominate in adipose tis-
sue of lean mice, obesity causes accumulation of both F4/80lo
and F4/80hi). Importantly, lean adipose tissue macrophages are
M2-like, display F4/80 and CD11b but are negative for CD11c
and do not exhibit activation of the inflammatory pathways. In
a series of elegant studies, Lumeng et al. (2007) and Nguyen
et al. (2007) have demonstrated that adipose tissue macrophages
undergo a phenotypic switch from the M2 polarization state to a
more M1-like, CD11c+ polarization state upon high-fat feeding.
Moreover, Patsouris et al. (2008) have reported that selective deple-
tion of CD11c+ macrophages in adipose tissue reverses insulin
resistance in high-fat diet-induced obese mice. Recently, Li et al.
(2010) have reported that the M1-like, CD11c+ macrophage sub-
set can exhibit phenotypic plasticity between inflammatory and

non-inflammatory states, depending on the presence or absence
of insulin resistance.

MACROPHAGES AND LIVER DISEASE
Kupffer cells are specialized macrophages located in the liver lining
the walls of the sinusoids (Ramadori et al., 2008). Kupffer cells are
uniquely positioned within the liver and their location enables inti-
mate contact with circulating blood and the clearance of pathogens
and parasites by receptor-mediated phagocytosis or release of
TNFα, reactive oxygen species, or proteinases. Kupffer cells are
also professional antigen-presenting cells that trigger the adaptive
immune system. Therefore, Kupffer cells act as true sentinels of
the adaptive and immune system in the liver and protect our body
from the extracorporeal environment. In cases of pathogenic infec-
tion or tissue damage, Kupffer cells act as the predominant inflam-
matory effector cell type to initiate the inflammatory cascade
leading to liver injury (Ramadori et al., 2008). In fact, activation of
Kupffer cells and the subsequent release of cytokines, reactive oxy-
gen species, and inflammatory lipid mediators (i.e., eicosanoids)
are considered an early step in the pathogenesis of liver dam-
age and tissue remodeling, as they stimulate inflammatory and
fibrogenic events in the liver (Titos et al., 2003, 2005; Ramadori
et al., 2008; Table 1). Depletion of Kupffer cells by treatment with
either gadolinium chloride, liposomal clodronate, or conditional
ablation of the diphtheria toxin receptor appears to confer a pro-
tective role in the liver by reducing the production of inflammatory
mediators and collagen content (Ramadori et al., 2008).

Recent studies have revealed a novel role for Kupffer cells in
metabolic liver disease. In fatty livers, similar to that occurring

Table 1 | Kupffer cell-derived mediators and associated liver pathologies.

Mediators Biological effects Liver pathology References

CYTOKINES/CHEMOKINES

IL-1β, TNFα, IL-6 Hepatotoxicity, endothelial activation,

steatogenic, hepatocyte proliferation

Alcoholic liver disease, acute liver injury,

NAFLD, NASH, crucial for liver regeneration

Miura et al. (2010), Ramadori and

Armbrust (2001), Taub (2004)

TGF-β, PDGF Myofibroblast transformation and

activation

Hepatic fibrosis and cirrhosis Bataller and Brenner (2005), Pinzani

(2002)

MCP-1, IL-8 Neutrophil, monocyte recruitment,

angiogenesis, steatogenic

Acute liver injury, alcoholic liver disease,

hepatic fibrosis

Devalaraja et al. (1999), Domínguez

et al. (2009)

IL-12 Lymphocyte, natural killer activation Alcoholic liver disease, viral hepatitis Leifeld et al. (2002)

IL-10, IL-18, IFNα/β Immunoregulatory, anti-inflammatory,

anti-proliferative

Ischemia-reperfusion injury, viral hepatitis Ellett et al. (2010), Takeuchi et al.

(2004), Neuman et al. (2008)

EICOSANOIDS

PGE2, PGD2 Cytoprotection/cytotoxicity Ischemia-reperfusion injury Quiroga and Prieto (1993),

Planagumà et al. (2005)

LTB4, cysteinyl-LTs Vasoactive, hepatic stellate cell

activation, chemotactic, steatogenic

Hepatic fibrosis and cirrhosis, NAFLD Titos et al. (2000), Titos et al. (2003),

Horrillo et al. (2010)

REACTIVE OXYGEN SPECIES

O−
2 , H2O2, ONOO− Hepatotoxicity and necrosis,

pro-inflammatory

Alcoholic liver disease, hepatic cirrhosis,

ischemia-reperfusion injury, steatohepatitis

Lieber (1997), Muriel (2009)

OTHER

Gelatinases Extracellular matrix remodeling,

collagen synthesis

Liver fibrosis Wynn and Barron (2010)

Complement proteins Pathogen destruction Chronic liver disease Bilzer et al. (2006)
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in obese adipose tissue, macrophages are in close proximity to
fat-laden parenchymal cells (the hepatocytes) and may establish
a cross-talk by secreting insulin-resistant cytokines such as TNFα

and IL-6, thus regulating hepatic fat and glucose homeostasis and
the progression of fatty liver (Baffy, 2009). In fact, excessive expo-
sure of Kupffer cells to fatty acids may induce the activation of
these cells via Toll-like receptors thus connecting an important
mechanism by which lipids regulate inflammation and immune
response in the liver (Kim, 2006). In a mouse model of steatohep-
atitis, Miura et al. (2010) convincingly showed that TLR9 signaling
induces production of IL-1β by Kupffer cells, leading to steatosis,
inflammation, and fibrosis. These authors have also shown that
JNK activation in Kupffer cells contribute to the development of
chronic inflammation and fibrosis in an experimental model of
diet-induced steatohepatitis (Kodama et al., 2009). Lanthier et al.
(2010) have elegantly demonstrated that early hepatic insulin resis-
tance and steatosis are concurrent with Kupffer cell activation,
and that selective Kupffer cell depletion through intravenous clo-
dronate injection is sufficient to improve hepatic insulin signaling.
Interestingly, as earlier described for adipose tissue macrophages,
alternative M2 activation of Kupffer cells appears to ameliorate
insulin resistance and to retard the progression to steatohepatitis
in mice (Odegaard et al., 2008).

CLINICAL IMPACT OF OMEGA-3-PUFAs IN DIABETES AND
METABOLIC LIVER DISEASE
The first evidences of beneficial actions of omega-3-PUFAs in
humans were provided by Endres et al. (1989). Since then, sev-
eral in vivo and in vitro studies both in human and rodents
have demonstrated the therapeutic potential of omega-3-PUFAs
in pathologies with an important inflammatory component
(Dinarello, 2010). A number of pre-clinical and clinical studies
have demonstrated that regular consumption of modest amounts
of omega-3-PUFAs (≤3 g/day) improves serum lipid profiles,
exerts cardiovascular protective actions, and may reduce the risk
of conversion from impaired glucose tolerance to type-2 diabetes
(Nettleton and Katz, 2005). The use of enriched omega-3-PUFA
diets in patients with non-alcoholic fatty liver disease could also
represent an important nutritional strategy for their clinical man-
agement (Shapiro et al., 2011). However, there is a concern that
most of studies addressing the effects of omega-3-PUFAs on glu-
cose metabolism and insulin sensitivity did not have a control
group and that dosages of fatty acids were sometimes higher than
those sufficient to obtain beneficial end-points in these patients
(De Caterina et al., 2007). This point out that new, more specific
approaches are needed (i.e., compare potency and specificity of
resolvins to their substrate precursors, see below).

EFFECTIVE RESOLUTION OF INFLAMMATION: ROLE OF
MACROPHAGES
Since prolonged inflammation is detrimental to the host, higher
organisms have evolved protective mechanisms to ensure reso-
lution of the inflammatory response in a limited and specific
time- and space-manner (Serhan et al., 2007). Once thought
as a mere passive process of dilution of inflammation, resolu-
tion is today envisioned as a highly orchestrated process coordi-
nated by a complex regulatory network of cells and mediators.

Among the molecules that facilitate resolution, lipoxins gener-
ated from the omega-6-PUFA arachidonic acid, and resolvins
and protectins generated from omega-3-PUFAs, are the lipid
mediators that have attracted most attention. These endoge-
nous anti-inflammatory and pro-resolving mediators counter-
act the effects of pro-inflammatory signaling systems and act
as “braking signals” of the persistent vicious cycle leading to
unremitting inflammation (Serhan et al., 2008). In fact, the same
pro-inflammatory factors that initially trigger the inflammatory
response also signal the termination of inflammation by stimu-
lating the biosynthesis of pro-resolving lipid mediators (Serhan
et al., 2008). For instance, both PGE2 and PGD2 transcription-
ally activate the expression of 15-LO in human PMN, switching
the mediator profile of these cells from the pro-inflammatory
LTB4 to the anti-inflammatory lipoxin A4, which was the first
identified omega-6-PUFA-derived anti-inflammatory lipid medi-
ator (Serhan et al., 2007, 2008). Another example of this class
switch is the displacement of pro-inflammatory lipid mediators
derived from omega-6-PUFAs by anti-inflammatory mediators
(i.e., resolvins and protectins) derived from omega-3-PUFAs (Ser-
han, 2011). These anti-inflammatory and pro-resolving mediators
exert a strict control of the resolution process and pave the way
for monocyte migration and their differentiation to phagocytos-
ing macrophages, which remove dead cells and then terminate the
inflammatory response (Tabas, 2010; Serhan, 2011).

RESOLVINS
Resolvins are a novel family of anti-inflammatory and pro-
resolving mediators generated from the omega-3-PUFAs docosa-
hexaenoic acid (DHA) and eicosapentaenoic acid (EPA). By using
a lipidomics-based approach that combines liquid chromatogra-
phy and tandem-mass spectrometry, Serhan et al. (2000, 2002)
identified a library of omega-3-PUFA-derived lipid mediators
present within exudates obtained from mice dorsal skin pouches
during the “spontaneous resolution” phase of acute inflamma-
tion. These novel bioactive lipid autacoids were termed resolvins
and were classified as either resolvin E-series, if the biosynthesis
is initiated from EPA, or resolvin D-series, if they are gener-
ated from DHA. Schematically, the biosynthesis of resolvin E1
is initiated when EPA is converted to 18R-hydroperoxy-EPE by
endothelial cells expressing COX-2 treated with aspirin (Serhan
et al., 2000). Alternatively, 18R-hydroperoxy-EPE can be produced
through cytochrome P450 activity (Haas-Stapleton et al., 2007).
By transcellular biosynthesis, 18R-hydroperoxy-EPE generated by
endothelial cells is transformed by 5-LO of neighboring leukocytes
into resolvin E1 (5S,12R,18R-trihydroxy-EPA) via a 5(6)epoxide
intermediate (Serhan et al., 2000, 2002). Resolvin D1 biosynthesis
is also initiated in endothelial cells expressing COX-2 treated with
aspirin, which transform DHA into 17R-hydroxy-DHA which is
further transformed by leukocyte 5-LO into resolvin D1 (Ser-
han et al., 2000, 2002). More importantly from a physiological
point of view, resolvin D1 can also be formed from endogenous
sources of DHA without the requirement of aspirin. In this case,
endogenous DHA is converted via 15-LO/5-LO interactions that
give rise to a 17S alcohol-containing series of resolvins, including
resolvin D1 and resolvin D2 (Hong et al., 2003). Finally, DHA
is also transformed into a dihydroxy-containing DHA derivative,
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17S-hydroxy-DHA via an intermediate epoxide that opens via
hydrolysis and subsequent rearrangements to form protectin
D1 (10R,17S-dihydroxy-docosa-DHA) (Serhan et al., 2000, 2002;
Hong et al., 2003).

Unlike their precursors DHA and EPA,resolvins exert biological
actions at the nanomolar range. Resolvin E1, decreases PMN infil-
tration and T cell migration, reduces TNFα and IFNγ secretion,
inhibits chemokine formation and blocks IL-1-induced NF-κB
activation (Gronert et al., 2005; Schwab et al., 2007; Bannen-
berg and Serhan, 2010). Resolvin E1 also stimulates macrophage
phagocytosis of apoptotic PMN and is a potent modulator of pro-
inflammatory leukocyte expression adhesion molecules (i.e., L-
selectin) (Schwab et al., 2007; Dona et al., 2008). In vivo resolvin E1
exerts potent anti-inflammatory actions in experimental models
of periodontitis, colitis, and peritonitis and protects mice against
brain ischemia-reperfusion (Arita et al., 2005; Bannenberg and
Serhan, 2010). Furthermore, Haworth et al. (2008) have identi-
fied a resolvin E1-initiated resolution program for allergic airway
responses. Finally, a recent study has identified resolvin D2 as a
potent endogenous regulator of excessive inflammatory responses
in mice with microbial sepsis (Spite et al., 2009).

Our laboratory has recently provided evidence that adipose
tissue expresses all the enzymes necessary for the formation of
bioactive lipid mediators derived from both omega-6 and omega-
3-PUFAs (i.e., 12/15-LO, 5-LO, FLAP, LTA4 hydrolase, and LTC4
synthase; Horrillo et al., 2010). Importantly, by means of liquid
chromatography–tandem mass spectrometry (LC/MS/MS) analy-
sis we have detected the presence of the omega-6 products PGE2,
PGF2α, TXB2, 5-HETE, 12-HETE, and 15-HETE as well as the for-
mation of the omega-3-derived mediators resolvin D1, protectin
D1, and 17-hydroxy-DHA (González-Périz et al., 2009). Interest-
ingly, the administration of a DHA-enriched diet to ob/ob mice,
an experimental model of obesity-induced insulin resistance and
fatty liver disease, resulted in the amplification of the formation of
resolvin D1, protectin D1, and 17-hydroxy-DHA, accompanied by
an inhibition of the formation of omega-6-derived inflammatory
mediators (González-Périz et al., 2009). In these animals, DHA
significantly increased adipose tissue levels of adiponectin which
alleviated hepatic steatosis and insulin resistance (González-Périz
et al., 2009). Of interest, intraperitoneal injection of resolvin E1 at
the nanomolar levels elicited significant insulin-sensitizing effects
by inducing adiponectin,GLUT-4,and IRS-1 expression in adipose
tissue and conferred significant protection against hepatic steatosis
(González-Périz et al., 2009). There is also evidence that omega-3-
PUFAs may also signal independently of the 12/15-LO pathway by
exerting potent anti-inflammatory and insulin-sensitizing actions
through a G-protein-coupled 120 receptor (GPR120) (Oh et al.,
2010).

Recent findings from our laboratory also indicate that DHA
(at micromolar concentrations) and resolvin D1 (at nanomo-
lar concentrations) consistently induce hallmarks of alternative
macrophage activation in adipose tissue including stimulation of
arginase 1 expression and non-phlogystic macrophage phagocy-
tosis and attenuation of IFNγ/LPS-induced Th1 cytokine secre-
tion (Titos et al., 2011). These results are in agreement with
those reported by Schif-Zuck et al. (2011) who recently iden-
tified a novel phenotype of macrophages with pro-resolving

properties emerging during the resolution of murine peritoni-
tis. These macrophages had a low marker expression of CD11b
(CD11blow), engulfed significantly higher numbers of apoptotic
PMN than CD11bhigh macrophages, responded poorly to activa-
tion by different TLR ligands in terms of cytokine and chemokine
secretion, lost their phagocytic potential and were prone to
migrate to lymphoid organs (Schif-Zuck et al., 2011). In addi-
tion, these CD11blow macrophages expressed low or moderate
levels of COX-2, metalloproteinase-9, and 12/15-LO, but not
detectable levels of iNOS and arginase 1. Importantly, in vivo
administration of resolvin E1, resolvin D1, and glucocorticoids
to peritonitis-affected mice clearly enhanced the appearance of
CD11blow macrophages by reducing the number of engulfment-
related events required for macrophage deactivation and by
reducing the ability of peritoneal macrophages to produce pro-
inflammatory cytokines upon LPS stimulation (Schif-Zuck et al.,
2011). The ability of resolvins to modify tissue macrophage plas-
ticity has also been demonstrated by Hellmann et al. (2011). These
authors were able to improve insulin resistance by administering
resolvin D1 to obese-diabetic mice, which reduced macrophage
F4/80+CD11c+ cell accumulation and increased the percentage
of positive F4/80 cells expressing Mgl-1, a marker of alterna-
tively activated macrophages, in adipose tissue (Hellmann et al.,
2011).

Studies on experimental models of liver injury have eluci-
dated a protective role of DHA and DHA-derived lipid mediators
against hepatic inflammation. In fact, feeding of a DHA-enriched
diet ameliorated hepatotoxic-induced necroinflammatory liver
injury in mice (González-Périz et al., 2006). The hepatopro-
tective actions of DHA were associated with a decrease in the
hepatic formation of PGE2 and a concomitant increase in the
generation of protective DHA-derived lipid mediators (i.e., PD1
and 17S-HDHA). The beneficial role of these DHA-derived lipid
signals was further supported by experiments in vitro demon-
strating attenuated DNA damage and oxidative stress in hepato-
cytes. More important, DHA and DHA-derived autacoids reduced
TNFα release in macrophages, recognized as the predominant
effector cells involved in the inflammatory cascade leading to
hepatocyte damage (Decker, 1990). A significant down-regulation
of 5-LO protein expression was also noticed in macrophages
treated with 17S-HDHA and in liver tissue from mice receiving
DHA in the diet (González-Périz et al., 2006). This is relevant
because the presence of an active 5-LO pathway in the liver is
restricted to Kupffer cells and inhibition of the 5-LO pathway in
these resident macrophages has been shown to attenuate necroin-
flammatory liver injury and fibrosis (Titos et al., 2000, 2003,
2005).

CONCLUSION
Obesity is not only a matter of appearance and beauty, but a seri-
ous health issue because the global obesity epidemic will result
in increased incidence and risk of cardiovascular disease, type-
2 diabetes, dyslipidemia, and fatty liver disease. The prevalence
of obesity-related metabolic disorders is tightly associated with
the appearance of a chronic “low-grade” inflammatory state in
the adipose tissue, which severely disrupts the endocrine func-
tion of this organ. Indeed, a number of studies have appreciated
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that expansion of adipose tissue during weight gain is associated
with an inflammatory phenotype characterized by the recruitment
of inflammatory cells, mainly macrophages, in this tissue. A very
provocative strategy to manipulate this exacerbated inflammatory
response is to replace the use of drugs that inhibit the forma-
tion of pro-inflammatory mediators by the use of endogenous-
generated autacoids that boost the resolution of inflammation.
Therefore, adipose tissue inflammation in obesity appears to
be the perfect scenario for testing the novel anti-inflammatory
and pro-resolving lipid mediators, designated resolvins. Notably,
these inflammation-resolving factors can induce a proper skew
of macrophages toward a unique pro-resolving phenotype,

thus ameliorating the incidence of obesity-related metabolic
disorders.
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