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Recently, the chemokine receptor XCR1 has been found to be exclusively expressed on
a subset of dendritic cell (DC) known to be involved in antigen cross-presentation. This
review aims to summarize the known biology of the XCR1 receptor and its chemokine
ligand XCL1, both in the mouse and the human. Further, any involvement of this receptor–
ligand pair in antigen uptake, cross-presentation, and induction of innate and adaptive
cytotoxic immunity is explored.The concept of antigen delivery to DC via the XCR1 recep-
tor is discussed as a vaccination strategy for selective induction of cytotoxic immunity
against certain pathogens or tumors.
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Recently, the chemokine receptor XCR1 has been found to be
exclusively expressed on a subset of dendritic cells (DCs) known to
excel in antigen cross-presentation. The impact of this chemokine
receptor on DC biology can only be understood through combin-
ing the available knowledge on the XCR1 receptor, its chemokine
ligand XCL1, and the current information on the function of DCs
expressing XCR1.

The chemokine ligand XCL1 has been cloned independently
by three groups, by Kelner et al. (1994) as “lymphotactin” from
murine immature thymocytes, by Müller et al. (1995) as “ATAC”
(“activation-induced, T cell-derived, and chemokine-related mol-
ecule”) from two-signal activated human T cells, and by Yoshida
et al. (1995), who identified “single cysteine molecule-1” (“SCM-
1,” huXCL1) in PHA-stimulated human PBMC. The latter group
later also found a second human gene, termed SCYC2 (Yoshida
et al., 1996), which encodes huXCL2, a protein differing only
in amino acids 7 and 8 from the originally identified SCM-1
molecule, redesignated to SCM-1α. Interestingly, a gene corre-
sponding to human SCYC2/XCL2 has never been identified in the
mouse. Dorner et al. (1997) purified human ATAC, determined
its mature protein form, and demonstrated that it is secreted as
a partially glycosylated 93 aa protein with a calculated Mr of
10.3 kDa. Mature human ATAC corresponds in its sequence to
SCM-1α, and is 61.4% identical and 84% similar (NCBI blastp) to
murine lymphotactin. Collectively, these three groups thus defined
the nature of murine XCL1 and human XCL1 (SCM-1α)/XCL2
(SCM-1β).

The generation of mAb specific for murine ATAC/XCL1 pro-
vided the first information on the biological context of XCL1
secretion. In vitro activated murine NK cells, Th1-polarized CD4+
T cells, and CD8+ T cells were found to co-secrete ATAC/XCL1
with IFN-γ, MIP-1α, MIP-1β, and RANTES (Dorner et al., 2002),
prototypical components of the Th1 immune defense (Moser
and Loetscher, 2001). Further, the same co-secretion pattern
was observed in vivo by NK cells in the early phase, and by

antigen-specific CD8+ T cells in the later adaptive phase of murine
listeriosis (Dorner et al., 2002), a disease in which the intracellular
pathogen is cleared by a Th1-type immune reaction (Pamer, 2004).
Together, these expression data strongly indicated the involvement
of ATAC/XCL1 in the Th1 immune defense, but did not yet provide
a mechanistic model of ATAC/XCL1 action.

The function of XCL1 remained unclear for many years. Kelner
et al. (1994) reported in their original publication that their newly
identified protein induced chemotaxis of a variety of lymphocytes,
hence their designation “lymphotactin.” In the years following the
cloning of lymphotactin/ATAC/SCM-1, a plethora of reports on
the chemotactic action of XCL1 was published, both in the human
and the mouse. These, as it later turned out, erroneous reports,
claimed chemotaxis on T cells, B cells, NK cells, neutrophils, and
other cell types (listed in Supplemental Table S1 of Dorner et al.,
2009). Only few groups reported that they failed to observe any
chemotaxis using a broad array of cell types (Bleul et al., 1996;
Dorner et al., 1997; Johnston et al., 2003).

A major step forward was the identification of the receptor for
XCL1 by the group of Yoshie. They matched a previously cloned
human orphan G protein-coupled receptor GPR5 (Heiber et al.,
1995) with the orphan human chemokines SCM-1α/XCL1 and
SCM-1β/XCL2, employing binding and functional assays (Yoshida
et al., 1998). Further work also indicated that GPR5, later officially
designated XCR1, is the only receptor for XCL1 (Yoshida et al.,
1998; Shan et al., 2000).

Usually, the identification of a receptor for a chemokine
strongly facilitates the elucidation of the biological role of a given
chemokine-receptor system, but not in this case. Since a XCR1-
specific mAb was not available at that time, the detection of XCR1
expression in tissues had to be done by RT-PCR. The original
description of the murine XCR1 gene assumed the existence of
only a single-exon coding for XCR1 (Yoshida et al., 1999), so detec-
tion of XCR1 mRNA had to rely on a “single-exon” RT-PCR, a
system highly prone to false positive results. As a result, more than
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a dozen publications reported the expression of XCR1 in a great
variety of cell types, all of which turned out to be incorrect (listed
in Supplemental Table S2 of Dorner et al., 2009).

The breakthrough regarding the expression of XCR1 came from
studies employing poly (A) RNA for detection of XCR1 by RT-
PCR and the recognition that the murine XCR1 gene contains two
exons, allowing the use of an “intron-spanning” RT-PCR. This
approach revealed that XCR1 mRNA is selectively expressed in
“conventional” DCs, and not in resting or activated T cells, B cells,
NK cells, or plasmacytoid DCs (pDCs). A more detailed analysis
showed that only CD8+ DCs and a small proportion of CD8−
DCs express XCR1 mRNA (Dorner et al., 2009). These expression
studies were corroborated by experiments using a reporter mouse,
in which lacZ is expressed under the control of the XCR1 pro-
moter. Whole-body histological analysis of this reporter mouse
yielded signals compatible with the notion that XCR1 is exclu-
sively expressed in DCs and not in other cells. In the spleen, the
XCR1 signal was associated with CD8+ DCs in the red pulp and
in T cell zones (Dorner et al., 2009; Crozat et al., 2010). In lymph
nodes, XCR1 gene expression was identified in paracortical areas
and subcapsular sinuses (Dorner et al., 2009) and was found to be
highly associated with CD103 expressed by migratory DCs (Crozat
et al., 2011).

Functional studies yielded results congruent with the obtained
XCR1 receptor expression profile. XCL1 induced strong chemo-
taxis of murine CD8+ DCs, but not of other DC subtypes, T cells, B
cells, or NK cells (Dorner et al., 2009). These experiments thus for
the first time clearly defined XCL1 as a chemokine and revealed
an unusually restricted target population, the CD8+ DCs. In a
series of experiments, the function of XCR1 and its chemokine
ligand was then tested in vivo. When antigen was targeted to
APC via DEC-205 in mice, adoptively transferred CD8+ OT-I T
cells became activated by the cross-presented antigen and started
to secrete XCL1. Further, studies employing XCL1 gene-deficient
mice revealed that XCL1 optimizes the expansion and survival of
these OT-I CD8+ T cells and their subsequent differentiation into
cytotoxic cells. Collectively, this study demonstrated the involve-
ment of the XCL1–XCR1 axis in the dialog of CD8+ T cells with
CD8+ DCs on their way to become cytotoxic T cells (Dorner et al.,
2009).

CD8+ DCs in the mouse spleen are part of the “resident” DC
population, which make up the large majority of splenic DCs.
Resident DCs take up antigen locally and present it to T cells “on
site.” Resident DCs, which all express the CD11c cell surface pro-
tein, have been classically subdivided into CD4+ DCs (CD11bhi

CD4+ CD8− CD205lo, around 70% of splenic DCs), CD8+
DCs (CD11blo CD8+ CD205hi, 20%), and DN DCs (CD11bhi

CD4−CD8− CD205lo, 10%; Vremec et al., 2000). In the past, res-
ident CD8+ DCs have been consistently implicated in antigen
cross-presentation, in which exogenous antigen is not “classically”
presented in the context of MHC-class II, but instead shunted to
the MHC-class I pathway (den Haan et al., 2000; Shortman and
Heath, 2010).

The correlation of XCR1 expression with CD8+ DCs was not
perfect, with only 70–85% of CD8+ DCs showing the XCR1 dri-
ven LacZ -reporter signal, but also 2–8% of DN DCs (Dorner et al.,
2009). These data could be fully reproduced with a mAb to murine

XCR1 (unpublished data), raising questions about the functional
role of the 20–25% of CD8+ DCs not expressing XCR1, and the
2–8% of DN DCs positive for XCR1, but not expressing CD8. Of
interest in this context, CFSE-labeled allogeneic 300–19 pre-B cells
injected i.v. were essentially only taken up by XCR1+ DCs, while
CD8+ DCs lacking XCR1 and other DCs played a negligible part
(unpublished data).

The uptake studies were complemented by tests for antigen
cross-presentation. Soluble ovalbumin (OVA) was injected i.v.,
and 14 h later CD8+ XCR1+, CD8− XCR1+ (corresponding to
the XCR1+ DN DC subset), CD8+ XCR1−, and CD8− XCR1−
DCs were highly purified from spleens and co-cultured with OT-
I in vitro. In this classical assay for antigen cross-presentation,
CD8+ XCR1+ and CD8− XCR1+ DCs presented soluble OVA
clearly better than CD8+ XCR1− and CD8− XCR1− DCs (unpub-
lished data). When the same experiment was performed with cell-
associated antigen (300–19 cells transfected with OVA), splenic
CD8+ XCR1+, and CD8− XCR1+ DCs excelled in antigen cross-
presentation, whereas CD8+ XCR1− and CD8− XCR1− DCs
fully failed (unpublished data). Both assays with soluble and cell-
associated antigen thus demonstrated the superior capacity of the
XCR1+ DC populations to cross-present antigen, irrespective of
CD8 expression on their surface.

When these functional studies were followed by extensive phe-
notyping of these four DC populations, the XCR1+ CD8+ DCs
appeared homogeneous and very similar to XCR1+ CD8− DCs.
On the other hand, both XCR1− CD8+ DCs and XCR1− CD8−
DCs exhibited a quite different surface phenotype (unpublished
data). When combining the phenotypic analysis of the various
DC subsets with their ability to cross-present antigen, it becomes
apparent that the current classification of DCs into CD8+ DCs,
CD4+ DCs and DN DCs may no longer be useful. Instead, splenic
XCR1+ DCs appear as a rather homogeneous population set apart
from the XCR1− DCs. The XCR1− DC population, on the other
hand,may possibly be further subdivided,e.g.,based on the expres-
sion of the fractalkine receptor, as suggested recently by Bar-On
et al. (2010). More functional data with DCs from other lym-
phoid organs will be necessary to further characterize the XCR1+
and XCR1− DC populations. However, what emerges from the
current studies is the close correlation of XCR1 expression with
the ability of DCs to cross-present antigen. The XCL1–XCR1 axis
thus appears as an integral part of the antigen cross-presentation
machinery.

How can we imagine the contribution of the XCL1–XCR1 sys-
tem to the defense of pathogens? From the few in vivo studies
available it is clear that NK cells, and possibly also other cells
of the innate immune system, secrete this chemokine early upon
infection with certain pathogens like Listeria or MCMV (Dorner
et al., 2002, 2004). When NK cells release XCL1, they co-release
this chemokine with a set of other cytokines and chemokines,
most notably IFN-γ, as part of a Th1-type of defense (Dorner
et al., 2002, 2003, 2004). It seems likely that secretion of XCL1
under these circumstances facilitates the communication of NK
cells with XCR1+ DCs (and vice versa, Figure 1). It is interest-
ing to note that in the adaptive phase of the immune response
activated CD8+ T cells communicate with XCR1+ DCs by secret-
ing the same array of XCL1-associated cytokines and chemokines
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FIGURE 1 | Involvement of the XCL1–XCR1 communication axis in the

innate and adaptive cytotoxic responses to cross-presented microbial

and tumor antigens. Secretion of the chemokine XCL1 by activated NK
cells specifically attracts XCR1-expressing DCs capable of antigen
cross-presentation. This ensures an effective communication between
these cells in the innate phase of the immune response. In the adaptive
phase, secretion of XCL1 by activated CD8+ T cells optimizes the dialog
with antigen cross-presenting DCs and facilitates the differentiation of
CD8+ T cells to cytotoxic effector cells.

(Dorner et al., 2002). XCR1+ DCs are the ideal communication
partners for CD8+ T cells, since they optimally cross-present anti-
gen and integrate any inflammatory signals, so CD8+ T cells can
be tolerized or receive a “license to kill.”

One additional factor in this complex interplay may be the spe-
cial capacity of XCR1+ DCs to take up certain forms of antigen.
Uptake of L. monocytogenes by CD8+ DCs (which now have to be
reconsidered as XCR1+ DCs) is critical for infection with Listeria
(Neuenhahn et al., 2006; Edelson et al., 2011), and possibly also
for the development of immunity against this pathogen. Thus,
the special ability of XCR1+ DCs to take up certain (intracellu-
lar?) pathogens defines them as ideal DCs for instructing cytotoxic
effector cells of the innate and adaptive immune systems to elim-
inate infected cells in the periphery. This mechanism appears
important, since pathogens, once “hidden” in infected cells, are
otherwise “invisible” to the immune system. A similar function of
XCR1+ DCs can be hypothesized in the surveillance of the body for
tumor antigens. Live or dead cancerous cells taken up by XCR1+
DCs will be digested and processed, and any tumor antigens will
be cross-presented by the MHC-class I molecules to CD8+ T cells.
One has to assume, however, that the recognition of “altered self”
from cancerous tissue by CD8+ T cells has to be accompanied
by some “adjuvant” signal to initiate a cytotoxic response against
the tumor. Otherwise, a tolerance reaction to “altered self” may
result.

The exquisite specificity of XCR1 expression may in future
be exploited for vaccination purposes. Almost a decade ago, the
groups of Steinman and Nussenzweig had pioneered the concept
of antigen targeting to DCs by employing a mAb directed to CD205
(Hawiger et al., 2001). Such a concept promises to lower the anti-
gen dose required to induce optimal immunity. More importantly,
by targeting antigen to functionally different DC subsets, it offers
the possibility to elicit highly specific immune responses. Based on
such a concept, one can envisage future “designer vaccines” which
address various components of the immune system to a different
extent and thus elicit a protective immune response tailored to
given pathogens. Early studies employing antibodies directed to
CD205 convincingly demonstrated that potent cytotoxic CD8+
T cell immunity can be induced when the targeted antigen is
administered together with agents having adjuvant activity on
DCs (Bonifaz et al., 2002). Similar results were obtained later with
mAb directed to Clec9A/DNGR-1 (Caminschi et al., 2008; San-
cho et al., 2008). None of the mAb used for DC-targeted antigen
delivery to date, however, recognizes only one functional DC sub-
set. For example, CD205 in the mouse is expressed on a variety
of cells, including B cells, as well as thymic and intestinal epithe-
lia (Witmer-Pack et al., 1995), Clec9A/DNGR-1 on pDCs, and
a subset of CD24+ blood DCs (Caminschi et al., 2008; Sancho
et al., 2008). This may not be disadvantageous for the induc-
tion of the desired immune response, but the lack of “absolute”
specificity for a functional DC subset runs against the “designer
vaccine” concept, in which only one component of the immune
system is specifically addressed. Thus, ideally, antigen could be
selectively delivered to B cells, or pDCs, or any of the function-
ally different DC subsets (or any desired combination thereof).
XCR1 as a target molecule appears to fulfill such an ideal. By
being expressed only on the subset of DCs preferentially interact-
ing with components of cytotoxic immunity (NK cells and CD8+
T cells), it holds the promise of an entry port for vaccines against
intracellular pathogens like P. falciparum or M. tuberculosis. Initial
targeting tests performed with OVA recombinantly engineered to
the chemokine ligand XCL1 or with OVA chemically coupled to
the XCR1-specific mAb MARX10 gave very promising results. By
combining this type of antigen delivery with adjuvants, a potent
and specific in vivo cytotoxicity could be achieved (own unpub-
lished results). Further tests have to be performed, however, to
demonstrate that this response is highly selective and does not
address other components of the immune system. Thus, XCR1
appears as an attractive target molecule for the “designer vaccine”
concept.

All antigen targeting experiments were performed in the mouse
and have to be regarded as model systems only. In the human sys-
tem, the phenotype and function of DCs is less well understood,
since most of the data has been obtained with in vitro generated
monocyte-derived DCs, which may only partially reflect DC func-
tion in vivo. In the relatively few studies with primary human
DCs, CD304+ pDCs, and conventional DCs encompassing the
CD1c+ (BDCA-1+), CD16+, and CD141+ DC (BDCA-3+) sub-
sets could be identified in the peripheral blood (Dzionek et al.,
2000; MacDonald et al., 2002; Piccioli et al., 2007; for review see
Ju et al., 2010). Extensive gene expression comparison suggested
that CD141+ DCs may correspond to murine CD8+ DCs (Robbins
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et al., 2008). Recent experimental work has confirmed this hypoth-
esis: XCR1 was found to be selectively expressed in CD141+ DCs
and not in other cells (Bachem et al., 2010; Crozat et al., 2010),
and CD141+ DCs were the only DC subset migrating to XCL1
(Bachem et al., 2010). Further, primary CD141+ DCs were found
to be particularly capable of antigen cross-presentation, when
tested in vitro with soluble or cell-associated antigen (Bachem
et al., 2010; Crozat et al., 2010; Jongbloed et al., 2010). These
data collectively indicated that CD141+ DCs are the homologs
of murine CD8+ DCs and suggest that the lessons learned in
the mouse most likely will also hold true in the human. This
view is supported by the close structural resemblance of mouse
and human XCL1 and mouse and human XCR1. Moreover, the
expression pattern of human XCL1 (activated NK cells and CD8+
T cells; Müller et al., 1995; Hedrick et al., 1997; Blaschke et al.,
2003) appears very similar to the XCL1 expression profile in the
mouse. Thus, the CD141+ DCs are most likely specialized on the
surveillance of intracellular pathogens and also aberrant antigens

originating from cancerous tissue. Similar to the mouse system,
they can be expected to closely cooperate with cells of cytotoxic
immunity.

Considering all available functional data, XCR1 also in the
human appears to be an ideal target for antigen delivery. Dif-
ferent from CD205, which in the human is expressed on CD11c+
DC, monocytes, pDC, NK cells, and T cells (Kato et al., 2006),
and Clec9A/DNGR-1, which is expressed on CD141+ DC, but
also found on a subset of B cells and CD14+ CD16− mono-
cytes (Caminschi et al., 2008; Huysamen et al., 2008), expression
of XCR1 is restricted to CD141+ DCs. Given this selectivity and
the functional association with antigen cross-presentation, XCR1
emerges as a prime candidate for vaccines designed to induce
selective cytotoxic immunity in man.
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