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Intense research efforts so far have not been sufficient to reduce leishmaniasis burden
worldwide. This disease is transmitted by bites of infected sand flies, which inject saliva
in the host skin in an attempt to obtain a blood meal. Sand fly saliva has an array of pro-
teins with diverse pharmacological properties that modulates the host homeostatic and
immune responses. Some of these proteins are also immunogenic and can induce both
cellular and humoral immune responses. Recently, the use of sand fly salivary proteins to
estimate exposure to sand fly bites and consequently the risk of infection has emerged.
Here, we review evidence that supports the use of the host immune responses against
sand fly salivary proteins to estimate risk of infection. We also discuss how the use of
recombinant salivary proteins can optimize serological surveys and provide guidance for
the implementation of specific measures for disease control in endemic areas.
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Leishmaniasis is caused by infection with Leishmania parasites
transmitted by bites of infected sand flies. The infection can result
in a wide range of clinical manifestations varying from self-healing
localized skin lesions to lethal visceral disease, and major determi-
nants of the clinical outcome rely on the parasite strain and the
host immune response (Murray et al., 2005). Despite ample basic
and applied research, there is no effective vaccine to prevent leish-
maniasis. As a consequence, the prophylactic strategies proposed
by public health authorities are restricted mainly to vector control
and consistent screening and elimination of potential reservoirs.
In this scenario, understanding the nuances of the host–vector–
parasite interactions becomes critical for the development of more
reliable tools to adequately control leishmaniasis.

A critical event in Leishmania transmission is the sand fly
bite. Female sand flies require hematophagy for nutrition, egg
development, and survival. During blood feeding, sand fly saliva
containing a number of pharmacologically active molecules with
diverse effects on the host’s hemostatic responses is delivered into
the host skin (Andrade et al., 2005). There is strong evidence that
components of the sand fly saliva play a major role driving both
susceptibility to Leishmania infection and disease severity (Titus
and Ribeiro, 1988; Belkaid et al., 1998; Morris et al., 2001; de Moura
et al., 2007). Indeed, sand fly saliva can exacerbate lesions in exper-
imental models of cutaneous leishmaniasis (CL) and this effect is
considered, at least in part, a consequence of its immunomod-
ulatory properties. Salivary proteins are also immunogenic and
can elicit specific immune responses that can be detrimental for
Leishmania establishment (Kamhawi, 2000; Valenzuela et al., 2001;
Thiakaki et al., 2005; de Moura et al., 2007; Gomes et al., 2008;
Oliveira et al., 2008; Collin et al., 2009; Rohousova et al., 2011;
Tavares et al., 2011; Xu et al., 2011).

The idea of using antibodies against saliva from bloodsucking
arthropods as markers of exposure has been proposed for dif-
ferent arthropod vectors. There is extensive work showing that
humans and other vertebrates can develop antibodies against
salivary components of different bloodsucking vectors like mos-
quitoes (Brummer-Korvenkontio et al., 1994; Palosuo et al., 1997;
Remoue et al., 2006; Orlandi-Pradines et al., 2007; Andrade et al.,
2009), ticks (Schwartz et al., 1990, 1991; Sanders et al., 1998), and
triatomines (Volf et al., 1993; Nascimento et al., 2001; Schwarz
et al., 2009, 2010, 2011). Specific antibodies and their dynam-
ics in vertebrate hosts were described also against fleas and louse
(Volf, 1991). As expected, exposure to sand fly bites or saliva also
induces antibody production in humans and animal models (Bar-
ral et al., 2000; Volf and Rohousova, 2001; Gomes et al., 2002,
2007, 2008; Rohousova et al., 2005; Silva et al., 2005; Clements
et al., 2010; Souza et al., 2010; Teixeira et al., 2010; Vlkova et al.,
2011). In mice, the antibody isotype most induced by sand fly
saliva is IgG1 (Silva et al., 2005) whereas IgG1, IgG2, IgG4, and IgE
are more frequent in humans (Vinhas et al., 2007; Marzouki et al.,
2011). Specific IgG1 and IgG2 isotypes are also highly induced in
dogs bitten by sand flies (Hostomska et al., 2008; Vlkova et al.,
2011). Thus, these antibody isotypes are obvious candidates for
use as targets in serological surveys in endemic areas. Interest-
ingly, two major patterns of clinical and serological responses
to sand fly saliva are identified in human volunteers repeatedly
exposed to Lutzomyia longipalpis, the vector of visceral leishma-
niasis (VL) in South America (Vinhas et al., 2007). Individuals
who develop delayed-type hypersensitivity (DTH)-like skin reac-
tions after exposure usually display higher IgG/IgE ratios than
those evolving mild erythematous reactions (Vinhas et al., 2007;
Figure 1). These observations argue that the host response to sand
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fly saliva may present some degree of divergence resulting from
genetic variations that could influence susceptibility to Leishma-
nia establishment. Furthermore, characterization of the humoral
response against saliva can provide evidence regarding susceptibil-
ity to Leishmania infection in humans. In this case, characterizing
the antibody profile of an exposed individual may be useful in
predicting susceptibility to disease. Whether these immunological
aspects are reproducible in individuals exposed to other species of
sand flies, including those that transmit the cutaneous form of the
disease is still unknown.

Several field studies in highly endemic areas for leishmania-
sis indicate that natural exposure to non-infected sand fly bites
can impact the epidemiology of this disease (Barral et al., 2000;
Gomes et al., 2002; Rohousova et al., 2005; de Moura et al.,
2007; Aquino et al., 2010; Marzouki et al., 2011; Vlkova et al.,
2011). In these regions, residents are frequently bitten by both
non-infected and infected sand flies. It is hypothesized that these
frequently exposed individuals usually present mild and chronic
disease manifestations while travelers from non-endemic areas,
not previously exposed to sand flies or Leishmania, present a higher
risk of developing severe clinical forms of leishmaniasis. The idea
is that frequent exposure to sand fly bites leads to the production
of neutralizing antibodies against salivary proteins and also to
activation of cellular mechanisms that may have an adverse effect
on Leishmania establishment. In this perspective, characterization
of immune responses against sand fly saliva can help estimate
both risk of infection and to some degree anti-parasite immu-
nity. Although this hypothesis has been proven in animal models,
additional large-scale clinical studies are necessary to validate it in
humans. Individuals living in leishmaniasis endemic areas that are
exposed to bites from uninfected sand flies over a long term still
get infected and develop disease. Interestingly, protection against
leishmaniasis in mice has been recently shown to be limited to
short-term exposure to sand flies immediately before infection
(Rohousova et al., 2011). This finding may explain the persistence
of leishmaniasis in endemic areas, as individuals might experience
periods without exposure to sand fly bites. Moreover, other factors
besides exposure to sand fly bites might also be driving suscepti-
bility to infection and disease severity in human leishmaniasis and
the interaction between these determinants are still unknown. The
characterization of the host’s immune responses against sand fly
saliva can lead to the identification of key salivary proteins with
at least two remarkable potentials: (i) its use as surrogates for
exposure to sand fly bites and the risk of infection and (ii) the
identification of candidate vaccines against leishmaniasis. In fact,
estimation of exposure to sand fly bites to infer risk of infection
has emerged as an important tool to help drive strategic inter-
ventions to reduce disease transmission in endemic areas. Here,
we review the current advances in the use of sand fly saliva as a
helpful tool to estimate exposure to vector bites and risk for leish-
maniasis. We also summarize the development of reliable tools to
assess vector-exposure in endemic areas.

ASSOCIATION BETWEEN EXPOSURE TO SAND FLY SALIVA
AND VISCERAL LEISHMANIASIS
Visceral leishmaniasis in Latin America is transmitted by the bite of
L. longipalpis sand flies infected with Leishmania infantum chagasi.

One of the first reports showing the immunogenicity of sand fly
saliva in exposed individuals was carried out in a highly endemic
VL area in Brazil, where inhabitants differentially recognize sali-
vary gland proteins (Barral et al., 2000). Interestingly, a positive
correlation was observed between recognition of salivary proteins
and anti-Leishmania DTH reaction to parasite antigens and pro-
tection, but not to anti-Leishmania serologic status. Furthermore,
children who experienced anti-Leishmania DTH conversion had
an increase in anti-L. longipalpis saliva antibodies, suggesting that
development of anti-parasite DTH coincides and is directly related
to the development of anti-saliva antibodies (Gomes et al., 2002).
More recently, in the same endemic area, the rate of a positive
anti-Leishmania DTH was higher in individuals that had anti-L.
longipalpis antibodies at the baseline of a 2-year follow-up study
(Aquino et al., 2010). On the other hand, these results could simply
suggest that DTH is also dependent on parasite challenges which
was not specifically measured in either studies. Other factors that
might contribute to the susceptibility to infection in endemic areas
such as vector density and reservoir infection rates still need to be
addressed.

The presence of antibodies to sand fly salivary proteins was also
demonstrated in canids (dogs and foxes), important reservoirs that
serve as a source of parasites to sand flies in endemic regions.
In dogs experimentally exposed to L. longipalpis, the induced
anti-saliva antibodies can recognize up to six different sand fly
salivary proteins (Hostomska et al., 2008). Comparable results
were also found in naturally exposed animals captured in a highly
endemic area of VL in Brazil. Anti-L. longipalpis saliva antibodies
were detected in naturally infected dogs and foxes, suggesting that
these animals were in close contact with the vector (Bahia et al.,
2007; Gomes et al., 2007). In a follow-up study of dogs experi-
mentally exposed to Phlebotomus perniciosus, the main vector of
canine VL in Europe, a positive correlation between the produc-
tion of specific antibodies against vector saliva and the number of
blood fed sand flies was shown. Notably, dogs naturally exposed
to bites during the sand fly season that tested positive for Leish-
mania had decreased systemic levels of anti-P. perniciosus saliva
IgG2 antibodies compared to healthy dogs (Vlkova et al., 2011).
Such studies suggest that the detection of anti-saliva antibodies
can be valuable to evaluate vector control programs. Indeed, in a
recent study in VL areas in India and Nepal, the efficacy of insecti-
cide treated nets (ITN) was evaluated in terms of vector-exposure
by measuring anti-P. argentipes saliva antibody concentrations in
the inhabitants before and after the intervention. This approach
showed that exposure to P. argentipes was reduced by up to 12%
in people living in villages where nets were used compared to con-
trols (Clements et al., 2010; Gidwani et al., 2011). In summary,
both observational and interventional field studies in VL areas
strongly suggest that the production of antibodies to specific sand
fly salivary proteins could be directly associated to correlates of
protection.

ASSOCIATION BETWEEN EXPOSURE TO SAND FLY SALIVA
AND CUTANEOUS LEISHMANIASIS
Cutaneous leishmaniasis is transmitted by the bite of a number of
sand flies species with diverse geographic distributions. There is
also evidence suggesting that individuals that live in endemic areas
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FIGURE 1 | Associations between the pattern of host humoral responses

against saliva from L. longipalpis and skin reactions upon exposure to

bites. Human anti-saliva responses following exposure to uninfected L.
longipalpis sand flies, using an in vivo model in which normal volunteers were
exposed four times to 30 laboratory-reared Lutzomyia longipalpis (Vinhas
et al., 2007). Following third exposure, volunteers developed diverse
dermatological reactions at the site of insect bite. Serum from volunteers

displayed high levels of IgG1, IgG4, and IgE anti-saliva and recognized several
salivary gland proteins. Interestingly, volunteers who developed immediate
skin reactions (left panel) presented higher IgE levels and lower IgG levels
than those with delayed skin responses (right panel), as demonstrated by the
IgG/IgE ratio. Whether this variability in the host responses against saliva is
associated with different degree of susceptibility to Leishmania infection is
still unknown.

for CL also develop specific antibodies to saliva of sand fly species
that transmit the disease.

In an endemic area for Leishmania tropica in Turkey, the anti-
body response against saliva of P. sergenti (the vector of L. tropica)
and P. papatasi (the vector of L. major elsewhere) was com-
pared between healthy individuals and patients with active CL
lesions (Rohousova et al., 2005). It was observed that approxi-
mately 40% of the study population carried IgG antibodies to
the saliva of both sand fly species. Interestingly, individuals with
active lesions had higher anti-P. sergenti IgG levels compared to
healthy individuals, strongly suggesting that production of anti-
saliva antibodies could be used as a marker for risk of developing
CL (Rohousova et al., 2005). In a recent study performed in
Tunisia, sera from children living in a CL endemic area of L. major
showed a consistent production of anti-P. papatasi saliva anti-
bodies after two transmission seasons. Anti-saliva IgG antibodies
were significantly higher and correlated with lesion development,
arguing that anti-saliva antibodies were strongly associated with
the disease development (Marzouki et al., 2011). A similar finding
was described for Lutzomyia intermedia, an important vector of
CL in South America (de Moura et al., 2007). Residents from an

endemic area in Brazil presenting active CL displayed higher titers
of antibodies against L. intermedia saliva compared to healthy
individuals from the same area, indicating that in CL a humoral
immune response to L. intermedia saliva is a marker of risk of
disease (de Moura et al., 2007). Similarly to the studies performed
in VL areas, these conclusions need to take into account other
important determinants such as percentage of infected vectors,
the biting rate and the presence of potential reservoirs in the
area that could also influence the outcome of the host’s immune
response.

These observations indicate that the detection of specific
humoral immune response against salivary proteins from differ-
ent species of sand flies should be carefully evaluated. Altogether,
these findings indicate that exposure to saliva of distinct species of
sand flies can be correlated with two different outcomes: suscep-
tibility to disease or protection. In VL, the findings were observed
in cross-sectional and longitudinal prospective studies showing
that the development of both types of immunity occurs simul-
taneously (Barral et al., 2000; Gomes et al., 2002; Aquino et al.,
2010). In CL, however, the development of anti-saliva antibodies
and susceptibility to disease are closely related and recent work
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shows an association with a Th2 phenotype (Rohousova et al.,
2005; de Moura et al., 2007; Marzouki et al., 2011). Although pro-
duction of antibodies against vector saliva suggests an increased
chance of encountering an infected bite and developing dis-
ease, constant exposure to non-infected bites in endemic areas
could possibly modulate the host’s immune response to affect
a successful settlement of the parasite. Whereas production of
antibodies against sand fly saliva can be used as biomarker of
disease susceptibility more studies are required to identify sali-
vary proteins that can affect the development of anti-Leishmania
immunity.

TOOLS TO ESTIMATE EXPOSURE TO SAND FLY BITES
The work done so far with detection of anti-sand fly saliva anti-
bodies have shown enough evidence to prove the relevance of
using salivary proteins as tools to address the level of exposure
to vector bites bringing a new perspective to the field. Although
the use of antibody response to sand fly saliva is promising, an
approach in which a large number of samples from different verte-
brate hosts could be quickly and specifically tested is highly desired.
The majority of work evaluating saliva of sand flies as potential
biomarkers of vector-exposure used whole salivary extracts. While
whole salivary extract has advantages as it represents the complete
repertoire of crude secreted salivary proteins, it also has limita-
tions that could restrict their application. Technical limitations to
the use of large quantities of whole salivary extracts in population
surveys include restrictions on the number of sand flies available
for salivary gland dissection, homogeneity of the salivary content,
and conservation of the proteins without degradation. These lim-
itations impact the size and extent of field studies. Additionally,
the use of total saliva reduces the specificity of detection due to a
higher likelihood of cross-reactivity with saliva from other sym-
patric non-vector sand fly species. For instance, salivary antigens
do not cross-react between L. longipalpis and Phlebotomus species

but some cross-reactions were demonstrated between diverse Phle-
botomus species in both mice (Volf and Rohousova, 2001) and
humans (Rohousova et al., 2005). Hence, the identification of
specific and highly immunogenic salivary proteins that can also
be produced in large quantities as quality-controlled recombi-
nant proteins is of utmost importance for larger epidemiological
studies.

The first attempt to identify, produce, and test salivary recom-
binant proteins for serological surveys was recently demonstrated
for L. longipalpis sand flies (Souza et al., 2010; Teixeira et al.,
2010). These work describe a practical and functional approach
for identification of salivary proteins most recognized by sera
from humans and canids residing in endemic areas for VL in
Brazil and, more importantly, how to obtain highly pure and
immunogenic recombinant proteins. Initially, sera from humans,
dogs, and foxes from VL endemic areas were screened against
the whole salivary extract from L. longipalpis. The most recog-
nized proteins were in the range of 15–65 kDa. Based on a L.
longipalpis salivary transcriptome, nine transcripts that corre-
sponded to proteins within the predicted molecular weight in the
desired range were selected as potential candidates. To characterize
and confirm the antigenicity of the candidates, each recombi-
nant salivary protein was produced in a mammalian expression
system, purified, and tested individually for their recognition by
sera from individuals residing in a VL endemic area. Two of
the nine salivary recombinant proteins, LJM11 and LJM17, were
highly recognized by humans exposed to L. longipalpis, demon-
strating their potential as markers for epidemiological studies.
To verify their specificity, the two recombinant proteins were
further tested against sera from individuals exposed to L. inter-
media. Both recombinant proteins were only recognized by sera
from individuals exposed to L. longipalpis but not to L. inter-
media bites, confirming their potential as specific markers for L.
longipalpis exposure. Finally, to validate LJM11 and LJM17 as

VL endemic area
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FIGURE 2 | Key steps to implement the use of recombinant proteins from sand fly saliva in serological surveys to estimate exposure to bites and risk

of Leishmania infection.
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markers for exposure, they were tested in a large cohort with
over a thousand people from a VL area (Souza et al., 2010).
Both recombinant proteins (LJM11 and LJM17) were assessed
individually and in combination and were able to detect anti-
saliva seroconversion but the use of a combination of these two
proteins showed a more powerful discrimination equal to the sero-
conversion observed against whole saliva extract. A summary of
the approach used in these two studies is illustrated in Figure 2.
Notably, this method used for identification of salivary proteins
applied in ELISA assays could also be assessed to identify poten-
tial markers from the saliva of other arthropod vectors. The use
of ELISA has shown to be a practical tool in different studies
where whole vector’s saliva was used. In several epidemiological
studies, this approach has been used to determine the levels of
specific anti-vector saliva antibodies including Ixodes pacificus, P.
argentipes, Aedes caspius, and Aedes albopictus (Lane et al., 1999;
Clements et al., 2010; Fontaine et al., 2011; Gidwani et al., 2011;
Vlkova et al., 2011; Doucoure et al., 2012), clearly demonstrating its
potential to support control strategies programs for vector-borne
diseases.

CONCLUDING REMARKS
Research focused in the interplay between vector saliva and host
immune responses has been very successful in the identification
of molecules with diverse biological and pharmacological activ-
ities and has contributed impressively to the understanding of
the immunopathogenesis of an array of vector-borne diseases.
Regarding leishmaniasis, different groups have shown that sand
fly saliva plays a critical role in the establishment of Leishmania
infection and have also described host immune responses against
salivary proteins in mice, dogs, and humans. Interest in the field
is empowered by recent observations arguing that it is possible
to track human exposure to vectors using salivary recombinant
proteins. The use of recombinant proteins in serological surveys
performed in leishmaniasis endemic areas is critical to standardize
the quality and reproducibility of results from different stud-
ies and also to optimize procedures (Figure 3). Unfortunately,
although extensive data regarding the quantification of host anti-
body responses against sand fly saliva has been published, few
studies provide validation of their results using large cohorts
or multi-center approaches. Moreover, multi-center approaches
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FIGURE 3 | Combining clinical studies with basic proteomic research to

generate tools based on sand fly salivary proteins to aid the control of

visceral leishmaniasis. (A) Epidemiological and entomological studies have
provided critical knowledge to guide development of advanced research
studies using sand fly saliva. Proteomic and transcriptome studies made
possible to identify and isolate the salivary proteins that are immunogenic and
elicit host antibody responses. In addition, we have recently shown an
approach to produce large amounts of recombinant versions of these proteins
in large-scale (Teixeira et al., 2010). (B) Some proteins are globally identified by

the host humoral responses. Such proteins can be used in serological surveys
to estimate exposure to sand fly bites and an overall risk to become infected
in endemic areas. (C) Other salivary proteins are more frequently recognized
by antibodies from people presenting surrogates of clinical immunity against
leishmaniasis, such as delayed-type hypersensitivity against Leishmania
antigens. These proteins can also be used in serological surveys in order to
identify people with potential protection against infection (Souza et al., 2010).
(D) Ultimately, recombinant proteins can be used in experimental models to
define potential use in vaccination strategies against leishmaniasis.
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are also critical to identify salivary proteins that have conserved
expression in different endemic areas, as variation in salivary
content among the same species has been described in different
geographical regions (Lanzaro et al., 1999). An expanded effort
for studying salivary content of species from different parts of
the world will certainly increase the chances to find common
molecules that could function as markers or as candidates for
a wide-ranging vaccine. This approach is critical as specificity
to saliva-mediated protection against Leishmania infection was
demonstrated in the mouse model arguing that immunization
with salivary components from one species of sand fly can be inef-
fective to induce protection against other species (Thiakaki et al.,
2005),This finding also suggests that immunity against Leishmania

is elicited by unique salivary antigens and not conserved molecules
between various species of sand flies. Definitively, coordinated ini-
tiatives are necessary to design robust validation studies toward
generating standardized guidelines. Ultimately, the use of sand fly
salivary proteins in epidemiological studies can provide a fun-
damental tool to help public health authorities in planning key
strategies to reduce the burden of leishmaniasis.
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