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Despite intensive investigation, the mechanisms of T cell receptor (TCR)-mediated signal
generation remain poorly understood. Here we review various dynamic processes at the
cell membrane that might critically control this signaling. Firstly, we summarize recent
reports providing new information on the sensitivity of TCR/ligand interaction to the mem-
brane environment and particularly to applied forces. Secondly, we review recent evidence
that forces and displacements are continuously generated at cell surfaces. Thirdly, we
summarize recent experimental evidence demonstrating the capacity of forces to gener-
ate signals. Lastly, we provide a quantitative model to exemplify the capacity of dynamic
processes to modulate TCR properties such as specificity that were previously difficult to
explain with conventional models. It is concluded that the described dynamic processes
must be integrated into current models of TCR signaling.
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INTRODUCTION
Despite intensive investigation, the mechanisms of T cell receptor
(TCR)-mediated signal generation remains poorly understood. It
was suggested that the unique challenge set on TCR recognition
might impose the simultaneous involvement of several trigger-
ing mechanisms including aggregation, conformational changes,
and segregation (van der Merwe and Dushek, 2011). Here we
review recent evidence showing that dynamic membrane phenom-
ena influence signal generation at the TCR/antigen presenting cell
(APC) interface. Indeed, these phenomena influence at the same
time the species of molecules encountering each other and the
physical conditions of molecular encounters, each of which are
key components of signaling. Here, while numerous costimula-
tory molecules have known involvement in T cell activation, we
focus exclusively on the TCR.

First, we present some quantitative parameters related to the
TCR binding properties.

RECENT EVIDENCE PROVIDED NEW INSIGHT INTO THE
EFFECT OF THE MEMBRANE ENVIRONMENT ON
TCR/pMHC INTERACTION
Since TCR/pMHC interactions occur between surface-attached
molecules, i.e., under two-dimensional (2D) conditions, it is dif-
ficult to relate the T cell response to the physical properties of
the TCR/pMHC interaction measured in solution (Matsui et al.,
1994; Aleksic et al., 2010), i.e., under 3D conditions. Indeed (Bon-
grand, 1999), 2D and 3D conditions differ for several reasons:
First, the kinetics of bond formation between surface-attached

molecules depends on the distance between surfaces, lateral motil-
ity of receptors, and size and flexibility of interacting molecules.
Second, bond dissociation between surface-attached ligands and
receptors depends on the relative motion of surfaces and applied
forces. Third, the formation of multivalent attachments between
surface-bound ligands and receptors depends on aforementioned
parameters, surface roughness and ligand density, thus obscur-
ing the link between affinity and avidity. Over the last 15 years,
many investigators have devised new ways of monitoring bond
formation and dissociation between surface-attached molecules.
Devices have included laminar flow chambers (Kaplanski et al.,
1993; Alon et al., 1995) and atomic force microscopes (Florin et al.,
1994). Biomembrane force probes were introduced to dramatically
improve the atomic force microscopes: the cantilever is replaced
with a soft vesicle that acts as a tunable spring, thus increas-
ing the dynamic range of measurements (Merkel et al., 1999).
While these methods have yielded much information on inter-
actions involving selectins, integrins, cadherins, and members of
the immunoglobulin superfamily (Bongrand, 1999), it was only
recently that the TCR/pMHC interaction was monitored at the
single-molecule level (Huang et al., 2010; Huppa et al., 2010; Puech
et al., 2011; Robert et al., 2012). However, some discrepancies
remain, emphasizing the need for further studies. We shall briefly
describe the available data.

Interactions between fluorescently labeled TCRs borne by T
cells and pMHCs embedded in a lipid bilayer were visualized
with fluorescence resonance energy transfer (Huppa et al., 2010).
Molecular contacts were observed with an accuracy of a few

www.frontiersin.org April 2012 | Volume 3 | Article 90 | 1

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/about
http://www.frontiersin.org/T_Cell_Biology/10.3389/fimmu.2012.00090/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=Hai_TaoHe&UID=42564
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=PierreBongrand&UID=48050
file:he@ciml.univ-mrs.fr
mailto:pierre.bongrand@inserm.fr
http://www.frontiersin.org/
http://www.frontiersin.org/T_Cell_Biology/archive


“fimmu-03-00090” — 2012/4/24 — 20:52 — page 2 — #2

He and Bongrand TCR triggering and membrane dynamics

nanometers. One major finding was that 2D TCR/pMHC dissoci-
ation was 4- to 12-fold more rapid than 3D separation, a difference
that was abolished upon microfilament disruption with cytocha-
lasin or latrunculin. This supported the hypothesis that forces are
applied on membrane molecules in contact areas. Another unex-
pected finding was that 2D molecular associations between TCR
and pMHC were about 1,000-fold more rapid than 3D bond for-
mation, suggesting a strong influence of the conformation and
orientation imposed on interacting molecules.

Huang et al. (2010) used micropipettes to make contacts
between individual T cells and erythrocytes or artificial beads
coated with pMHCs. Interactions were studied using a biomem-
brane force probe via a method of binding detection with
improved sensitivity: the thermal fluctuation method in which
bond formation was revealed by a significant decrease of the ther-
mal fluctuations of pMHC-coated beads (Chen et al., 2008). The
2D dissociation was found to be up to 8,300-fold faster than the
3D dissociation. In addition, 2D and 3D dissociation rates mea-
sured on a same TCR with a series of pMHCs were negatively
correlated.

Puech et al. (2011) used atomic force microscopy to study
the interaction between a murine TCR and cognate or unre-
lated pMHCs. TCR/pMHC recognition was associated with higher
association rate, but no difference could be found between the
dissociation rates measured for each pMHC. These findings are
in line with the serial triggering hypothesis (Valitutti et al., 1995)
emphasizing the importance of multiple TCR engagement.

Finally, a laminar flow chamber was used to monitor bond for-
mation and dissociation between planar surfaces coated with eight
different pMHCs and TCR-coated microspheres (Robert et al.,
2012): dissociation rates were well correlated to values previously
obtained under 3D conditions with the same molecules (Aleksic
et al., 2010). Thus aforementioned discrepancies between 2D and
3D interactions might be due to active cell phenomena, demon-
strating the importance of assaying the TCR/pMHC interaction in
cell-free models. In addition, the association kinetics and mechan-
ical resistance of attachments was also studied by varying the shear
rate: (i) 2D and 3D association kinetics were not correlated, in
accordance with previous experiments performed to assess the
specific properties of 2D biomolecular association (Robert et al.,
2009). (ii) Bond lifetime was substantially altered by forces of
several tens of piconewtons. (iii) Data suggested a negative corre-
lation between force parameters and activation potencies, which
was also consistent with the serial triggering hypothesis (Robert
et al., 2012).

In conclusion, TCR/pMHC interaction is sensitive to applied
forces and movement. Recent evidence showing that forces and
displacements are generated in many cell–cell interfaces therefore
warrants further review.

FORCES AND MOVEMENTS AT THE CELL SURFACE
FORCES RUNNING PARALLEL TO THE CELL MEMBRANE
(LONGITUDINAL FORCES)
Adherent cells exert a continual traction on underlying sur-
faces (Harris et al., 1980). In addition, many cell types including
leukocytes were found to generate lateral oscillations of several
tens of nanometer amplitude and between 0.2 and 30 Hz frequency

(Krol et al., 1990). Furthermore, many cells types, including lym-
phocytes, spread on adherent surfaces displayed sequential waves
of membrane protrusion and retraction on their periphery with
a timescale of several tens of seconds (Dobereiner et al., 2006).
Finally, measuring of the forces generated by cultured neurons
with optical tweezers revealed the presence of alternate pulling and
pushing forces to the order of 50 pN with a total cycle duration of
several seconds (Shahapure et al., 2010).

FORCES AND MOVEMENTS PERPENDICULAR TO THE CELL
MEMBRANE (TRANSVERSE MOVEMENTS)
Lamellipodia or filopodia are cellular sensors located where active
movements are generated and receptors are concentrated (Neg-
ulescu et al., 1996), however, force generation can occur anywhere
on the cell membrane. Flexible surfaces display transverse undula-
tions of nanometer-scale amplitude generated by thermal motion
(Helfrich and Servuss, 1984). It had long been considered that
the relatively high surface tension generated by myosin motors
strongly reduced the existence of this kind of motion on the surface
of nucleated cells. However, recent studies made with interference
reflection microscopy on the initial interaction between monocytic
(Zidovska and Sackmann, 2006; Pierres et al., 2008) or lympho-
cytic (Crétel et al., 2010) cells and planar surfaces revealed the
existence of transverse undulations of nanometric amplitude and
Hz frequency. These motions might be involved in the detection
of activation cues by cells hovering on surfaces: When mono-
cytic THP-1 cells were deposited on fibronectin-coated surfaces,
membrane undulations of typically 5 nm amplitude and 5–10 s
frequency were observed. The amplitude increased when the cell-
to-surface separation fell below 50 nm. In addition, the undulation
amplitude at close distances increased after a 1–2 min lag, while the
cell-to-surface separation distance decreased (Pierres et al., 2008).
When human T lymphocytes were deposited on non-activating
(anti-HLA-coated) or activating (anti-CD3-coated) surfaces, the
1–2 min lag was followed by a rapid increase in contact area the
rate of which was eightfold higher on activating than on non-
activating surfaces (Crétel et al., 2010), as expected from previous
reports (Bunnell et al., 2001). Thus, such movements might be
involved in the analysis of surrounding surfaces by living cells
(Pierres et al., 2009). While the mechanical strength of these undu-
lations was not measured, recent observations made on fibrob-
lasts with atomic force microscopy revealed the occurrence of
pulsations of 20–200 nm amplitude and 2–35 s period (Pelling
et al., 2007).

In conclusion, cell membranes continuously generate longitu-
dinal and transverse oscillations that involve forces of several tens
of piconewtons and periods of a few seconds. We shall now review
recent evidence that TCRs subjected to such forces may generate
signaling cascades.

TCRs CAN GENERATE SIGNALING CASCADES IN
RESPONSE TO FORCES
Intracellular calcium rise is a hallmark of T cell activation. It was
recently reported that a tangential force but not a normal force of
50 pN applied on T cells through anti-CD3-coated magnetic beads
could induce a calcium rise within a few minutes, and this effect
was ascribed to a quaternary conformational change induced by
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forces (Kim et al., 2009). In other experiments, when T cells were
bound to APCs through an engineered CD3 ligand, no calcium rise
was observed in static conditions, whereas mild hydrodynamic
forces triggered a calcium rise within minutes (Li et al., 2010).
However, hydrodynamic forces did not induce any calcium rise in
T cells tethered through CD28 receptors rather than CD3.

Thus, TCR can act as a mechanotransducer, i.e., it can gen-
erate signaling cascades in response to forces. While this role of
TCRs is clear, the precise molecular mechanisms involved remain
poorly understood. An in-depth review of the mechanotransduc-
tion mechanisms that were recently demonstrated in a number
of cell models other than immune cells is therefore warranted to
assess the possible relevance of such mechanisms to T cells.

GENERAL MECHANISMS OF MECHANOTRANSDUCTION
For the sake of clarity, we shall discuss separately (i) some mech-
anisms potentially involved in TCR mechanotransduction, and
(ii) the expected dependence of these mechanisms on the dynamics
of lipid organization in the cell membrane.

GENERAL MECHANISMS FOR MECHANOTRANSDUCTION
Membrane ionic channels may act as force transducers
(Chalfie, 2009)
However, while TCR-mediated T lymphocyte activation involves
an early calcium rise, most evidence suggests that the opening
of calcium channels is a secondary event in the signaling cascade
(Smith-Garvin et al., 2009).

Force-induced conformational changes
A force-induced conformational change of membrane-associated
proteins might generate new docking sites. As previously empha-
sized (Pierres et al., 2009), a force F acting on a protein can induce
a conformational change if this would generate a displacement d
such that F × d is substantially higher than kBT, where kB is Boltz-
mann’s constant and T is the absolute temperature. Since kBT is
about 4 pN × nanometer, a force of 40 pN could induce a signif-
icant conformational shift provided it involved a deformation of
at least 0.1 nm. Interestingly, integrins may undergo deformations
that are in the order of 1 nm (Salas et al., 2004). Also, a force of a
few piconewtons applied on talin exposed docking sites allowing
vinculin binding (Del Rio et al., 2009). Also (Ehrlicher et al., 2011),
forces were found to influence the connection of actin to integrins
through the actin binding protein filamin.

Force-induced displacement of a receptor relative to
the membrane
A force might move membrane molecules relative to the lipid
bilayer, thus masking or unmasking docking sites for cytoplas-
mic molecules. Indeed, a force of 20 pN might suffice to uproot
a membrane-embedded molecule (Bell, 1978). It was recently
suggested that the interaction of the CD3/TCR complex with
membrane bilayers could result in the sequestration of some key
tyrosine residues that might be exposed after ligand binding (Ma
et al., 2008; Xu et al., 2008).

Signal generation following a change of membrane curvature
Sucking lymphocytes into a micropipette with an inner diam-
eter in the order of a few micrometers and a pressure of a

few tens of Pascals thereby generating a force of several hun-
dreds of piconewtons (Foa et al., 1988; Tözeren et al., 1989)
might generate a protrusion with a radius of curvature in the
order of a micrometer. Also, the application of a pulling force
of about 25 pN to a fibroblast could generate the formation
of a membrane tube of about 200 nm radius (Dai and Sheetz,
1995; Raucher and Sheetz, 1999). Thus, the transverse forces
described in Section “Forces and Movements Perpendicular to
the Cell Membrane (Transverse Movements)” might change the
membrane curvature and generate nanometer-scale protrusions.
This might trigger a signal through two non-exclusive mecha-
nisms: (i) Curvature-sensitive proteins might be recruited into
a localized area and nucleate a signaling scaffold (Peter et al.,
2004; Suetsugu et al., 2006). (ii) If traction forces are exerted
through cell membrane adhesion receptors, these receptors may
be gathered into the contact area, resulting in a local change
in protein composition. All these mechanisms are depicted in
Figure 1.

Importantly, all these mechanisms can be strongly influenced
by the nanometer-scale organization of membrane lipids. We shall
now briefly discuss this point.

MECHANOTRANSDUCTION IS MODULATED BY THE HIGHLY DYNAMIC
PLASMA MEMBRANE
T cell receptor/pMHC interaction is likely strongly influenced by
the membrane organization and dynamics. It is thus legitimate to
ask whether membrane domains such as lipid rafts could play a
role in the TCR triggering mechanism. After more than one decade
of intensive investigation and debate, current views converge on
the notion that lipid rafts exist in the cell membrane as fluctuat-
ing molecular assemblies/domains with typical sizes of less than
100 nm (Lingwood and Simons, 2010; He and Marguet, 2011). It
has been suggested that in the resting state TCRs might partition
into raft nanodomains (He and Marguet, 2008; Simons and Gerl,
2010). In such a scenario, raft nanodomains could be involved in
TCR triggering in several ways.

Docking sites generated by forces or enzyme processing will
preferentially interact with molecules localized within the same
nanodomains as the TCR (Lingwood et al., 2008)
In a recent study using single-molecule near-field scanning optical
microscopy it was shown that raftophilic proteins such as CD55
or LFA-1, but not the non-raft protein CD71, were recruited to
regions proximal (<150 nm) to CTxB-GM1 raft nanodomains
without physical intermixing (van Zanten et al., 2010). Therefore,
TCR partitioning into rafts could facilitate its encounter with Lck
(Zhang et al., 2011), since the latter is most likely also a raftophilic
protein.

Conformational changes induced by forces and/or ligand binding
may be influenced by the local composition of the membrane
Indeed, through promoting selective lipid–protein interactions,
raft nanodomains could enhance certain conformations/spatial
orientations of TCR/CD3 complexes that might either posi-
tively or negatively regulate receptor activity as was demonstrated
on other models: Coskun et al. (2011) recently reported that
cholesterol-rich ld/lo, but not cholesterol-poor ld membrane
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FIGURE 1 | Mechanisms for mechanotransduction. Five potential
mechanisms for mechanotransduction are depicted. (A) A local force
(red arrow) may generate a protrusion or a tether, resulting in the
recruitment of curvature-sensitive molecules (green disks; Suetsugu et al.,
2006). (B) Increased membrane tension (red arrows) may result in the
opening of mechanosensitive channels (Chalfie, 2009). (C) A separating
force (red arrow) exerted on attached cells may result in the concentration

of adhesion receptors into a smaller area (Tözeren et al., 1989).
(D) A force applied to a protein may result in a conformational
change and exposure of docking sites shown as green rectangles
(Del Rio et al., 2009). (E) A pulling or pushing force (red arrow) may
alter the position of a protein with respect to the plasma membrane,
resulting in the exposure of docking sites shown as pink rectangles
(Xu et al., 2008).

environments enhanced the GM3 ganglioside-dependent inacti-
vation of EGFR autophosphorylation. In the case of TCR, acidic
phospholipids including several phosphoinositides were shown
to bind to the cytoplasmic domain of CD3ε and CD3ζ, and
were proposed to regulate the access of ITAMs by Lck (Xu et al.,
2008; Deford-Watts et al., 2009, 2011). Raft nanodomains could
be involved in such a binding mechanism since it has been shown
that they strongly contributed to the membrane recruitment of
pleckstrin homology (PH) domain-containing proteins by the
phosphatidylinositol-3,4,5-trisphosphate (Lasserre et al., 2008).

The recruitment of curvature-sensitive molecules should be
influenced by local nanodomains
Finally, experimental evidence suggests that membrane curvature
is controlled by its constituent molecules, and conversely, curva-
ture could participate in organizing membrane proteins and lipids
(Groves, 2007).

In conclusion, available evidence suggests that dynamic phe-
nomena do influence TCR signaling. This may strongly influ-
ence the performance (i.e., sensitivity and specificity) of TCR
recognition.

A SIMPLE MODEL ILLUSTRATES THE NEED TO INCORPORATE
DYNAMIC PROCESSES TO BE ABLE TO EXPLAIN THE
PERFORMANCE OF TCR-MEDIATED SIGNALING
The kinetic proofreading mechanism was suggested to account
for the extraordinary specificity of TCR-mediated ligand recog-
nition: how can a TCR robustly discriminate between ligands
that bind with fairly comparable kinetics and affinity (McKeithan,

1995)? We shall address this question by comparing the infor-
mation provided by TCR engagement under static and dynamic
conditions.

The T cell decision to become activated after encountering a
pMHC is at least partly linked to the lifetime of the TCR/pMHC
interaction (Matsui et al., 1994). How could a T cell discriminate
between two pMHCs (1) and (2) that its TCR binds with dissoci-
ation rates of respectively, say, k1 = 0.5 and k2 = 2 s−1? Suppose
the criterion used is whether a bond survives for at least time
t. The probability that pMHCs (1) and (2) will meet this crite-
rion are respectively P1 = exp(−k1t) and P2 = exp(−k2t). If we
require that P1/P2 be higher than, say, 100 to ensure specificity,
we obtain:

P1/P2 = exp[(k2−k1)t] > 100; t > ln(100)/(k2−k1) = 3 s. (1)

This emphasizes two limitations of the discrimination proce-
dure: firstly, the decision takes at least 3 s, in line with the
kinetic proofreading mechanism, secondly, the probability that
the pMHC with the lowest dissociation rate k1 be bound for at
least 3 s is exp(−k1 × 3) = 0.223. Thus, the detection sensitivity is
only 22%.

Sensitivity might be improved without decreasing the speci-
ficity by performing two determinations and starting activation
if at least one of the binding events lasts for more than time t.
This gives:

P1/P2 = 2 exp(−k1t) − exp(−2k1t)

2 exp(−k2t) − exp(−2k2t)
. (2)
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The minimum time required for a specificity ratio P1/P2 of 100 is
now 3.14 s, and measurement time is at least 2 × 3.14 = 6.28 s.
The detection sensitivity is [2 exp(−k1t) − exp(−2k1t)] = 0.37.
Thus, specificity and sensitivity can both be increased by increas-
ing the number of measurements. However, this also increases
the measurement time, which impairs recognition speed. This
might be avoided by pulling at bonds, thus increasing the dis-
sociation rate in accordance with Bell’s law (Robert et al., 2012).
This thus demonstrates how forces could help increase detection
efficiency.

CONCLUSION
Recent results support the conclusion that (i) the region of ini-
tial contact between T cells and APCs is highly dynamic and thus
generates forces; (ii) these forces influence TCR/pMHC binding

and dissociation as well as signal generation; and (iii) these forces
may strongly influence the performance of TCR recognition.

Since these mechanisms are not exclusive of previously sug-
gested triggering mechanisms (van der Merwe and Dushek, 2011),
TCR triggering might involve a combination of these and pre-
viously suggested mechanisms. Predicting the outcome of a T
cell/APC encounter will thus require quantitative modeling to
account for a combination of multiple mechanisms.
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