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Despite their clear relationship to immunology, few existing studies have examined the
potential role of microparticles (MP) in infectious disease. MP have a different size range
from exosomes and apoptotic bodies, with which they are often grouped and arise by differ-
ent mechanisms in association with inflammatory cytokine action or stress on the source
cell. Infection with pathogens usually leads to the expression of a range of inflammatory
cytokines and chemokines, as well as significant stress in both infected and uninfected
cells. It is thus reasonable to infer that infection-associated inflammation also leads to
MP production. MP are produced by most of the major cell types in the immune system,
and appear to be involved at both innate and adaptive levels, potentially serving differ-
ent functions in each. Thus, they do not appear to have a universal function; instead their
functions are source- or stimulus-dependent, although likely to be primarily either pro- or
anti-inflammatory. We argue that in infectious diseases, MP may be able to deliver antigen,
derived from the biological cargo acquired from their cells of origin, to antigen-presenting
cells. Another potential benefit of MP would be to transfer and/or disseminate phenotype
and function to target cells. However, MP may also potentially be manipulated, particularly
by intracellular pathogens, for survival advantage.
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INTRODUCTION
The paradigm of intercellular cell signaling mechanisms has until
recently been assumed to be limited to direct cell–cell contact
and via local soluble factor release. However, there has been
increasing interest in the role of plasma membrane-derived small
lipid/protein vesicles in cell–cell communication in the last decade.
Microparticles (MP) are one such type of vesicles gaining more
recognition as their biological roles are being explored. Although
there is no standardized terminology for these small extracellular
vesicles, the term, microparticle, usually refers to a subset of extra-
cellular, cell membrane-derived vesicles ranging from 0.1 to 1 μm
in diameter, shed directly from the plasma membrane through the
process of ectocytosis (Gasser and Schifferli, 2004; Cocucci et al.,
2009; Pap et al., 2009). MP are also referred to as “microvesicles”
or “ectosomes,” depending on the context of the study. Although
MP are shed from steady-state cells, elevated levels are observed
in actively proliferating cells and cells activated by a wide range of
stimuli, from mitogens and inflammatory mediators, to antigeni-
cally foreign compounds, such as pathogen components, as well
as various other stress-inducing challenges in both in vitro and
in vivo models (Ratajczak et al., 2006; Ardoin et al., 2007). In vivo,
MP are most commonly found in blood, however, they are also
observed in other bodily fluids, such as synovial fluid (Berckmans
et al., 2005; Distler et al., 2005b) and urine (Smalley et al., 2008).

Microparticles are often compared with exosomes and apop-
totic bodies (Table 1), however, while superficial structural sim-
ilarities exist between them, both the mechanism of MP for-
mation and their subsequent composition are fundamentally

different (Théry et al., 2009; Mause and Weber, 2010; György
et al., 2011). MP shedding is a multi-enzyme-regulated process.
Under normal conditions, the asymmetric composition of the
plasma membrane is maintained by three principal translocase
enzyme families of flippases, floppases, and scramblases, which
actively maintain phosphatidylcholine (PC) and sphingomyelin
(SM) on the external leaf, while phosphatidylserine (PS) and
phosphatidylethanolamine (PE) are kept on the internal leaf. On
cellular activation, these enzymes are inhibited following an influx
of Ca2+ into the cytoplasm, and consequently the normal phos-
pholipid asymmetry is disrupted (Coltel et al., 2006; Piccin et al.,
2007; Pap et al., 2009). This is accompanied by the loss of actin–
spectrin anchorages and the degradation of actin filaments by
calpain. The disruption of the cytoskeleton allows the plasma
membrane to protrude outward. These protrusions are pinched
off as individual MP in a Rho-associated kinase I (ROCK-I)-
dependent manner from the cell membrane, with PS and PE
exposed on the outer surfaces. In contrast, exosomes fall into
the 50–100 nm range and are formed by inward budding into
the endosomal lumen of small intra-luminal vesicles (ILV) that
aggregate to become multivesicular bodies (MVB). MVB subse-
quently fuse with the plasma membrane to release the ILV into the
extracellular space as exosomes (Théry et al., 2009). Exosomes are
enriched in CD63, and major histocompatibility complex (MHC)
I and II molecules, but tend to have low levels of PS and pro-
coagulation factors on the surface (Denzer et al., 2000; Théry et al.,
2009; Mause and Weber, 2010; György et al., 2011). Apoptotic
bodies, yet another type of subcellular vesicle, are much larger
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Table 1 | Comparison between microparticles, exosomes, and apoptotic bodies.

Microparticles Exosomes Apoptotic bodies

Size 100–1000 nm 50–100 nm 1000–4000 nm (Théry et al., 2009; Mause and

Weber, 2010; György et al., 2011)

Biogenesis Cell surface ectocytosis Exocytosis from MVB/internal

compartments

Blebbing and fragmentation (Théry et al., 2009;

Mause and Weber, 2010; György et al., 2011)

Markers Tissue factor (De Rop et al., 2011; Zwicker et al.,

2011), cell surface markers of cell origin, PS

CD63, CD81, CD9, LAMP1 high

MHC-I/II (Denzer et al., 2000)

PS, genomic DNA, histones (Mause and Weber,

2010)

Functions Pro- and anti-inflammatory, antigen presentation

(Distler et al., 2005a; Huber et al., 2007; Couper

et al., 2010; Ramachandra et al., 2010; Sadallah

et al., 2011b), coagulation (Owens and Mackman,

2011; Zwicker et al., 2011)

Pro- and anti-inflammatory,

antigen presentation (Aline et al.,

2004; Kim et al., 2007; Schorey

and Bhatnagar, 2008;

Ramachandra et al., 2010)

Pro- and anti-inflammatory (Savill et al., 2002),

antigen presentation (Climent et al., 2011)

(1–4 μm) and are essentially fragments of cells produced in late
stage apoptosis (Table 1).

The process by which MP are produced results in their pos-
sessing many of the characteristics of the cell from which they
originated. This includes many of the surface molecules, such as
integrins, receptor ligands, co-stimulatory molecules, as well as
cytoplasmic contents, such as activated signaling molecules and
even genetic materials e.g., mRNA (Baj-Krzyworzeka et al., 2006;
Aliotta et al., 2010) and miRNA (Yuan et al., 2009). MP either
attach and fuse to their target cell (Del Conde et al., 2005), or
are internalized and processed by pinocytic or phagocytic mech-
anisms (Dasgupta et al., 2009; Faille et al., 2009; Abdel-Monem
et al., 2010). Since MP carry biological molecules from their cells
of origin, they may induce associated responses in their target cells,
depending on the source of MP, the cell type on which they act
and the route by which they are incorporated.

Given that MP are produced in response to many stress con-
ditions and are involved in several immunological processes, it
seems likely that MP are involved in the regulation of the immune
response against invading pathogens, however, their potential role
in infectious diseases has not been extensively studied. This review
aims to consolidate current evidence on their biological role and
venture opinion on their potential impact in infectious disease.

MP IN INFLAMMATORY CONDITIONS
One of the hallmarks of bacterial, viral, fungal, or parasitic infec-
tion is the formation of an inflammatory milieu around infected
or affected cells. Pathogen-associated molecular pattern (PAMP)
recognition receptors (PRR), such as Toll-like receptors, certain
classes of RNA helicases, like the retinoic acid inducible gene-I
(RIG-I), and NOD-like receptors (NLR), specifically detect com-
ponents of the invading pathogen and trigger a cascade of intra-
cellular signaling events that lead to the activation of transcription
to initiate the first wave of innate immune responses (Creagh and
O’Neill, 2006; Seth et al., 2006). Whether the initial detection of
the pathogen alone can induce MP shedding is unclear. How-
ever, endotoxins, produced by bacteria during infection, or the
sheer load of replicating intracellular virus would undoubtedly
cause stress in affected cells. Indeed, generation of MP may be
closely associated with the initiation of apoptosis and necrosis
(Ardoin et al., 2007). Whether stress-inducible proteins, such as

hypoxia-inducible factor 1α (HIF-1α), heat-shock factor (HSF-1),
heat-shock protein (Hsp) family, nuclear factor κB (NF-κB), Jun
NH2-terminal kinase (JNK), and p53 (Ohiro et al., 2003; Razoren-
ova et al., 2005; Thompson and Locarnini, 2007; Zinkernagel et al.,
2007; De Maio, 2011; Li et al., 2011; Rawat and Mitra, 2011; Zhang
et al., 2011) and MHC class I polypeptide-related sequence A
and B (MICA, MICB; Stern-Ginossar and Mandelboim, 2009) are
involved, remains to be determined. Nevertheless, a broad array of
pro-inflammatory cytokines, such as tumor necrosis factor (TNF),
interleukin-1 (IL-1), IL-6, and type 1 interferons (IFN-I) are pro-
duced in response to infection (Medzhitov and Horng, 2009), and
many of these induce MP shedding in the absence of infection
(Combes et al., 1999; Sheremata et al., 2006; Penet et al., 2008). Not
surprisingly, therefore, both stimulation in vitro with lipopolysac-
charide (LPS; Aharon et al., 2008; Bernimoulin et al., 2009) and
intravenous injection of bacterial endotoxin in vivo (Zubairova
et al., 2006; Wang et al., 2009) induce MP shedding. Further-
more, elevated blood MP levels are also observed in septic patients
(Nieuwland et al., 2000; Mostefai et al., 2008), in human immun-
odeficiency virus (HIV) patients (Aupeix et al., 1997) and Ebola
Virus-infected macaques (Geisbert et al., 2003), as well as malaria
patients and Plasmodium-inoculated laboratory animals (Combes
et al., 2004, 2005; Penet et al., 2008; Couper et al., 2010; Pankoui
Mfonkeu et al., 2010). Thus elevated circulating MP are associated
with systemic infection by a range of organisms.

Many activated immune cells not necessarily infected by
pathogens, such as monocytes, macrophages, dendritic cells (DC),
and lymphocytes, produce MP when activated by relevant stim-
uli. MP have been shown to be produced by monocytes and
macrophages stimulated with A23187 (Cerri et al., 2006), LPS
(Satta et al., 1994; Obregon et al., 2006; Aharon et al., 2008), and
starvation (Aharon et al., 2008), by DC stimulated with LPS (Obre-
gon et al., 2006, 2009), by T cells stimulated with agonistic CD3
antibodies, Fas ligand, heat, actinomycin-D, staurosporine, PHA,
PMA (Scanu et al., 2008),and by neutrophils stimulated with fMLP
and C5a (Gasser and Schifferli, 2004). In addition, MP are pro-
duced by cells isolated from patients with autoimmune disease,
such as diabetes (Martin et al., 2004), as well as vascular disease
(Tesse et al., 2005). The wide variety of possible stimuli producing
MP in the absence of infection makes it difficult to predict path-
ways leading to MP production in infectious disease, or predict
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their function in this context and few experimental models utilize
infectious pathogens. Nevertheless, these studies provide valuable
clues to what possible responses might occur in infection.

REGULATION OF IMMUNE RESPONSES
As mentioned above, elevated blood MP levels have been reported
in models of sepsis, viral infection, and cerebral malaria. Because
of the generalized inflammatory conditions that such events
generally create, it seems reasonable to propose this would be
the case for most, if not all infections accompanied by signifi-
cant hematogenous spread, i.e., during parasitemia, bacteremia,
viremia or fungemia. Furthermore, due to the propensity of MP
to carry contents derived from their cells of origin, it is likely
that they contain antigens, either present or induced in infected
cells. Plasmodium parasite antigens were detected in the MP puri-
fied from the plasma of infected animals (Couper et al., 2010).
This is unlikely to be unique to parasitic infections, as infecting
viruses inevitably become an integral part of the cell, inducing a
range of virus-specified proteins crucial for their replication and
these could become incorporated into the MP contents, either
specifically or non-specifically. Thus, MP could remotely con-
vey viral antigens via the blood stream to professional antigen-
presenting cells (APC), such as macrophages and DC residing
centrally in the spleen and liver without the necessity for their
direct interaction with infected cells. Both organs normally have
high throughputs from the systemic circulation, increasing the
likelihood that MP will interact with APC. From a host point of
view, this maintains a desirable separation between the peripheral
site of infection and the site of immune induction. Additionally,
TNF-stimulated, endothelial cell-derived MP have the capacity to
induce activation and maturation of plasmacytoid DC, although
not conventional DC (Angelot et al., 2009). Together, such remote
interactions could increase the probability of detecting infection
early, enabling prompt initiation of innate and adaptive responses
by APC responding to MP in the blood. Indeed, it has been shown
that MP produced by Mycobacterium-infected macrophages were
able to activate and present antigen to naive T cells (Ramachandra
et al., 2010), thus obviating the necessity for direct APC and T cell
contact to generate a T cell response. In these experiments, MP
were better at inducing T cell proliferation than exosomes. The
study by Couper et al. (2010) also demonstrated the activation of
bone marrow-derived macrophages, with upregulation of CD40
and TNF expression. This raises the further possibility that MP
may facilitate the mobilization of subsets recruited from the bone
marrow during infection (King et al., 2007; Getts et al., 2008).

As well as accepting MP by fusion, DC also produce MP fol-
lowing activation. LPS-induced MP from DC can transfer antigen
to recipient DC, which can present this to T cells (Obregon et al.,
2006, 2009; Pizzirani et al., 2007). Other cellular membrane func-
tion can be transferred by MP from activated to naïve T cells via
the tetraspanin, CD81, important for adhesion and lymphocyte
maturation (Fritzsching et al., 2002; Quast et al., 2011). Further-
more, CD154+ platelet-derived MP introduced into CD154−/−
mice triggers CD4 T cell-dependent production of antigen-specific
IgG and germinal center formation, suggesting that with the right
surface molecules MP can fully activate the adaptive immune
response (Sprague et al., 2008). Indeed, MP transfer could explain

the rapid exchange of T cell receptors (TCR) observed in the early
stages of T cell activation to expand antigen-specific T cell clones
(Chaudhri et al., 2009). Irrespective, it seems likely that MP con-
taining pathogen antigens along with the necessary co-stimulatory
molecules can activate T cells, bypassing cell–cell contact, thus
enabling a wider, more efficient initiation, amplification and/or
modulation of early adaptive immune responses.

Microparticles may also contain pro-inflammatory cytokines,
such as IL-1β, providing an alternative or additional pathway for
cytokine secretion into the extracellular space to modulate local
cytokine/chemokine signaling (Mackenzie et al., 2001; Pizzirani
et al., 2007). Depending on their mode of manufacture and cellular
release, it seems highly likely that other cytokines/chemokines,may
make use of this pathway (Garcia et al., 2005; Dean et al., 2009).
Certainly, T cell-derived MP have been shown to activate mono-
cytes (Distler et al., 2005a; Huber et al., 2007; Scanu et al., 2008)
and monocytes activated with MP from PHA- or PMA-stimulated
blood T cells produce TNF, IL-1β, and soluble interleukin-1 recep-
tor antagonist (sIL-1Ra; Scanu et al., 2008). MP derived from T
cells and monocytes also induce NF-κB-dependent expression of
matrix metalloproteinases (MMP; Distler et al., 2005b), as well as
some pro-inflammatory cytokines and chemokines such as IL-6,
IL-8, macrophage chemoattractant protein (MCP)-1, MCP-2, and
regulated upon activation, normal T cell expressed and secreted
(RANTES) in synovial fibroblasts (Berckmans et al., 2005; Distler
et al., 2005b). Monocyte/macrophage-derived MP also upregulate
inflammatory mediator synthesis by epithelial cells (Cerri et al.,
2006).

Not surprisingly, under certain conditions MP can also
induce anti-inflammatory IL-10 expression in monocytes (Köp-
pler et al., 2006) and transforming growth factor β1 (TGF-β1) in
macrophages (Sadallah et al., 2011a). In some cases, MP can even
be pro-apoptotic, especially in macrophages, which can undergo
apoptosis upon uptake (Distler et al., 2005a; Huber et al., 2007).
This activity presumably is due to differences in the source of
MP. For example, neutrophil-derived MP specifically upregulate
the expression of TGF-β1, which helps to suppress the inflam-
matory response (Distler et al., 2005a; Huber et al., 2007). The
MP used in these models induce macrophage apoptosis, possibly
because the MP were generated from apoptotic cells, which might
have transferred the apoptotic signals to the macrophages (Böing
et al., 2008). This is similar to the behavior of macrophages to
dampen inflammation after ingesting apoptotic bodies, to prevent
over-reaction (Savill et al., 2002). However, these studies did not
use pathogens and macrophages activated by Plasmodium were in
contrast highly pro-inflammatory (Couper et al., 2010).

On the other hand, MP might contain factors induced or
expressed by the infecting organism that could impede or abro-
gate the early induction of an effective immune response. For
example, Influenza A NS1 protein expressed intracellularly has
the capacity to suppress IFN-I production and inhibit apoptosis
to enable better viral replication (Pauli et al., 2008; Wang et al.,
2010). Similarly, several flavivirus subunits interfere with IFN-
signaling at various levels and in different ways (reviewed in Daffis
et al., 2009; Suthar et al., 2009). Such molecules, carried into cells
yet to be infected could arguably give the infecting organism a
survival advantage, enabling greater levels of replication in the
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FIGURE 1 | Putative role of MP in immunopathogenesis of

flavivirus encephalitis. After local replication of virus at the site of infection,
the ensuing viremia results in endothelial and monocyte infection. MP
produced as a result of infection and via the consequent TNF secretion, are
transported in the blood stream. On the one hand, MP from TNF-activated
endothelium could further activate uninfected monocytes and endothelium at
remote sites, such as in the brain, while MP from infected cells could carry
viral antigen and activation signals to liver and spleen. Early antigen
presentation would likely advantage the host by generating anti-viral immune

responses. On the other hand, endothelial activation may enable increased
migration of monocytes into the brain in response to CCL2 secreted from
infected neurons. While this immigration may initially enable early viral
clearance, over-exuberant immigration of activated monocytes that
differentiate into macrophages may be immunopathological for neurons via
toxic soluble factors produced. This does not exclude a possible “Trojan
horse” scenario, in which virus may also further gain access to the brain via
the cerebral endothelium and/or via infected immigrant monocytes during
encephalitis.

host for longer periods of time, thus increasing the probability
of transmission to vectors and/or to the next host. In the case of
arboviruses, considering the relatively short times that organisms
spend in the blood stream, even small increases in concentration
and time spent in the blood stream could potentially subtend a
significant survival advantage.

IMPACT ON DISEASE
The inflammatory conditions created by MP could in princi-
ple play important roles in controlling infection and pathogen
clearance. How crucial these roles are in the immune system
remain unclear, but as one of many factors that regulate the
immune response against invading pathogens, MP could signif-
icantly influence the outcome for the host, both during the initial
“knockdown” phase of controlling pathogen and in the ongo-
ing adaptive response to it. Pro-inflammatory cytokines induced
by MP would act to manage and contain the infection, while
chemoattractant proteins would send signals to recruit leuko-
cytes to the site of infection to eliminate the pathogen. Indeed,
a further interesting characteristic of MP is their ability to upregu-
late adhesion molecules such as intercellular adhesion molecule-1
(ICAM-I; Berckmans et al., 2005) in target cells and promote
monocyte recruitment (Mause et al., 2005). Along with ability of
MP to induce MMP expression and TNF release, the endothelium
becomes more permeable for immune active proteins and leuko-
cytes to access the site of infection. Although this is an important

step to enable pathogen clearance, it can be a double-edged sword
in certain infectious diseases. In cases of lethal flavivirus encephali-
tis, in which immunopathology is one of the prominent features
of pathogenesis, excessive monocyte infiltration of the central
nervous system (CNS), and the accompanying pro-inflammatory
cytokine spike are a major cause of mortality (King et al., 2007;
Getts et al., 2008). We hypothesize that during viremia pre-
ceding encephalitis, flavivirus infecting endothelium, and blood
monocytes induce MP, both as a consequence of infection and
via TNF released by infected cells (Cheng et al., 2004). TNF
independently enhances breakdown of the blood–brain barrier,
potentially enabling virus access to the CNS (Wang et al., 2004).
MP from TNF-activated endothelium could further activate unin-
fected monocytes and endothelium, while MP from infected cells
could carry viral antigen, as well as activation signals to the liver
and spleen. Early antigen presentation would likely advantage the
host in generating anti-viral immune responses. However, WNV-
infected CNS neurons recruit activated (CCR2+) monocytes from
the bone marrow to the brain via CCL2 (Getts et al., 2008). Here,
TNF- and MP-mediated activation of CNS endothelium would
facilitate macrophage margination, adhesion, and diapedesis in
response to the chemokine gradient, thus potentially increasing
numbers of monocytes recruited to the brain and exacerbating
immunopathology (Figure 1).

Exaggerated immune responses also compromise the integrity
of the blood–brain barrier in cerebral malaria via monocyte, TNF,
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and MP activities (Combes et al., 2010). Moreover, in mice defi-
cient in the floppase, ATP-binding cassette transporter A1, which
modulates PS distribution on the outer plasma membrane leaflet,
MP production is reduced in cerebral malaria, abrogating neuro-
logical signs in this model, and presenting the possibility for phar-
macological modulation of MP to ameliorate immunopathology
(Combes et al., 2005; Penet et al., 2008).

Immunological aspects aside, MP could potentially also be used
directly as transport by viruses, including flavivirus, Influenza, and
herpes simplex virus (HSV) that propagate via a process of ecto-
cytosis from the plasma membrane of an infected cell. In a model
of HIV-1, the glycome profile and the budding signal of the virion
were similar to that of the MP secreted in conjunction, suggesting
that the mechanism for viral propagation was similar to that of the
formation of MP (Krishnamoorthy et al., 2009; Gan and Gould,
2011). Even if MP formation selectively excludes budding virions,
the MP may still potentially contain unpackaged viral genome and
other viral proteins necessary for replication in the target cell. In
either scenario, MP may be used by viruses as “Trojan Horses”
to spread to other cells. Indeed, HIV-1 induces MP that “express”
CD45, CD80, CD86, as well as MHC-I and II (Esser et al., 2001),
thus, potentially masking themselves as being of “host” origin. In
addition, HIV also induces CCR5-containing MP and can transfer
this receptor to other peripheral blood mononuclear cells (PBMC)
deficient of endogenous CCR5, enabling infection of these cells
(Mack et al., 2000). However, the success of allogeneic transplan-
tation of Δ32/Δ32 CCR5 stem cells in keeping the patient HIV
free, indicates that much more remains to be understood about
these processes (Hütter et al., 2009).

In conclusion, the study of MP is an exciting emerging field. As
with all emerging areas, a number of technical issues remain to be

fully resolved. For example, the accurate determination of MP size
and phenotype, their clear distinction from and relationship to,
other membrane vesicles, and their pure separation for functional
experimental purposes, remain a significant challenge (György
et al., 2011). While MP clearly have likely roles in homeostasis
and inflammation, few studies have to date directly addressed their
involvement in infectious disease. Thus, many questions remain to
be answered, perhaps most important among which are, whether
the production of MP as a programmatic response to infection
confers an overall species survival advantage. At the mechanistic
level, also, how cellular decision-making occurs to produce MP,
what they should contain, and whether production of the full
range of membranous vesicles is required and/or produced kinet-
ically to accommodate host requirements from initial infection to
disease resolution, remains to be elucidated. As with most defenses
against invading pathogens, on the one hand, the transfer of phe-
notype and function by MP may be of considerable benefit to the
host, in the early warning and initiating of immune defenses at
both innate and adaptive levels. On the other, however, this may
exacerbate immune responses leading to immune pathology, or be
commandeered by the invading pathogen for its own survival.
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