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Allorecognition is the ability of an organism to differentiate self or close relatives from
unrelated conspecifics. Effective allorecognition systems are critical to the survival of organ-
isms; they prevent inbreeding and facilitate fusions between close relatives. Where the
loci governing allorecognition outcomes have been identified, the corresponding proteins
often exhibit exceptional polymorphism.Two important questions about this polymorphism
remain unresolved: how is it created, and how is it maintained. Because the genetic bases
of several allorecognition systems have now been identified, including alr1 and alr2 in
Hydractinia, fusion histocompatibility in Botryllus, the het (vic) loci in fungi, tgrB1 and
tgrC1 in Dictyostelium, and self-incompatibility (SI) loci in several plant families, we are
now poised to achieve a clearer understanding of how these loci evolve. In this review, we
summarize what is currently known about the evolution of allorecognition loci, highlight
open questions, and suggest future directions.
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INTRODUCTION
Allorecognition, the ability of an organism to differentiate self
or close relatives from unrelated conspecifics, occurs throughout
the tree of life (Buss, 1982), in anemones (Mercier et al., 2011),
angiosperms (Allen and Hiscock, 2008), ascidians (Raftos, 1994;
Saito et al., 1994; Harada et al., 2008), bacteria (Gibbs et al., 2008),
bryozoans (Hughes et al., 2004), cellular slime molds (Shaulsky
and Kessin, 2007), corals (Hidaka et al., 1997), fungi (Glass et al.,
2000), gymnosperms (Pandey, 1960; Runions and Owens, 1998),
hydroids (Grosberg et al., 1996), plasmodial slime molds (Clark,
2003), and sponges (Fernandez-Busquets and Burger, 1999).

Effective allorecognition systems are critical to the survival of
organisms: the SI loci prevent inbreeding depression in plants, and
in many colonial organisms, fusing to a closely related individual
can provide competitive and reproductive advantages where space
is limited and reproductive output is based on the size of the
organism (Buss, 1982).

Despite decades of research, the genetic basis of allorecogni-
tion remains hidden in many groups, including bryozoans, corals,
and sponges. Many marine invertebrate species are difficult to cul-
ture and breed, which limits the crossing experiments necessary to
pinpoint genomic locations involved in allorecognition (Grosberg
and Plachetzki, 2010).

However, researchers have been studying the SI (self-
incompatibility) loci in angiosperms for some time. And allorecog-
nition genes have recently been identified in ascidians (Fusion
Histocompatibility, FuHC in Botryllus schlosseri and s-themis/v-
themis in Ciona intestinalis; De Tomaso et al., 2005; Harada et al.,
2008, reviewed in Ben-Shlomo, 2008), bacteria (Gibbs et al., 2008),
cellular slime molds [tgrB1 and tgrC1 in Dictyostelium discoideum
(Shaulsky and Kessin, 2007)], hydroids [alr1 and alr2 in Hydrac-
tinia symbiolongicarpus (Nicotra et al., 2009)], and fungi [het or
vic loci (Glass et al., 2000)]. In this review we will focus only

on organisms where the genetic basis of allorecognition has been
identified, and where the polymorphism in these loci has been
studied. Although the loci governing self-incompatibility have
recently been identified in the ascidian C. intestinalis (Harada et al.,
2008) and the bacterium Proteus mirabilis (Gibbs et al., 2008), no
evolutionary studies have yet been published.

In the systems where the loci governing allorecognition out-
comes have been identified, the corresponding proteins have
often exhibited exceptional polymorphism. In the clover Trifolium
pratense, up to 193 S-alleles in the SI system were identified
(Lawrence, 1996), and 13–16 S-alleles were identified from 20 Ara-
bidopsis lyrata plants (Mable et al., 2003). In the colonial hydroid
H. symbiolongicarpus, 35 alleles of the alr2 allorecognition locus
were sequenced from 18 colonies (Rosengarten et al., 2010).

Because allelic variation forms the basis of allorecognition,
evolutionary studies of self/non-self recognition focus on this vari-
ation. If we can understand the evolutionary forces underlying the
remarkable polymorphism in allorecognition loci, we gain valu-
able insights into the evolution and mechanisms of allorecogni-
tion systems. Two important questions about this polymorphism
remain to be solved: how is it created and how is it maintained?
We will address each question by summarizing and interpreting
the available data.

CREATION OF POLYMORPHISM
Mutation and recombination are the two processes that commonly
create variation in allorecognition loci. These forces have been
examined in several systems: het/vic loci in fungi, FuHC in B.
schlosseri, SI loci in the Brassicaceae (Arabidopsis and Brassica)
and Solanaceae (Lycium, Petunia, Physalis, Solanum), and alr2 in
Hydractinia.

In the fungus Podospora anserina, the het-d and het-e loci
belong to a 10-member gene family; diversity is created by sharing
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of WD-repeats through recombinational processes within and
between loci in this family. Because het-d and het-e have a large
copy number of repeats, mutations arise frequently in the WD-
domains, also creating diversity. So polymorphism is created by
plentiful mutations, which are then exchanged within and between
loci, creating even more polymorphism. An accelerated mutational
process called repeat induced polymorphism (RIP) that targets
repeat sequences in fungi is thought to further generate variation
(Paoletti et al., 2007). Recombination does not often occur within
the A-mating type locus of the basidiomycete fungus Coprinus
cinereus (Day, 1963). But infrequent recombination events have
created diversity in this locus; this is unusually in sex-determining
loci (May and Matzke, 1995). Researchers found reduced recom-
bination near the mating type locus (MAT) in the chestnut blight
fungus, Cryphonectria parasitica (Kubisiak and Milgroom, 2006).

In B. schlosseri, FuHC experiences a substantial amount of
intragenic recombination, based on three independent measures:
Rm, the correlation between physical distance and three measures
of linkage disequilibrium, and levels of recombination across the
protein (Nydam, Taylor and De Tomaso unpublished data). Six
populations were examined, 112 alleles and 77 individuals for
Exons 1–14, 111 alleles and 76 individuals for Exons 18–31. This
data set was used for all Botryllus analyses discussed in this paper.
The relative contributions of mutation and recombination in gen-
erating polymorphism in FuHC were determined by calculating θ

and R in DnaSP 5.10.01 (Librado and Rozas, 2009). θ = 4∗N ∗μ,
where N is the effective population size and μ is the mutation rate
per DNA sequence per generation. R = 4N ∗r (Hudson, 1987),
where N is the population size and r is the recombination rate
per sequence. R is estimated from the variance of the average num-
ber of nucleotide differences between pairs of sequences (Hudson,
1987). All values were estimated using DnaSP. A ratio of θ/R = 1
signifies an equal contribution of mutation and recombination,
>1 a larger role for mutation, and <1 a larger role for recombina-
tion. θ/R was much less than one, so recombination clearly plays
a larger role in the creation of FuHC than mutation.

When discussing the creation of variation in plant self-
incompatibility (SI) loci, we must make a distinction between
gametophytic and sporophytic SI systems. In gametophytic SI, the
most common type of SI, the haploid self-incompatibility geno-
type of the pollen dictates its self-incompatibility phenotype. In
sporophytic SI, the diploid self-incompatibility genotype of the
plant dictates the self-incompatibility phenotype of the pollen
produced by that plant (Newbigin et al., 1993).

Mutation plays a larger role than recombination in both game-
tophytic and sporophytic systems. Recombination would break
up the association between pollen and pistil self-incompatibility
loci, and thus is predicted to be suppressed around SI loci (Stein
et al., 1991). Little evidence for recombination exists in gameto-
phytic systems (Schierup et al., 2001), but this result may be due
to the lack of power of recombination-detecting statistics, caused
by the extraordinarily high polymorphism at these loci. Several
successive mutations have occurred at the majority of segregating
sites in these loci; this shows that mutation creates variation, but
it also obscures the role of recombination. Recombination does
play a substantial role in the creation of polymorphism in one
species with gametophytic SI: Petunia inflata (Wang et al., 2001).

The authors state that recombination events must be rare, and that
recombinant alleles causing a reduction in fitness are removed by
natural selection.

Numerous tests in Arabidopsis sporophytic SI systems
have yielded scant evidence for recombination (Kamau and
Charlesworth, 2005; Charlesworth et al., 2006; Hagenblad et al.,
2006; Edh et al., 2009). Recombination has been detected in
SI loci of Brassica species (Kusaba et al., 1997; Awadalla and
Charlesworth, 1999; Takuno et al., 2007) but only in genes or
gene domains that do not play a direct role in self-incompatibility
specificity (Takuno et al., 2007; Edh et al., 2009). Mutation must
create the majority of variation at SI loci; multiple mutations at
variable sites are well documented (Edh et al., 2009).

Recombination likely contributes to alr2 polymorphism in
Hydractinia, based on the discovery of chimeric alleles having
regions characteristic of two distinct types of structural polymor-
phism (Rosengarten et al., 2010), but the relative contribution
of mutation and recombination to allelic diversity has not been
assessed.

Except in the cases of sex-determining loci and SI loci in plants
(where recombination is suppressed), mutation and recombina-
tion interact in allorecognition systems to create polymorphism.

MAINTENANCE OF POLYMORPHISM
DISTRIBUTION OF POLYMORPHISM WITHIN AND AMONG
POPULATIONS
Using the Analysis of Molecular Variance (AMOVA), evolu-
tionary biologists routinely partition the total molecular varia-
tion in a particular gene into three mutually exclusive groups:
among geographical regions, among populations within geo-
graphical regions, and within populations. For example, geograph-
ical regions could be Europe and North America: how much of the
variation is found when comparing these two regions? The“among
populations within geographical regions” category asks, within
Europe, how much of the variation is found when comparing
the Valencia (Spain), Bergen (Norway), and Lucerne (Switzer-
land) populations? And finally, how much variation is found when
populations are examined individually? If a large portion of the
variation is found within populations, this means there is little
genetic differentiation between populations (e.g., the same alleles
would be found in Valencia, Bergen, and Lucerne). Fst is a related
statistic; a statistically significant Fst signifies genetic differentia-
tion between populations in the data set, pairwise Fst statistics are
used to determine whether any pair of populations is significantly
differentiated.

AMOVA and Fst calculations can inform us about the evo-
lutionary forces operating on the allorecognition loci, allowing
us to understand how polymorphism is maintained. Comparing
allorecognition loci to neutral loci (usually microsatellites) with
respect to Fst values and percentage of polymorphism within vs.
among populations (AMOVA) allows one to test whether selection
is occurring. Loci experiencing balancing selection (which main-
tains variation) should have larger amounts of polymorphism
within populations and smaller amounts among populations than
neutral loci (assuming selection pressures are similar between
populations), whereas the opposite pattern is expected for loci
experiencing directional selection (Schierup et al., 2000). Similar
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genetic differentiation between allorecognition loci and neutral
loci is taken as evidence for neutral evolution (e.g., genetic drift).

One might assume directional selection is acting when sig-
nificant population structure is recovered, but allelic variation
at allorecognition loci is likely older than current population
structure. Limited gene flow between populations (conserving
ancient variation), rather than selection, could lead to differenti-
ation between contemporary populations (Richman et al., 2003).
Because of this, strong inferences of selection on allorecognition
loci should only be made from AMOVA and Fst values when
these values are compared to other loci not presumed to be under
balancing or directional selection.

AMOVA and Fst analyses have been completed in three
allorecognition systems: het/vic loci in fungi, FuHC in B. schlosseri,
and SI loci in the Asteraceae (Guizotia abyssinica), and Brassicaceae
(Arabidopsis and Brassica). In both the chestnut blight fungus (C.
parasitica) and the dry rot fungus (Serpula lacrymans), het/vic loci
lack significant genetic differentiation among populations (Mil-
groom and Cortesi, 1999; Kauserud et al., 2006). In the ascidian B.
schlosseri, >90% of the variation in the FuHC gene is found within
populations, and Fst is not statistically significant (Nydam, Taylor,
and De Tomaso unpublished data). This is in direct contrast to val-
ues obtained from two B. schlosseri genes not presumed to be under
directional or balancing selection: mitochondrial cytochrome oxi-
dase I and vasa. Both of these genes have less variation within
populations than FuHC (81.2 and 27.16%, respectively), and both
have highly significant Fst values (p < 0.001).

Patterns at SI loci are similar to those at het/vic and FuHC.
In G. abyssinica (niger), 97% of the SI locus variation was found
within populations, and Fst values were very low (although sta-
tistically significant; Geleta and Bryngelsson, 2010). Fst values are
significantly lower when compared to neutral loci, in all cases (A.
lyrata: Kamau et al., 2007; A. halleri: Ruggiero et al., 2008; Brassica
cretica: Edh et al., 2009; B. insularis: Glemin et al., 2005). These
results provide strong evidence for balancing selection driving the
evolution of SI loci.

Het/vic, FuHC, and SI loci show similar patterns: a large per-
centage of the variation at these loci is found within popula-
tions, Fst values are not often statistically significant, and Fst
values are significantly lower when compared with neutral loci.
These patterns are consistent with a straightforward model of
balancing selection, where selection pressures are similar in all
environments.

TESTS OF SELECTION: POLYMORPHISM AND DIVERGENCE STATISTICS
Tests of selection using polymorphism (e.g., Tajima’s D) and
divergence (e.g., dN/dS) statistics commonly find evidence for
selection at allorecognition loci. In fact, one of the earliest
and most cited examples of dN/dS > 1 (non-synonymous sub-
stitution rate greater than synonymous substitution rate) comes
from the peptide-binding region (PBR) in mouse and human
MHC (Hughes and Nei, 1988). For polymorphism statistics
such as Tajima’s D and Fu and Li’s D∗ and F∗, values statisti-
cally greater than zero are evidence for balancing selection, and
less than zero for directional selection (Tajima, 1989; Fu and
Li, 1993). A pattern of dN/dS > 1 could indicate either direc-
tional or balancing selection (Garrigan and Hedrick, 2003); other

data must be examined to determine which type of selection is
occurring.

We will describe all the available data from the less well-studied
loci (tgrB1 and tgrC1 in D. discoideum, alr2 in H. symbiolongi-
carpus, mating-compatibility genes and het/vic loci in fungus, and
FuHC in B. schlosseri). A complete description of all relevant stud-
ies in the SI literature is beyond the scope of this review; we instead
highlight several recent studies from this allorecognition system.

In the cellular slime mold D. discoideum, the genes tgrB1 and
tgrC1 are involved in kin recognition. Certain sections of these
genes have dN/dS ratios > 1; the authors conclude that balancing
selection is causing this pattern, given the extensive polymorphism
at these loci (Benabentos et al., 2009). Nine codons in alr2 of
H. symbiolongicarpus have elevated dN/dS ratios; the majority are
found in exon 2 (Rosengarten et al., 2010). The presence of 35 alr2
alleles recovered from 36 individuals led the authors to conclude
that negative frequency-dependent selection (a type of balancing
selection where rare alleles are favored by selection) is occurring.
At equilibrium, the alleles of a single locus subject to frequency-
dependent selection are expected to be equally frequent (Grosberg,
1988).

Neither of two mating-compatibility genes examined in fungus
species showed dN/dS > 1 (May et al., 1999; Rau et al., 2007), but
the b1 mating type gene in the mushroom fungus C. cinereus was
shown to be experiencing balancing selection by comparing the
topologies of gene genealogies under balancing selection and neu-
tral scenarios (May et al., 1999). Het-c in Neurospora crassa was
determined to be evolving under balancing selection; evidence
included trans-species polymorphisms and an increase in non-
synonymous substitutions in and around the specificity region
of het-c (Wu et al., 1998). Four codon positions of the WD-40
repeats in het-d and het-e of P. anserina have dN/dS > 1. The
authors conclude that balancing selection, rather than directional
selection, is operating, because of the high number of amino acid
combinations at the four codons of interest (Paoletti et al., 2007).

FuHC in B. schlosseri experiences selection, based on both poly-
morphism and dN/dS statistics (Nydam, Taylor, and De Tomaso
unpublished data). Values of polymorphism statistics (Tajima’s D,
Fu and Li’s D∗ and F∗) were significantly negative in all East Coast
populations, as well as Monterey, CA, USA on the West Coast,
consistent with directional selection. But negative polymorphism
statistics could be due to selective or demographic processes (e.g.,
recent population growth). In the case of FuHC, the pattern is
likely due to selection rather than demography, given that none
of the polymorphism statistics were significantly negative for a
housekeeping gene (vasa). 11 additional housekeeping genes are
currently being sequenced, to confirm that demographic processes
are not causing this pattern. Omega statistics pinpointed 24 codons
throughout the protein have a greater than 95% probability of
dN/dS > 1. Four exon groups contained clusters of these positively
selected sites: Exons 5, 6, 20, and 27. Exons 5, 6, and 20 had signif-
icantly higher omega values than the rest of the gene for a subset
of populations; these exons will be targeted in future functional
studies. Other tests are being conducted to determine whether this
pattern is due to balancing or directional selection.

Inference of selection at SI loci in plants begins with Sewall
Wright, who wrote,“It also fairly obvious that selection would tend
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to increase the frequency of any additional alleles that may appear.”
(Wright, 1939). Because fertilization is aborted when pollen and
pistil S-allele are identical, rare S-alleles have a selective advantage.
As negative frequency-dependent selection is a type of balancing
selection, researchers have spent considerable effort determining
whether SI loci are evolving under balancing selection.

Data from numerous plant groups provide considerable sup-
port for balancing selection on SI loci. As in other allorecognition
systems, the majority of these data are dN/dS ratios > 1. How-
ever, dN/dS ratios > 1 are consistent with directional and balancing
selection, so additional data are needed to determine which of
these scenarios is occurring. dN/dS ratios > 1 have been found
in many plant families, both in gametophytic and sporophytic SI
systems (Clark and Kao, 1991; Ishimizu et al., 1998; Sato et al.,
2002; Takebayashi et al., 2003; Igic et al., 2007; Guo et al., 2011).
dN/dS ratios > 1 were corroborated with additional data to infer
the action of balancing selection: significantly positive Tajima’s D
values, little population structure compared to neutral markers,
and low recombination for SRK and SCR in B. cretica (Edh et al.,
2009), trans-species polymorphisms in SRK and SCR in several
Arabidopsis species (Sato et al., 2002; Guo et al., 2011).

CONCLUSION
Unusually high polymorphism is a hallmark of allorecognition
loci; how this polymorphism is created and maintained has inter-
ested biologists since Sewall Wright. From the studies presented
in this review, we can conclude that polymorphism is created by
an interaction between mutation and recombination, except in
the cases of sex-determining loci and SI loci in plants (where
recombination is suppressed).

AMOVA/Fst studies examining the distribution of polymor-
phism within and among populations in Het/vic, FuHC, and SI
loci generally provide support for the role of balancing selection
in maintaining polymorphism.

Divergence statistics often show patterns of dN/dS ratios > 1
for allorecognition loci; these values are consistent with both
directional and balancing selection. In many cases, additional evi-
dence such as significantly positive polymorphism statistics and/or
identification of trans-species polymorphisms provide support
for balancing over directional selection in the maintenance of
variation in allorecognition loci.

FUTURE DIRECTIONS
We have only identified the loci involved in a handful of allorecog-
nition systems, and an obvious future direction lies in identifying
allorecognition loci in anemones, bryozoans, corals, plasmodial
slime molds, and sponges. Such discoveries require painstaking
work, and in some cases are hindered by the biology of the organ-
isms. So while this may be a long term goal, it is nevertheless
an important one if we are to achieve an understanding of the
evolution of allorecognition across the tree of life.

A shorter term direction for evolutionary studies of allorecogni-
tion should involve the loci that have recently been discovered. We
could not locate information on the distribution of polymorphism
within and among populations for tgrB1/tgrC1 in D. discoideum, or
alr2 in H. symbiolongicarpus, or on the creation of polymorphism
for tgrB1/tgrC1 in D. discoideum. No evolutionary studies have
been conducted on the self-incompatibility genes in C. intestinalis.
Additionally, recent studies concluding that balancing selection
is occurring based on divergence statistics and the presence of
polymorphism could provide more data to support these con-
clusions, including evidence of trans-species polymorphisms and
AMOVA/Fst analyses showing larger amounts of polymorphism
within populations and smaller amounts among populations than
neutral loci. And finally, we have some information on the specific
type of balancing selection operating in a well-studied allorecog-
nition system (negative frequency-dependent selection in SI loci).
Further analyses of the newly discovered loci should uncover
more specifics about the types of balancing selection maintaining
variation at these loci.

In well-studied allorecognition systems like the SI loci in plants,
we have information on the evolution of allorecognition loci
in many species. This allows us to examine the evolution of
allorecognition across large phylogenetic groups, enabling broader
conclusions than would be possible if only model organisms
were used. Allorecognition loci can now be more easily iden-
tified and studied in species closely related to B. schlosseri, C.
intestinalis, D. discoideum, and H. symbiolongicarpus. Using this
approach,we could begin to understand the evolution of allorecog-
nition not just in B. schlosseri and C. intestinalis, but in the
urochordates as a whole, not just in D. discoideum but in the
social amoebae, not just in H. symbiolongicarpus but in hydroids
generally.
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