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Dendritic cells (DCs) are major players in the control of adaptive tolerance and immunity.
Therefore, their specific generation and adoptive transfer into patients or their in vivo target-
ing is attractive for clinical applications. While injections of mature immunogenic DCs are
tested in clinical trials, tolerogenic DCs still are awaiting this step. Besides the tolerogenic
potential of immature DCs, also semi-mature DCs can show tolerogenic activity but both
types also bear unfavorable features. Optimal tolerogenic DCs, their molecular tool bar,
and their use for specific diseases still have to be defined. Here, the usefulness of in vitro
generated and adoptively transferred semi-mature DCs for tolerance induction is outlined.
The in vivo targeting of semi-mature DCs as represented by steady state migratory DCs
are discussed for treatment of autoimmune diseases and allergies. First clinical trials with
transcutaneous allergen application may point to their therapeutic use in the future.
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IMMATURE DCs
Tolerogenicity of dendritic cells (DCs) has been shown by many
experiments in vitro and in vivo (Manicassamy and Pulendran,
2011). There has been a debate whether certain subsets or the
maturation/activation state defines DC tolerogenicity. In mice, all
known lymphoid organ DC subsets have been demonstrated to
bear tolerogenic potential, as shown for CD4+ (Sato et al., 2003b;
Chung et al., 2005), CD8α+ (Belz et al., 2002; Ferguson et al., 2002;
Yamazaki et al., 2008), and plasmacytoid DC (pDC) subsets (Mar-
tin et al., 2002; Ochando et al., 2006; Hadeiba et al., 2008) but
also human monocyte-derived DCs (Sato et al., 2003a). Condi-
tional ablation of DCs during the steady state in mice results in a
loss of self-tolerance (Birnberg et al., 2008; Ohnmacht et al., 2009).
Experimental animal models in transplantation, autoimmunity or
allergy and indications from human studies suggest a tolerogenic
potential of immature DCs (Bluestone et al., 2007; Morelli and
Thomson, 2007; Hilkens et al., 2010; Manicassamy and Pulen-
dran, 2011). Human immature DCs, loaded with the influenza
matrix peptide and keyhole limpet hemocyanin and then injected
i.v. into healthy individuals induced tolerance (Dhodapkar et al.,
2001). Together, not a defined DC subset or the presentation of
foreign antigens dictates DC tolerogenicity but their maturation
state.

In vivo most of tissue- and lymphoid organ-resident DCs are
immature (Wilson et al., 2003) but after ex vivo isolation they
lose their tolerogenic potential due to maturation induced by
the preparation procedure (Maldonado-López et al., 1999). Thus,
immature DCs need to acquire maturation resistance to subse-
quent stimuli to act strictly tolerogenic. This can be achieved
for in vitro generated DCs by specific conditioning to preserve

Abbreviations: APC, antigen-presenting cells; DCS, dendritic cells; Th1, T helper 1;
Th2, T helper 2; Th17, T helper 17; Tregs, regulatory T cells; Tr1, T regulatory type
1; TNF/DCS, TNF-matured DCS.

their immature state (Thomson, 2010). Alternatively, targeting of
immature DCs in vivo can be used to induce tolerance by tar-
geting certain surface receptors that mediate tolerance, such as
first demonstrated for the 33D1 (DCIR2) antibody binding to
the CD4+ DC subset (Finkelman et al., 1996) and later for the
CD8α+ DC subset by DEC205 (CD205) antibody (Hawiger et al.,
2001).

As a third possibility intravenous injection of soluble antigens
reach thymic and splenic DCs, which are then presented under
steady state conditions with half-lives between 3 and 22 h (Muller
et al., 1993). Soluble protein injections such as myelin antigens
may reach preferentially the CD4+ CD11b+ DCs and can lead to
protection from autoimmunity (Li et al., 2008). Injected apoptotic
cells as a source for tolerogenic antigens are captured by spleen DCs
and may represent promising tolerogenic tools in allogeneic trans-
plantation settings (Steinman et al., 2000; Morelli and Larregina,
2010).

It is of note that s.c. injection of immature DCs leads to their
upregulation of costimulatory molecules and a loss of tolerogenic-
ity (Fu et al., 1996). TNF-matured DCs that were tolerogenic when
injected i.v., turn into highly immunogenic DCs when applied
the s.c. route (Voigtländer et al., 2006). This may indicate that
tissue injury mediated maturation by ex vivo isolation proce-
dures or via the s.c. injection route causes danger signals strong
enough to abrogate tolerogenicity of immature DCs. Recently,
human autologous monocyte-derived DCs, treated with antisense
oligonucleotides against CD40, CD80, and CD86 but not loaded
with specific antigens were injected intradermally into type 1 dia-
betes patients (Giannoukakis et al., 2011). Although these DCs
were not further characterized, not even on the stability of the
costimulation blockade, they appeared save for the patients but
also without clinical benefit. Thus, DC injections or in vivo target-
ing may prefer the i.v. route or require specific treatments to gain
maturation resistance.

www.frontiersin.org May 2012 | Volume 3 | Article 123 | 1

http://www.frontiersin.org/Immunology
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/about
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=ManfredLutz&UID=29832
mailto:m.lutz@vim.uni-wuerzburg.de
http://www.frontiersin.org
http://www.frontiersin.org/Immunological_Tolerance/archive
http://www.frontiersin.org/Immunological_Tolerance/10.3389/fimmu.2012.00123/abstract


Lutz Tolerogenic semi-mature DCs

MATURE DCs
Mature DCs or, as we proposed earlier, rather fully mature DCs
(Lutz and Schuler, 2002), are inducers of effector T cell responses
by their costimulation, homing, and cytokine production capaci-
ties and therefore candidates for anti-microbial or tumor vaccine
approaches (Steinman, 2008). Further “licensing” of DCs through
CD40 signals leads to elevated cytokine secretion and resistance
to Treg-mediated loss of costimulatory molecules on mature DCs
(Hänig and Lutz, 2008; and references therein). However, although
immature DCs are more efficient in Treg de novo induction from
naive T cells, mature DCs have been demonstrated to act superior
in activating the suppressor function of Tregs. Details on the role
of DC costimulation for Treg generation and function has been
reviewed elsewhere (Pletinckx et al., 2011a).

SEMI-MATURE DCs
Partial maturation resulting in upregulation of MHC and cos-
timulatory molecules and lymph node homing capacity but
lack of proinflammatory cytokine production was termed semi-
maturation (Lutz and Schuler, 2002). An advantage of semi-
mature tolerogenic DCs over immature tolerogenic DCs is their
lymph node homing potential by which DCs can reach T cells
at their anatomical locations. Although under debate, to create
the term “semi-maturation” allowed the collection of arguments
for or against it and then to keep or discard it. So far, further
experimental evidences for the phenotype and tolerogenic poten-
tial of semi-mature DC stages have been obtained and reviewed
(Mills and McGuirk, 2004; Morelli et al., 2005; Braun et al., 2006;
Nouri-Shirazi and Thomson, 2006; Rutella et al., 2006; van Duiv-
envoorde et al., 2006; Young et al., 2007; Frick et al., 2010; Morel
and Turner, 2011). Recently, gene-expression profiling of different
semi-mature DCs (TNF, Trypanosoma antigens) was compared to

fully mature DCs (LPS) and revealed mainly quantitative differ-
ences between these DC types. A common signature of only 24
proinflammatory genes characterized the semi-mature DC types
with a total of 160–466 genes regulated as opposed to almost 5000
genes regulated by LPS (Pletinckx et al., 2011b). These data under-
line that besides the qualitative instruction of pathogen- versus
self-antigen-recognition by triggering or not of pattern recogni-
tion receptors also more fine-tuned quantitative differences in gene
regulation seem to determine DC tolerogenicity versus immuno-
genicity (Figure 1). Here, some specific aspects of semi-mature
tolerogenicity will be discussed.

TOLEROGENICITY OF SEMI-MATURE DCs
Initial findings in the mouse, that TNF-matured bone-marrow-
derived DCs (TNF/DCs) and intravenously injected into mice
could act tolerogenic (Menges et al., 2002) were similar to findings
that cross-tolerance of CD8+ T cells in vitro induced by human
DCs also required TNF stimulation (Albert et al., 2001). Repetitive
injections of peptide-loaded TNF/DCs into mice allowed complete
protection from experimental autoimmune encephalomyelitis
(EAE). The resulting T cell response was characterized by a lowered
IFN-γ production, absence of IL-4, and increased IL-10 produc-
tion of CD4+ T cells as detected by ELISA (Menges et al., 2002).
Thus, a tolerogenic response being compatible with induction of
a regulatory T cell type 1 (Tr1)(Roncarolo et al., 2006). Similar
observations have been made with TNF/DCs in a murine thyroidi-
tis model (Verginis et al., 2005), DNA-matured DCs in experimen-
tal collagen-induced arthritis (Jaen et al., 2009), MyD88-silenced,
and then LPS-matured DCs in rat intestinal allograft transplan-
tation (Yang et al., 2011). Others generated semi-mature DCs
by dexamethasone and 1α,25-dihydroxyvitamin D3 (VD3) treat-
ment alone (Unger et al., 2009) or in parallel with LPS exposure

FIGURE 1 | Semi-maturation as a quantitative level of gene regulation

in DC maturation. DC maturation and the subsequent induction of
polarized Th1 or Th2 responses has been considered mostly as a
consequence of qualitative differing maturation pathways, meaning the
microbial direction of either Th1- or Th2-inducing genes in DCs with
simultaneous down-regulation of tolerance genes (Quality Model). Indeed,
the Notch ligands Jagged-2 and Delta-4 characterize the different DC

types. In parallel, quantitative differences appear for Th1- or Th2-polarizing
DCs (Quantity Model). DC that reach only a semi-mature stage with
various stimuli and induce Th2 cells are characterized by a low number of
regulated proinflammatory genes and only few hundred genes more in
total. In contrast, the same proinflammatory genes are induced in
Th1-polarizing fully mature DCs but almost 5000 genes in total. Thus,
semi-maturation can be observed also by the number of regulated genes.
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of cells that were protective in collagen-induced arthritis model
(Stoop et al., 2010). Semi-mature DCs generated by sequential
dexamethasone and LPS treatment were superior to immature
DCs to prolong allograft survival in mice (Emmer et al., 2006).
In a murine graft versus Of note, in macaques a tolerogenic DC
semi-maturation stage seems to be achieved by using bone mar-
row as a source but not peripheral blood monocytes (Moreau
et al., 2008). When human monocyte-derived DCs were gener-
ated in GM-CSF, IL-4, TGF-β, and IL-10 for 7 days the resulting
regulatory immature DCs could respond to TNF only by par-
tial upregulation of costimulatory molecules as compared to DCs
cultured without TGF-β and IL-10 (Sato et al., 2003a). Unfor-
tunately, their cytokine production, CCR7 expression or homing
potential was not tested and the murine counterparts generated
from bone marrow appeared rather immature, although success-
ful in the treatment of graft-versus-host disease model (Sato et al.,
2003a,b).

A recent study tested the clinical potential of different human
monocyte-derived semi-mature DCs, considering also CCR7-
dependent homing potential and maturation stability (Boks et al.,
2012). Human immature monocyte-derived DCs were compared
with DCs that received additional treatments of dexamethasone,
rapamycin, TGF-β, or IL-10. The results indicated that the treat-
ments with the inhibitors for 1 h, revealed immature DCs without
migration capacity, while following cocktail maturation (TNF,
IL-1β, PGE2) allowed the acquisition of migratory capacity on
CCL21 in vitro and maturation resistance to further TLR expo-
sure. However, it appeared that IL-10, the strongest inhibitor of
DC maturation and the best Treg inducer, also showed the poor-
est migration, indicating that a balanced inhibition/maturation
protocol will be essential for successful application of semi-
mature DC in the clinic. Together, weak maturation stimuli alone
or combinations of suppressive treatments followed by matu-
ration stimuli leads to partial DC maturation with tolerogenic
capacity.

ROLE OF REPETITIVE SEMI-MATURE DC INJECTIONS
After establishing that repetitive injections of TNF/DCs lead to Tr1
cell generation (Menges et al., 2002) additional studies in our lab
indicated that this might be a result of chronic Th2 immunity. After
peptide restimulation of spleen cells from IL-4R deficient mice in
the EAE protection model IL-4 production by ELISA (and in addi-
tion IL-13) was detectable (Wiethe et al., 2008), indicating that
low amounts of IL-4 were produced in wild-type mice but con-
sumed completely and therefore not detectable. Intracellular flow
cytometry showed that both CD4+ T cells and NKT cells recognize
peptide or glycolipid antigens presented by TNF/DCs leading to
their IL-4 and IL-13 production. More detailed investigations on
CD1d presentation by TNF/DCs identified both type I and II NKT
cells to secrete these cytokines (Wiethe et al., 2007). A further aug-
mented activation of so-called non-classical or type II NKT cells,
i.e., CD1d-restricted and glycolipid-recognizing CD4+ T cells with
a diverse TCR repertoire (Godfrey et al., 2004), was observed when
the co-inhibitory molecule B7-H1/PD-L1 was absent on the DCs
(Brandl et al., 2010). Thus, repetitive TNF/DC injections induce
IL-10, little IL-4, and IL-13 production of conventional CD4+
T cells (Figure 2), together with IL-4, IL-13, but not IL-10, by

invariant type I NKT cells as well as by non-classical type II NKT
cells.

Recent analyses showed that a single stimulation of T cells by
TNF/DCs induced a Th2-like profile in vitro and in vivo (Plet-
inckx et al., 2011b), that allows immune deviation of antigen-
specific T cells away from pathogenic Th1 and Th17 responses
in EAE. Only repetition leads to dominant Tr1-mediated con-
trol of EAE. We also tested whether this mixed Th2/Tr1 response
would influence asthma as a Th2 disease model. The data revealed
that TNF/DCs could neither boost nor protect Th2-mediated
asthma in mice, presumably pointing to a neutral effect of Th2-
booster together with Tr1-suppression (Pletinckx et al., 2011b).
This is different to what has been described by others with
intranasally applied OVA allergen also leading to Tr1 cells without
additional Th2 induction and protecting from asthma (Akbari
et al., 2001). These differences in the clinical outcome may
however, also be explained by IL-10 production by the endoge-
nous lung DCs after intranasal asthma therapy, which was not
observed with our adoptively transferred TNF/DCs. Alternatively,
a local control of the disease in lung lymph nodes (Akbari
et al., 2001) rather than systemically injected TNF/DCs, reach-
ing the spleen, may be beneficial in the asthma model. Together,
semi-mature DC-induced mixed Th2/Tr1 responses can pro-
tect from Th1/Th17-induced (Sato et al., 2003a) diseases but
pure Tr1 induction will be necessary to treat also Th2-mediated
diseases.

INFLAMMATION, PATHOGENS, COMMENSALS, AND TUMORS AS
INDUCERS OF SEMI-MATURATION
There is accumulating evidence that typical Th2-inducing
pathogens also induce only partial DC maturation such as shown
for Leishmania amazonensis (Prina et al., 2004), Bordetella per-
tussis (Vojtova et al., 2006), cholera toxin (Bimczok et al., 2007),
Nippostrongylus brasiliensis (Balic et al., 2004), or Echinococcus
multilocularis (Nono et al., 2012). As a consequence the resulting
Th2 response will be dominated by Tr1 cells due to the chronic-
ity of the infection (O’Garra et al., 2004) and was similar as
observed for repetitive injections of TNF/DCs in the autoim-
mune models mentioned above. In addition, commensals such as
Lactobacillus rhammnosus (Veckman et al., 2004) or Bacteroides
vulgatus (Frick et al., 2006) but also exogenous noxes such as
nicotine (Hu et al., 2012) or endogenous inflammasome trig-
gers such as ATP (Ben Addi et al., 2008) can induce partial DC
maturation.

Receptors that mediate semi-maturation include both TNFR1
and TNFR2 (Funk et al., 2000), IL-6R (Frick et al., 2010), aller-
gen targeting to FcγR I (Hulse and Woodfolk, 2008) but also
Trypanosoma brucei-derived VSG antigens with presumably low
affinities for MyD88-dependent Toll-like receptors (TLR; Plet-
inckx et al., 2011b). Treatment of human patients with psoriasis
and multiple sclerosis by fumaric acid similarly induces a Th2-
inducing DC type (Ghoreschi et al., 2011). In sum, inflammatory
mediators, commensal bacteria, or typical Th2-pathogens can
induce DC semi-maturation. This may indicate that commen-
sals and pathogens exploit “this is only an inflammation” signaling
pathways in DCs to escape strong immunity and elimination but
also immunopathology (MacDonald and Maizels, 2008).
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FIGURE 2 |Two distinct DC semi-maturation pathways induce different

types of regulatoryT cells. Immature tissue-resident DCs or in vitro
generated BM-DCs that are triggered through the Wnt/β-catenin pathway or
proinflammatory cytokines become semi-mature DC with migratory potential
to T cell areas. Upon induction of IL-10 production by the DCs as observed via
intranasal antigen application Tr1 cell generation from naive T cells is favored.

Alternatively, repetitive injections of IL-10-deficient semi-mature DC also lead
to Tr1 cell generation. Different, only incompletely understood maturation
pathways activate tissue-resident DC into RelB/p52+ semi-mature DCs
homing to the T cell areas of peripheral lymph nodes. Transport of soluble and
cell-associated antigens have been observed for ssmDCs. By using TGF-β and
retinoic acid naive T cells are converted into Foxp3+ Tregs by ssmDCs.

It has been shown that a mild DC activation can occur through
disrupting DC–DC contacts formed by homotypic interaction via
E-cadherin and this dissociation is indeed accompanied by partial
maturation of the DCs through the Wnt/β-catenin signaling path-
way (Jiang et al., 2007). These disrupted DCs upregulated MHC II
and costimulatory molecules but did not secrete proinflammatory
cytokines. When pulsed with myelin antigen they induced IL-10
producing T cells that controlled EAE (Jiang et al., 2007) using the
same protocol and reaching very similar results as demonstrated
by our group with TNF/DCs before (Menges et al., 2002). In a col-
itis model Wnt signals activating β-catenin in DCs were required
to control the disease, indicative for a tolerogenic DC activation
(Manicassamy et al., 2010). However, so far it remains unclear
whether DCs matured along the β-catenin pathway are resistant to
further stimulation that would be demanding for therapeutic use.

Finally, in human patients suffering from pancreatic ductal ade-
nocarcinoma or chronic pancreatitis conventional DCs and pDCs
isolated from the peripheral blood appeared at a semi-mature stage

with impaired stimulatory function on T cells (Tjomsland et al.,
2010). Similarly, DC infiltrating tumors of non-small cell lung
cancer patients appeared immature or semi-mature or remained
semi-mature when exposed to maturation stimuli (Perrot et al.,
2007). Further investigations have to elucidate whether such DCs
are actively tolerogenic.

LIMITATIONS OF SEMI-MATURE DC TOLEROGENICITY
As already mentioned above injections of semi-mature DCs pro-
tected from Th1/Th17 immunity in the EAE model but not
in Th2-mediated asthma (Pletinckx et al., 2011b). In addition,
TNF/DC application for EAE therapy, i.e., after EAE induction,
failed (our unpublished observations). The reasons for this failure,
however, are obvious. In the preventive setting a large part of the
auto-antigen-specific naive CD4+ T cell repertoire is primed and
polarized into Th2 and subsequently into Tr1 phenotypes. If EAE
induction follows by immunization with the same auto-antigenic
peptide, the frequency of the remaining auto-antigen-specific
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naive CD4+ T cells is insufficient to generate enough pathogenic
Th1 and Th17 cells. This is the principle of tolerance induction by
immune deviation. Reversely, if most auto-antigen-specific cells
are polarized into Th1 or Th17 cells by the EAE protocol, it is
difficult at later time points to generate enough protective Th2 or
Tr1 cells from the remaining antigen-specific T cell pool. Thus,
tolerance induction by immune deviation or induced Tregs/Tr1
cells relies on sufficient numbers of naive auto-antigen-specific T
cells at the time of therapy.

In a type I diabetes model TNF/DCs loaded with an auto-
antigenic peptide on MHC class I molecules also failed to act
tolerogenic on CD8+ T cell autoimmunity (Kleindienst et al.,
2005), indicating that the DC semi-maturation may not allow
tolerization of high affinity CD8+ T cells such as the OT-I trans-
genic T cells used in this system. Furthermore, dose-dependent
effects have been observed in collagen-induced arthritis, where
semi-mature DCs injected at low amounts were protective whereas
high amounts failed to do so (Lim et al., 2009).

As for immature DCs also the stability of the semi-mature phe-
notype is important to maintain tolerogenicity and for this the
injection route may play an essential role. While three i.v. injec-
tions of TNF/DCs were completely protective in the EAE model,
s.c. application of the same DCs was deleterious and all mice died
from severe EAE. One reason was a remaining responsiveness of
TNF/DCs to further maturation signals such as LPS in vitro, which
led to IL-12 production. In vivo, TNF/DCs injected s.c. homed to
the draining lymph node but appeared cytokine negative unlike
endogenous DCs, which showed proinflammatory cytokine pro-
duction (Voigtländer et al., 2006). This indicates that s.c. injection
abrogates semi-mature DC tolerogenicity, in part by interactions
with other DCs. In cancer patients, only s.c. or intralymphatic
but not i.v. injections of DCs matured with tumor antigens could
prime Th1 responses, while T cell activation was observed under
all conditions (Fong et al., 2001), but tolerogenic parameters were
not analyzed for the i.v. settings. Interestingly, intracerebral injec-
tions of TNF/DCs in mice still could act tolerogenic (Zozulya et al.,
2009).

As mentioned above, it will be necessary to establish semi-
mature DCs that remain stable, and this might be achieved by
subsequent treatment with a maturation inhibitor followed by a
maturation inducer (Sato et al., 2003a; Boks et al., 2012).

STEADY STATE MIGRATORY DCs
IN VIVO COUNTERPARTS OF IN VITRO GENERATED SEMI-MATURE DCs?
After all, the question remained whether semi-mature stages of
DCs can be detected in vivo and whether they also exert tolerogenic
functions. Early observations indicated that the afferent lymph
contained “veiled cells” representing DCs with dendrites as a sign
of their maturity (reviewed in (Lutz and Schuler, 2002). Later it
has been shown that peripheral lymph nodes of mice contained
a fraction of DCs that expressed high levels of MHC II and the
costimulatory molecules CD80, CD86, and CD40 on their sur-
face (Ruedl et al., 2000; Henri et al., 2001). Another remarkable
similarity of these lymph node DCs was their endocytosis capac-
ity despite the mature cell surface marker profile (Ruedl et al.,
2001), indicative for an incomplete maturation. These partially
mature DCs exclusively represent the immigrated steady state

migratory fraction of formerly skin-resident DCs. Their migra-
tion through the lymphatics depends on CCR7 expression like for
pathogen-induced migratory DCs (Ohl et al., 2004). They consist
of three major subsets, identified as epidermal Langerhans cells
(LCs), dermal Langerin+, and dermal Langerin− DC subtypes
(Romani et al., 2010), although even more subsets or functional
states may exist (Henri et al., 2010). Also the intestine contains
CCR7-dependent state migratory DCs (ssmDCs) but they appear
less mature after arrival in mesenteric lymph nodes as compared
with their skin migratory counterparts (Worbs et al., 2006). The
reasons for this are unclear.

Analyses in pigs revealed that their skin-draining lymph nodes
contained ssmDC and they appear at a semi-mature state (Bertho
et al., 2011). Human tonsils contain a mature DC fraction (Sum-
mers et al., 2001) but it remains to be shown that these cells are
not resident DCs matured by inflammatory processes since ton-
sils lack connection to afferent lymphatics and surgical removal of
tonsils (which enable such studies) are indicated only after chronic
inflammations. Analyses of human peripheral lymph nodes from
tumor-free melanoma patients, and thereby considered as steady
state lymph nodes, contained two subsets of skin-derived CD1a+
CD11cint LCs and CD1a+ CD11chigh dermal DCs (van de Ven
et al., 2011). Both subsets expressed more CD80, CD86 CD40, and
CD83 as compared to their resident counterparts. Despite their
more mature phenotype, these DCs produced lower amounts of
proinflammatory cytokines and were weaker in priming T cell
responses, indicative for primarily tolerogenic functions. Super-
natants of human tumor cell lines (Kuang et al., 2008) could
induce partial DC maturation in vivo, similar to what has been
observed in pancreatic adenocarcinomas (Tjomsland et al., 2010)
and non-small cell lung cancers (Perrot et al., 2007) where such
cells accumulated in the tumor tissue.

Together, ssmDCs of the skin-draining lymph nodes in mice,
pigs, and humans DCs display a semi-mature phenotype by
expressing higher costimulatory molecules and having the homing
capacity to lymph nodes.

TOLEROGENIC FUNCTIONS OF ssmDCs
It became evident from early studies that ssmDCs transport self-
antigens to the draining lymph nodes (Huang et al., 2000; Hemmi
et al., 2001), but the consequences for T cells by the presentation of
these antigens were still open, although tolerance induction was
proposed. Subcutaneously implanted osmotic minipumps indi-
cated that Foxp3+ Tregs could be de novo converted by this type
of constant low dose soluble antigen delivery (Apostolou and von
Boehmer, 2004). Later we could show that this low dose solu-
ble antigen delivery by the pump system requires RelB+/p52+
CCR7+ ssmDCs (Azukizawa et al., 2011). Since pump implan-
tation requires a surgical intervention, this system may not fully
represent steady state conditions, despite equivalent induction of
Tregs. Direct comparison of soluble antigen delivery via subcuta-
neous minipumps with cell-associated transgenic neo-self-antigen
expression of OVA in the epidermis (K5-mOVA mice), revealed
the same dependency on ssmDCs with the same kinetics and fre-
quency of CD4+ Treg induction (Azukizawa et al., 2011; Figure 2)
or CD8+ T cell depletion (Waithman et al., 2007). Recent data
suggest that ssmDCs may control the whole pool of homeostatic
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lymph node T cell circulation by producing VEGF that stimulated
formation of high endothelial venules (HEVs) to enable T cell
entry and stimulated fibroblastic reticular cells to secrete CCL21
that acts chemotactic for T cells (Wendland et al., 2011). Thus,
ssmDCs control T cell homeostasis in peripheral lymph nodes
and act tolerogenic on CD4+ and CD8+ T cells, unlike TNF/DCs.

It is however unclear to date what distinguishes these ssmDCs
in the mentioned self-antigen model systems that induced IL-10−
Foxp3+ Tregs from ssmDCs that captured exogenous OVA or Bor-
detella flagellin that was applied intranasally and induced IL-10+
Foxp3− Tr1 cells (Akbari et al., 2001; McGuirk et al., 2002). One
possibility could be that tolerogenic immune evasion strategies
of bacterial flagellin or low doses of endotoxin attached to OVA
may lead to IL-10 release by the DCs, which is not observed under
completely pathogen-free conditions.

IN VIVO TARGETING OF ssmDCs FOR TOLERANCE INDUCTION
The existence of ssmDCs, which bear lymph node homing poten-
tial, are partially mature but still tolerogenic, offer their clinical
exploitation by specific targeting. In fact earlier studies may have
targeted ssmDCs for tolerance induction in an unscheduled man-
ner. We found that DEC205 is expressed at higher levels on ssmDCs
than lymph node resident or splenic DCs (own unpublished obser-
vations). Therefore antigen-targeting to this marker by i.v. injec-
tion may also or even preferentially target ssmDC in peripheral
lymph nodes (Hawiger et al., 2001; Kretschmer et al., 2005).

An alternative route to reach ssmDCs is via epicutaneous anti-
gen application. Plaster-mediated delivery of self-antigenic myelin
peptide was able to prevent EAE induction (Bynoe et al., 2003;
Szczepanik et al., 2005). Although not further investigated, it
is likely that ssmDCs have been the vehicle to induce myelin-
specific Tregs in the skin-draining lymph nodes. Surprisingly, even
approaches using gene gun delivery of antigens, that has been
developed for immunogenic vaccines, may be used to induce sta-
ble tolerance by induction of Foxp3+ Tregs and this may occur
through ssmDCs (Ettinger et al., 2012).

This principle of targeting ssmDCs through the skin may also
account for tolerogenic strategies in allergy treatment (Werfel,
2009; Senti et al., 2011). Such treatment showed therapeutic suc-
cess in murine allergy models using OVA, pollen, house dust
mite, or peanut as allergens (Mondoulet et al., 2010, 2011, 2012;
Dioszeghy et al., 2011). First clinical studies using epicutaneous
immunotherapy in childhood cow milk allergy patients demon-
strated safety although the three months of treatment did not reach
therapeutic success (Dupont et al., 2010). The reversal of an exist-
ing allergy may need extended periods of treatment as suggested
from other studies in patients with pollen allergy that showed
a moderate benefit (Senti et al., 2009, 2010). Alternatively, the
intranasal application route may be superior to the skin and also
employs partially mature migratory DCs and led to Tr1 induction
in the pulmonary lymph nodes (Akbari et al., 2001).

Finally, the potential success of such epicutaneous or transcuta-
neous tolerance strategies may be encouraged by the fact that some
pathogens hitchhike ssmDCs for immune evasion. A prominent
example is HIV, which infects peripheral immature DCs resident
in the skin or mucosa and then awaits to be transported to the
draining lymph nodes for further infection of CD4+ T cells as their
major targets, and even converting some of these into HIV-specific
Tregs (Smed-Sorensen and Lore, 2011). Together, semi-mature
DCs as represented by ssmDCs may prove valuable targets for clin-
ical epicutaneous or transcutaneous tolerance induction protocols
in the future.

SEMI-MATURE pDCs
So far this review concentrated on conventional/myeloid semi-
mature DC or ssmDCs. However, this does not exclude the exis-
tence of semi-mature stages also for pDCs. The biology of pDCs is
very different as compared to conventional DCs but certainly they
have in common to present antigens to T cells in tolerogenic or
immunogenic fashions.

Recent data indicate that pDCs infected in vitro with HIV may
be modified by the virus to reach a semi-mature stage that facil-
itates Treg induction (Smed-Sorensen and Lore, 2011). Similar
observations have been made with tumor-infiltrating pDCs that
show impaired maturation potential but without providing T cell
assays (Perrot et al., 2007; Tjomsland et al., 2010). In contrast,
freshly isolated pDC from mice also appeared semi-mature, but
pulsed with Leishmania antigen and reinjected into mice showed a
protective effect, indicative for their immunogenic activity (Remer
et al., 2007).

Together, more detailed analyses for pDCs are required to
evaluate a therapeutic potential of semi-mature pDCs.

CONCLUSION
The initially surprising finding that partially matured DCs can
still act tolerogenic has now reached a broader base by numer-
ous reports and more mechanistic insights. Semi-mature DCs can
be generated in vitro and exert a distinct spectrum of tolero-
genicity after injection. The finding that semi-mature ssmDCs
are continuously engaged to tolerize lymph node T cells against
peripheral self-antigens opens further perspectives for therapies,
especially against autoimmune diseases and allergies. Thus, tolero-
genic regimens employing semi-mature DCs may in the future
either be concentrated on in vivo targeting with antibodies or
transcutaneous antigen application regimens.

ACKNOWLEDGMENTS
The author is grateful for support by the German Research Foun-
dation (DFG) through grants within the TR52, SFB581, IRTG1522,
IZKF Würzburg and by an individual DFG grant LU851/6-1.
This publication was funded by the German Research Foundation
(DFG) and the University of Wuerzburg in the funding program
Open Access Publishing.

REFERENCES
Akbari, O., Dekruyff, R. H., and Umetsu,

D. T. (2001). Pulmonary den-
dritic cells producing IL-10 medi-
ate tolerance induced by respiratory

exposure to antigen. Nat. Immunol.
2, 725–731.

Albert, M. L., Jegathesan, M., and
Darnell, R. B. (2001). Den-
dritic cell maturation is required

for the cross-tolerization of
CD8+ T cells. Nat. Immunol. 2,
1010–1017.

Apostolou, I., and von Boehmer, H.
(2004). In vivo instruction of

suppressor commitment in naive T
cells. J. Exp. Med. 199, 1401–1408.

Azukizawa, H., Dohler, A., Kanazawa,
N., Nayak, A., Lipp, M., Malis-
sen, B., Autenrieth, I., Katayama, I.,

Frontiers in Immunology | Immunological Tolerance May 2012 | Volume 3 | Article 123 | 6

http://www.frontiersin.org/Immunology
http://www.frontiersin.org/Immunological_Tolerance
http://www.frontiersin.org/Immunological_Tolerance/archive


Lutz Tolerogenic semi-mature DCs

Riemann, M., Weih, F., Berberich-
Siebelt, F., and Lutz, M. B. (2011).
Steady state migratory RelB+ lan-
gerin+ dermal dendritic cells medi-
ate peripheral induction of antigen-
specific CD4+ CD25+ Foxp3+ reg-
ulatory T cells. Eur. J. Immunol. 41,
1420–1434.

Balic, A., Harcus, Y., Holland, M. J.,
and Maizels, R. M. (2004). Selective
maturation of dendritic cells by Nip-
postrongylus brasiliensis-secreted
proteins drives Th2 immune
responses. Eur. J. Immunol. 34,
3047–3059.

Belz, G. T., Behrens, G. M., Smith, C. M.,
Miller, J. F., Jones, C., Lejon, K., Fath-
man, C. G., Mueller, S. N., Shortman,
K., Carbone, F. R., and Heath, W.
R. (2002). The CD8alpha(+) den-
dritic cell is responsible for inducing
peripheral self-tolerance to tissue-
associated antigens. J. Exp. Med. 196,
1099–1104.

Ben Addi, A., Lefort, A., Hua, X., Lib-
ert, F., Communi, D., Ledent, C.,
Macours, P., Tilley, S. L., Boey-
naems, J. M., and Robaye, B. (2008).
Modulation of murine dendritic
cell function by adenine nucleotides
and adenosine: involvement of the
A(2B) receptor. Eur. J. Immunol. 38,
1610–1620.

Bertho, N., Marquet, F., Pascale,
F., Kang, C., Bonneau, M., and
Schwartz-Cornil, I. (2011). Steady
state pig dendritic cells migrat-
ing in skin draining pseudo-
afferent lymph are semi-mature.
Vet. Immunol. Immunopathol. 144,
430–436.

Bimczok, D., Rau, H., Wundrack,
N., Naumann, M., Rothkotter, H.
J., Mccullough, K., and Summer-
field, A. (2007). Cholera toxin pro-
motes the generation of semi-
mature porcine monocyte-derived
dendritic cells that are unable to
stimulate T cells. Vet. Res. 38,
597–612.

Birnberg, T., Baron, L., Sapoznikov, A.,
Caton, M. L., Cervantes-Barragan,
L., Makia, D., Krauthgamer, R., Bren-
ner, O., Ludewig, B., Brockschnieder,
D., Riethmacher, D., Reizis, B., and
Jung, S. (2008). Lack of conven-
tional dendritic cells is compatible
with normal development and T
cell homeostasis, but causes myeloid
proliferative syndrome. Immunity
29, 986–997.

Bluestone, J. A., Thomson, A. W., She-
vach, E. M., and Weiner, H. L. (2007).
What does the future hold for cell-
based tolerogenic therapy? Nat. Rev.
Immunol. 7, 650–654.

Boks, M. A., Kager-Groenland, J. R.,
Haasjes, M. S., Zwaginga, J. J.,

Van Ham, S. M., and Ten Brinke,
A. (2012). IL-10-generated tolero-
genic dendritic cells are optimal for
functional regulatory T cell induc-
tion – a comparative study of
human clinical-applicable DC. Clin.
Immunol. 142, 332–342.

Brandl, C., Ortler, S., Herrmann,
T., Cardell, S., Lutz, M. B.,
and Wiendl, H. (2010). B7-H1-
deficiency enhances the potential
of tolerogenic dendritic cells by
activating CD1d-restricted type II
NKT cells. PLoS ONE 5, e10800.
doi:10.1371/journal.pone.0010800

Braun, D., Galibert, L., Nakajima, T.,
Saito, H., Quang, V. V., Rubio, M.,
and Sarfati, M. (2006). Semima-
ture stage: a checkpoint in a den-
dritic cell maturation program that
allows for functional reversion after
signal-regulatory protein-alpha lig-
ation and maturation signals. J.
Immunol. 177, 8550–8559.

Bynoe, M. S., Evans, J. T., Viret, C., and
Janeway, C. A. Jr. (2003). Epicuta-
neous immunization with autoanti-
genic peptides induces T suppressor
cells that prevent experimental aller-
gic encephalomyelitis. Immunity 19,
317–328.

Chung, Y., Chang, J. H., Kweon, M.
N., Rennert, P. D., and Kang, C.
Y. (2005). CD8alpha-11b+ den-
dritic cells but not CD8alpha+ den-
dritic cells mediate cross-tolerance
toward intestinal antigens. Blood
106, 201–206.

Dhodapkar, M. V., Steinman, R. M.,
Krasovsky, J., Munz, C., and Bhard-
waj, N. (2001). Antigen-specific
inhibition of effector T cell function
in humans after injection of imma-
ture dendritic cells. J. Exp. Med. 193,
233–238.

Dioszeghy, V., Mondoulet, L., Dhelft,
V., Ligouis, M., Puteaux, E., Ben-
hamou, P. H., and Dupont, C.
(2011). Epicutaneous immunother-
apy results in rapid allergen uptake
by dendritic cells through intact
skin and downregulates the allergen-
specific response in sensitized mice.
J. Immunol. 186, 5629–5637.

Dupont, C., Kalach, N., Soulaines, P.,
Legoue-Morillon, S., Piloquet, H.,
and Benhamou, P. H. (2010). Cow’s
milk epicutaneous immunotherapy
in children: a pilot trial of safety,
acceptability, and impact on allergic
reactivity. J. Allergy Clin. Immunol.
125, 1165–1167.

Emmer, P. M., Van Der Vlag, J.,
Adema, G. J., and Hilbrands,
L. B. (2006). Dendritic cells
activated by lipopolysaccharide
after dexamethasone treat-
ment induce donor-specific

allograft hyporesponsiveness.
Transplantation 81, 1451–1459.

Ettinger, M., Peckl-Schmid, D., Gru-
ber, C., Laimer, M., Thalhamer, J.,
Hintner, H., Gratz, I. K., and Bauer,
J. W. (2012). Transcutaneous gene
gun delivery of hNC16A Induces
BPAG2-specific tolerance. J. Invest.
Dermatol. doi: 10.1038/jid.2012.19.
[Epub ahead of print].

Ferguson, T. A., Herndon, J., Elzey,
B., Griffith, T. S., Schoenberger, S.,
and Green, D. R. (2002). Uptake of
apoptotic antigen-coupled cells by
lymphoid dendritic cells and cross-
priming of CD8(+) T cells produce
active immune unresponsiveness. J.
Immunol. 168, 5589–5595.

Finkelman, F. D., Lees, A., Birnbaum,
R., Gause, W. C., and Morris, S. C.
(1996). Dendritic cells can present
antigen in vivo in a tolerogenic or
immunogenic fashion. J. Immunol.
157, 1406–1414.

Fong, L., Brockstedt, D., Benike, C.,
Wu, L., and Engleman, E. G. (2001).
Dendritic cells injected via dif-
ferent routes induce immunity in
cancer patients. J. Immunol. 166,
4254–4259.

Frick, J. S., Grunebach, F., and Auten-
rieth, I. B. (2010). Immunomodula-
tion by semi-mature dendritic cells:
a novel role of Toll-like receptors and
interleukin-6. Int. J. Med. Microbiol.
300, 19–24.

Frick, J. S., Zahir, N., Muller, M., Kahl, F.,
Bechtold, O., Lutz, M. B., Kirschning,
C. J., Reimann, J., Jilge, B., Bohn, E.,
and Autenrieth, I. B. (2006). Colito-
genic and non-colitogenic commen-
sal bacteria differentially trigger DC
maturation and Th cell polarization:
an important role for IL-6. Eur. J.
Immunol. 36, 1537–1547.

Fu, F., Li, Y., Qian, S., Lu, L., Cham-
bers, F., Starzl, T. E., Fung, J. J., and
Thomson, A. W. (1996). Costimu-
latory molecule-deficient dendritic
cell progenitors (MHC class II+,
CD80dim, CD86-) prolong cardiac
allograft survival in nonimmuno-
suppressed recipients. Transplanta-
tion 62, 659–665.

Funk, J. O., Walczak, H., Voigtländer,
C., Berchtold, S., Baumeister, T.,
Rauch, P., Rößner, S., Steinkasserer,
A., Schuler, G., and Lutz, M. B.
(2000). Cutting edge: resistance to
apoptosis and continuous prolifera-
tion of dendritic cells deficient for
TNF Receptor-1. J. Immunol. 165,
4792–4796.

Ghoreschi, K., Bruck, J., Kellerer, C.,
Deng, C., Peng, H., Rothfuss, O.,
Hussain, R. Z., Gocke, A. R.,
Respa, A., Glocova, I., Valtcheva,
N., Alexander, E., Feil, S., Feil, R.,

Schulze-Osthoff, K., Rupec, R. A.,
Lovett-Racke, A. E., Dringen, R.,
Racke,M. K.,and Rocken,M. (2011).
Fumarates improve psoriasis and
multiple sclerosis by inducing type
II dendritic cells. J. Exp. Med. 208,
2291–2303.

Giannoukakis, N., Phillips, B., Fine-
gold, D., Harnaha, J., and Trucco,
M. (2011). Phase I (safety) study
of autologous tolerogenic dendritic
cells in type 1 diabetic patients. Dia-
betes Care 34, 2026–2032.

Godfrey, D. I., Macdonald, H. R., Kro-
nenberg, M., Smyth, M. J., and Van
Kaer, L. (2004). NKT cells: what’s
in a name? Nat. Rev. Immunol. 4,
231–237.

Hadeiba, H., Sato, T., Habtezion, A.,
Oderup, C., Pan, J., and Butcher, E.
C. (2008). CCR9 expression defines
tolerogenic plasmacytoid dendritic
cells able to suppress acute graft-
versus-host disease. Nat. Immunol. 9,
1253–1260.

Hänig, J., and Lutz, M. B. (2008). Sup-
pression of mature dendritic cell
function by regulatory T cells in vivo
is abrogated by CD40 licensing. J.
Immunol. 180, 1405–1413.

Hawiger, D., Inaba, K., Dorsett, Y., Guo,
M., Mahnke, K., Rivera, M., Ravetch,
J. V., Steinman, R. M., and Nussen-
zweig, M. C. (2001). Dendritic cells
induce peripheral T cell unrespon-
siveness under steady state condi-
tions in vivo. J. Exp. Med. 194,
769–780.

Hemmi, H., Yoshino, M., Yamazaki,
H., Naito, M., Iyoda, T., Omatsu,
Y., Shimoyama, S., Letterio, J. J.,
Nakabayashi, T., Tagaya, H., Yamane,
T., Ogawa, M., Nishikawa, S., Ryoke,
K., Inaba, K., Hayashi, S., and
Kunisada, T. (2001). Skin anti-
gens in the steady state are traf-
ficked to regional lymph nodes by
transforming growth factor-beta1-
dependent cells. Int. Immunol. 13,
695–704.

Henri, S., Guilliams, M., Poulin, L.
F., Tamoutounour, S., Ardouin, L.,
Dalod, M., and Malissen, B. (2010).
Disentangling the complexity of
the skin dendritic cell network.
Immunol. Cell Biol. 88, 366–375.

Henri, S., Vremec, D., Kamath, A., Wait-
hman, J., Williams, S., Benoist, C.,
Burnham, K., Saeland, S., Hand-
man, E., and Shortman, K. (2001).
The dendritic cell populations of
mouse lymph nodes. J. Immunol.
167, 741–748.

Hilkens, C. M., Isaacs, J. D., and Thom-
son, A. W. (2010). Development
of dendritic cell-based immunother-
apy for autoimmunity. Int. Rev.
Immunol. 29, 156–183.

www.frontiersin.org May 2012 | Volume 3 | Article 123 | 7

http://dx.doi.org/10.1371/journal.pone.0010800
http://www.frontiersin.org
http://www.frontiersin.org/Immunological_Tolerance/archive


Lutz Tolerogenic semi-mature DCs

Hu, S. X., Sui, H. X., Jin, H. J., Ni, X.
Y., Liu, X. X., Xue, M. Q., Zhang, Y.,
and Gao, F. G. (2012). Lipopolysac-
charide and dose of nicotine deter-
mine the effects of nicotine on
murine bone marrow-derived den-
dritic cells. Mol. Med. Report. 5,
1005–1010.

Huang, F. P., Platt, N., Wykes, M., Major,
J. R., Powell, T. J., Jenkins, C. D.,
and Macpherson, G. G. (2000). A
discrete subpopulation of dendritic
cells transports apoptotic intesti-
nal epithelial cells to T cell areas
of mesenteric lymph nodes. J. Exp.
Med. 191, 435–444.

Hulse, K. E., and Woodfolk, J. A. (2008).
Targeting allergen to Fc gammaRI:
a strategy to treat allergic disease?
Curr. Opin. Allergy Clin. Immunol.
8, 547–552.

Jaen, O., Rulle, S., Bessis, N., Zago, A.,
Boissier, M. C., and Falgarone, G.
(2009). Dendritic cells modulated by
innate immunity improve collagen-
induced arthritis and induce regula-
tory T cells in vivo. Immunology 126,
35–44.

Jiang, A., Bloom, O., Ono, S., Cui, W.,
Unternaehrer, J., Jiang, S., Whitney,
J. A., Connolly, J., Banchereau, J.,
and Mellman, I. (2007). Disrup-
tion of E-cadherin-mediated adhe-
sion induces a functionally distinct
pathway of dendritic cell matura-
tion. Immunity 27, 610–624.

Kleindienst, P., Wiethe, C., Lutz, M.
B., and Brocker, T. (2005). Simul-
taneous induction of CD4 T cell
tolerance and CD8 T cell immu-
nity by semimature dendritic cells.
J. Immunol. 174, 3941–3947. [∗equal
contribution with last author].

Kretschmer, K., Apostolou, I., Hawiger,
D., Khazaie, K., Nussenzweig, M. C.,
and Von Boehmer, H. (2005). Induc-
ing and expanding regulatory T cell
populations by foreign antigen. Nat.
Immunol. 6, 1219–1227.

Kuang, D. M., Zhao, Q., Xu, J., Yun, J.
P., Wu, C., and Zheng, L. (2008).
Tumor-educated tolerogenic den-
dritic cells induce CD3epsilon
down-regulation and apoptosis
of T cells through oxygen-
dependent pathways. J. Immunol.
181, 3089–3098.

Li, H., Zhang, G. X., Chen, Y., Xu, H.,
Fitzgerald, D. C., Zhao, Z., and Ros-
tami, A. (2008). CD11c+CD11b+
dendritic cells play an important
role in intravenous tolerance and
the suppression of experimental
autoimmune encephalomyelitis. J.
Immunol. 181, 2483–2493.

Lim, D. S., Kang, M. S., Jeong, J.
A., and Bae, Y. S. (2009). Semi-
mature DC are immunogenic and

not tolerogenic when inoculated at
a high dose in collagen-induced
arthritis mice. Eur. J. Immunol. 39,
1334–1343.

Lutz, M. B., and Schuler, G. (2002).
Immature, semi-mature and fully
mature dendritic cells: which sig-
nals induce tolerance or immunity?
Trends Immunol. 23, 445–449.

MacDonald, A. S., and Maizels, R. M.
(2008). Alarming dendritic cells for
Th2 induction. J. Exp. Med. 205,
13–17.

Maldonado-López, R., De Smedt, T.,
Michel, P., Godfroid, J., Pajak, B.,
Heirman, C., Thielemans, K., Leo,
O., Urbain, J., and Moser, M. (1999).
CD8alpha+ and CD8alpha- sub-
classes of dendritic cells direct the
development of distinct T helper
cells in vivo. J. Exp. Med. 189,
587–592.

Manicassamy, S., and Pulendran, B.
(2011). Dendritic cell control of
tolerogenic responses. Immunol.
Rev. 241, 206–227.

Manicassamy, S., Reizis, B., Ravindran,
R., Nakaya, H., Salazar-Gonzalez, R.
M., Wang, Y. C., and Pulendran, B.
(2010). Activation of beta-catenin
in dendritic cells regulates immu-
nity versus tolerance in the intestine.
Science 329, 849–853.

Martin, P., Del Hoyo, G. M., Anjuere,
F., Arias, C. F., Vargas, H. H., Fer-
nandez, L. A., Parrillas, V., and
Ardavin, C. (2002). Characteriza-
tion of a new subpopulation of
mouse CD8alpha+ B220+ dendritic
cells endowed with type 1 interferon
production capacity and tolerogenic
potential. Blood 100, 383–390.

McGuirk, P., Mccann, C., and Mills, K.
H. (2002). Pathogen-specific T regu-
latory 1 cells induced in the respira-
tory tract by a bacterial molecule that
stimulates interleukin 10 production
by dendritic cells: a novel strategy for
evasion of protective T helper type 1
responses by Bordetella pertussis. J.
Exp. Med. 195, 221–231.

Menges, M., Rossner, S., Voigtlander, C.,
Schindler, H., Kukutsch, N. A., Bog-
dan, C., Erb, K., Schuler, G., and
Lutz, M. B. (2002). Repetitive injec-
tions of dendritic cells matured with
tumor necrosis factor alpha induce
antigen-specific protection of mice
from autoimmunity. J. Exp. Med.
195, 15–21.

Mills, K. H., and McGuirk, P. (2004).
Antigen-specific regulatory T cells –
their induction and role in infection.
Semin. Immunol. 16, 107–117.

Mondoulet, L., Dioszeghy, V., Larcher,
T., Ligouis, M., Dhelft, V., Puteaux,
E., Cherel, Y., Letourneur, F.,
Dupont, C., and Benhamou, P. H.

(2012). Epicutaneous immunother-
apy (EPIT) blocks the allergic
esophago-gastro-enteropathy
induced by sustained oral expo-
sure to peanuts in sensitized
mice. PLoS ONE 7, e31967.
doi:10.1371/journal.pone.0031967

Mondoulet, L., Dioszeghy, V., Ligouis,
M., Dhelft, V., Dupont, C., and Ben-
hamou, P. H. (2010). Epicutaneous
immunotherapy on intact skin using
a new delivery system in a murine
model of allergy. Clin. Exp. Allergy
40, 659–667.

Mondoulet, L., Dioszeghy, V., Vanoir-
beek, J. A., Nemery, B., Dupont, C.,
and Benhamou, P. H. (2011). Epi-
cutaneous immunotherapy using a
new epicutaneous delivery system in
mice sensitized to peanuts. Int. Arch.
Allergy Immunol. 154, 299–309.

Moreau, A., Chiffoleau, E., Beriou,
G., Deschamps, J. Y., Heslan, M.,
Ashton-Chess, J., Rolling, F., Josien,
R., Moullier, P., Cuturi, M. C., and
Alliot-Licht, B. (2008). Superiority
of bone marrow-derived dendritic
cells over monocyte-derived ones for
the expansion of regulatory T cells
in the macaque. Transplantation 85,
1351–1356.

Morel, P. A., and Turner, M. S. (2011).
Dendritic cells and the maintenance
of self-tolerance. Immunol. Res. 50,
124–129.

Morelli, A. E., and Larregina, A. T.
(2010). Apoptotic cell-based thera-
pies against transplant rejection: role
of recipient’s dendritic cells. Apopto-
sis 15, 1083–1097.

Morelli, A. E., Rubin, J. P., Erdos,
G., Tkacheva, O. A., Mathers, A.
R., Zahorchak, A. F., Thomson,
A. W., Falo, L. D. Jr., and Lar-
regina, A. T. (2005). CD4+ T
cell responses elicited by different
subsets of human skin migratory
dendritic cells. J. Immunol. 175,
7905–7915.

Morelli, A. E., and Thomson, A. W.
(2007). Tolerogenic dendritic cells
and the quest for transplant toler-
ance. Nat. Rev. Immunol. 7, 610–621.

Muller, K. P., Schumacher, J., and
Kyewski, B. A. (1993). Half-life
of antigen/major histocompatibility
complex class II complexes in vivo:
intra- and interorgan variations. Eur.
J. Immunol. 23, 3203–3207.

Nono, J. K., Pletinckx, K., Lutz,
M. B., and Brehm, K. (2012).
Excretory/secretory-products of
Echinococcus multilocularis larvae
induce apoptosis and tolerogenic
properties in dendritic cells in vitro.
PLoS Negl. Trop. Dis. 6, e1516.

Nouri-Shirazi, M., and Thomson, A. W.
(2006). Dendritic cells as promoters

of transplant tolerance. Expert Opin.
Biol. Ther. 6, 325–339.

Ochando, J. C., Homma, C., Yang, Y.,
Hidalgo, A., Garin, A., Tacke, F.,
Angeli, V., Li, Y., Boros, P., Ding, Y.,
Jessberger, R., Trinchieri, G., Lira, S.
A., Randolph, G. J., and Bromberg,
J. S. (2006). Alloantigen-presenting
plasmacytoid dendritic cells mediate
tolerance to vascularized grafts. Nat.
Immunol. 7, 652–662.

O’Garra, A., Vieira, P. L., Vieira, P.,
and Goldfeld, A. E. (2004). IL-10-
producing and naturally occurring
CD4+ Tregs: limiting collateral dam-
age. J. Clin. Invest. 114, 1372–1378.

Ohl, L., Mohaupt, M., Czeloth, N.,
Hintzen, G., Kiafard, Z., Zwirner, J.,
Blankenstein, T., Henning, G., and
Forster, R. (2004). CCR7 governs
skin dendritic cell migration under
inflammatory and steady-state con-
ditions. Immunity 21, 279–288.

Ohnmacht, C., Pullner, A., King, S. B.,
Drexler, I., Meier, S., Brocker, T.,
and Voehringer, D. (2009). Con-
stitutive ablation of dendritic cells
breaks self-tolerance of CD4 T cells
and results in spontaneous fatal
autoimmunity. J. Exp. Med. 206,
549–559.

Perrot, I., Blanchard, D., Freymond, N.,
Isaac, S., Guibert, B., Pacheco, Y., and
Lebecque, S. (2007). Dendritic cells
infiltrating human non-small cell
lung cancer are blocked at immature
stage. J. Immunol. 178, 2763–2769.

Pletinckx, K., Döhler, A., Pavlovic, V.,
and Lutz, M. B. (2011a). Role of den-
dritic cell maturity/costimulation
for generation, homeostasis and
suppressive activity of regulatory
T cells. Front. Immunol. 2:39.
doi:10.3389/fimmu.2011.00039

Pletinckx, K., Stijlemans, B., Pavlovic,
V., Laube, R., Brandl, C., Kneitz, S.,
Beschin, A., De Baetselier, P., and
Lutz, M. B. (2011b). Similar inflam-
matory DC maturation signatures
induced by TNF or Trypanosoma
brucei antigens instruct default Th2-
cell responses. Eur. J. Immunol. 41,
3479–3494.

Prina, E., Abdi, S. Z., Lebastard, M., Per-
ret, E., Winter, N., and Antoine, J. C.
(2004). Dendritic cells as host cells
for the promastigote and amastig-
ote stages of Leishmania amazonen-
sis: the role of opsonins in parasite
uptake and dendritic cell matura-
tion. J. Cell Sci. 117, 315–325.

Remer, K. A., Apetrei, C., Schwarz,
T., Linden, C., and Moll, H.
(2007). Vaccination with plasmacy-
toid dendritic cells induces protec-
tion against infection with Leishma-
nia major in mice. Eur. J. Immunol.
37, 2463–2473.

Frontiers in Immunology | Immunological Tolerance May 2012 | Volume 3 | Article 123 | 8

http://dx.doi.org/10.1371/journal.pone.0031967
http://dx.doi.org/10.3389/fimmu.2011.00039
http://www.frontiersin.org/Immunology
http://www.frontiersin.org/Immunological_Tolerance
http://www.frontiersin.org/Immunological_Tolerance/archive


Lutz Tolerogenic semi-mature DCs

Romani, N., Clausen, B. E., and
Stoitzner, P. (2010). Langerhans
cells and more: langerin-expressing
dendritic cell subsets in the skin.
Immunol. Rev. 234, 120–141.

Roncarolo, M. G., Gregori, S., Battaglia,
M., Bacchetta, R., Fleischhauer,
K., and Levings, M. K. (2006).
Interleukin-10-secreting type 1 reg-
ulatory T cells in rodents and
humans. Immunol. Rev. 212, 28–50.

Ruedl, C., Koebel, P., Bachmann, M.,
Hess, M., and Karjalainen, K. (2000).
Anatomical origin of dendritic cells
determines their life span in periph-
eral lymph nodes. J. Immunol. 165,
4910–4916.

Ruedl, C., Koebel, P., and Karjalainen, K.
(2001). In vivo-matured Langerhans
cells continue to take up and process
native proteins unlike in vitro-
matured counterparts. J. Immunol.
166, 7178–7182.

Rutella, S., Danese, S., and Leone,
G. (2006). Tolerogenic den-
dritic cells: cytokine modulation
comes of age. Blood 108,
1435–1440.

Sato, K., Yamashita, N., Baba, M., and
Matsuyama, T. (2003a). Modified
myeloid dendritic cells act as regula-
tory dendritic cells to induce anergic
and regulatory T cells. Blood 101,
3581–3589.

Sato, K., Yamashita, N., Baba, M., and
Matsuyama, T. (2003b). Regulatory
dendritic cells protect mice from
murine acute graft-versus-host dis-
ease and leukemia relapse. Immunity
18, 367–379.

Senti, G., Freiburghaus, A. U.,
and Kundig, T. M. (2010).
Epicutaneous/transcutaneous
allergen-specific immunotherapy:
rationale and clinical trials. Curr.
Opin. Allergy Clin. Immunol. 10,
582–586.

Senti, G., Graf, N., Haug, S., Ruedi,
N., Von Moos, S., Sonderegger,
T., Johansen, P., and Kundig, T.
M. (2009). Epicutaneous allergen
administration as a novel method
of allergen-specific immunother-
apy. J. Allergy Clin. Immunol. 124,
997–1002.

Senti, G., Von Moos, S., and Kundig,
T. M. (2011). Epicutaneous aller-
gen administration: is this the future
of allergen-specific immunother-
apy? Allergy 66, 798–809.

Smed-Sorensen, A., and Lore, K. (2011).
Dendritic cells at the interface of
innate and adaptive immunity to
HIV-1. Curr. Opin. HIV AIDS 6,
405–410.

Steinman, R. M. (2008). Dendritic
cells in vivo: a key target for a

new vaccine science. Immunity 29,
319–324.

Steinman, R. M., Turley, S., Mellman, I.,
and Inaba, K. (2000). The induction
of tolerance by dendritic cells that
have captured apoptotic cells. J. Exp.
Med. 191, 411–416.

Stoop, J. N., Harry, R. A., Von Delwig,
A., Isaacs, J. D., Robinson, J. H., and
Hilkens, C. M. (2010). Therapeutic
effect of tolerogenic dendritic cells in
established collagen-induced arthri-
tis is associated with a reduction in
Th17 responses. Arthritis Rheum. 62,
3656–3665.

Summers, K. L., Hock, B. D., Mckenzie,
J. L., and Hart, D. N. (2001). Phe-
notypic characterization of five den-
dritic cell subsets in human tonsils.
Am. J. Pathol. 159, 285–295.

Szczepanik, M., Tutaj, M., Bry-
niarski, K., and Dittel, B. N.
(2005). Epicutaneously induced
TGF-beta-dependent tolerance
inhibits experimental autoim-
mune encephalomyelitis. J.
Neuroimmunol. 164, 105–114.

Thomson, A. W. (2010). Tolerogenic
dendritic cells: all present and cor-
rect? Am. J. Transplant. 10, 214–219.

Tjomsland,V., Spangeus,A., Sandstrom,
P., Borch, K., Messmer, D., and
Larsson, M. (2010). Semi mature
blood dendritic cells exist in patients
with ductal pancreatic adenocarci-
noma owing to inflammatory fac-
tors released from the tumor. PLoS
ONE 5, e13441. doi:10.1371/jour-
nal.pone.0013441

Unger, W. W., Laban, S., Kleijwegt, F.
S., Van Der Slik, A. R., and Roep,
B. O. (2009). Induction of Treg by
monocyte-derived DC modulated
by vitamin D3 or dexamethasone:
differential role for PD-L1. Eur. J.
Immunol. 39, 3147–3159.

van de Ven, R., Van Den Hout, M.
F., Lindenberg, J. J., Sluijter, B. J.,
Van Leeuwen, P. A., Lougheed, S.
M., Meijer, S., Van Den Tol, M. P.,
Scheper, R. J., and De Gruijl, T.
D. (2011). Characterization of four
conventional dendritic cell subsets in
human skin-draining lymph nodes
in relation to T-cell activation. Blood
118, 2502–2510.

van Duivenvoorde, L. M., Van Mierlo,
G. J., Boonman, Z. F., and Toes, R. E.
(2006). Dendritic cells: vehicles for
tolerance induction and prevention
of autoimmune diseases. Immunobi-
ology 211, 627–632.

Veckman, V., Miettinen, M., Pirho-
nen, J., Siren, J., Matikainen, S.,
and Julkunen, I. (2004). Strep-
tococcus pyogenes and Lactobacil-
lus rhamnosus differentially induce

maturation and production of
Th1-type cytokines and chemokines
in human monocyte-derived den-
dritic cells. J. Leukoc. Biol. 75,
764–771.

Verginis, P., Li, H. S., and Carayannio-
tis, G. (2005). Tolerogenic semima-
ture dendritic cells suppress exper-
imental autoimmune thyroiditis by
activation of thyroglobulin-specific
CD4+CD25+ T cells. J. Immunol.
174, 7433–7439.

Voigtländer, C., Rößner, S., Cierpka, E.,
Theiner, G., Wiethe, C., Menges, M.,
Schuler, G., and Lutz, M. B. (2006).
Dendritic cells matured with TNF
can be further activated in vitro
and after subcutaneous injection
in vivo which converts their tolero-
genicity into immunogenicity. J.
Immunother. 29, 407–415.

Vojtova, J., Kamanova, J., and Sebo, P.
(2006). Bordetella adenylate cyclase
toxin: a swift saboteur of host
defense. Curr. Opin. Microbiol. 9,
69–75.

Waithman, J., Allan, R. S., Kosaka, H.,
Azukizawa, H., Shortman, K., Lutz,
M. B., Heath, W. R., Carbone, F. R.,
and Belz, G. T. (2007). Skin-derived
dendritic cells can mediate dele-
tional tolerance of class I-restricted
self-reactive T cells. J. Immunol. 179,
4535–4541.

Wendland, M., Willenzon, S., Kocks, J.,
Davalos-Misslitz, A. C., Hammer-
schmidt, S. I., Schumann, K., Krem-
mer, E., Sixt, M., Hoffmeyer, A.,
Pabst, O., and Forster, R. (2011).
Lymph node T cell homeosta-
sis relies on steady state homing
of dendritic cells. Immunity 35,
945–957.

Werfel, T. (2009). Epicutaneous allergen
administration: a novel approach
for allergen-specific immunother-
apy? J. Allergy Clin. Immunol. 124,
1003–1004.

Wiethe, C., Debus, A., Mohrs, M.,
Steinkasserer, A., Lutz, M. B.,
and Gessner, A. (2008). Dendritic
cell differentiation state and their
interaction with NKT cells deter-
mine Th1/Th2 differentiation in
the murine model of Leishmania
major infection. J. Immunol. 180,
4371–4381.

Wiethe, C., Schiemann, M., Busch, D.,
Haeberle, L., Kopf, M., Schuler, G.,
and Lutz, M. B. (2007). Interdepen-
dency of MHC class II/self-peptide
and CD1d/self-glycolipid presenta-
tion by TNF-matured dendritic cells
for protection from autoimmunity.
J. Immunol. 178, 4908–4916.

Wilson, N. S., El-Sukkari, D., Belz, G. T.,
Smith, C. M., Steptoe, R. J., Heath,

W. R., Shortman, K., and Villadan-
gos, J. A. (2003). Most lymphoid
organ dendritic cell types are pheno-
typically and functionally immature.
Blood 102, 2187–2194.

Worbs, T., Bode, U., Yan, S., Hoff-
mann, M. W., Hintzen, G., Bern-
hardt, G., Forster, R., and Pabst,
O. (2006). Oral tolerance originates
in the intestinal immune system
and relies on antigen carriage by
dendritic cells. J. Exp. Med. 203,
519–527.

Yamazaki, S., Dudziak, D., Heidkamp,
G. F., Fiorese, C., Bonito, A. J.,
Inaba, K., Nussenzweig, M. C., and
Steinman, R. M. (2008). CD8+
CD205+ splenic dendritic cells are
specialized to induce Foxp3+ reg-
ulatory T cells. J. Immunol. 181,
6923–6933.

Yang, X. J., Meng, S., Zhu, C. F., Jiang, H.,
and Wu, W. X. (2011). Semi-mature
MyD88-silenced bone marrow den-
dritic cells prolong the allograft sur-
vival in a rat model of intestinal
transplantation. Chin. Med. J. 124,
268–272.

Young, J. W., Merad, M., and Hart, D. N.
(2007). Dendritic cells in transplan-
tation and immune-based therapies.
Biol. Blood Marrow Transplant. 13,
23–32.

Zozulya, A. L., Ortler, S., Lee, J., Wei-
denfeller, C., Sandor, M., Wiendl,
H., and Fabry, Z. (2009). Intrac-
erebral dendritic cells critically
modulate encephalitogenic versus
regulatory immune responses
in the CNS. J. Neurosci. 29,
140–152.

Conflict of Interest Statement: The
author declares that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 20 March 2012; accepted: 30
April 2012; published online: 18 May
2012.
Citation: Lutz MB (2012) Therapeutic
potential of semi-mature dendritic cells
for tolerance induction. Front. Immun.
3:123. doi: 10.3389/fimmu.2012.00123
This article was submitted to Frontiers in
Immunological Tolerance, a specialty of
Frontiers in Immunology.
Copyright © 2012 Lutz. This is an open-
access article distributed under the terms
of the Creative Commons Attribution
Non Commercial License, which per-
mits non-commercial use, distribution,
and reproduction in other forums, pro-
vided the original authors and source are
credited.

www.frontiersin.org May 2012 | Volume 3 | Article 123 | 9

http://dx.doi.org/10.1371/journal.pone.0013441
http://dx.doi.org/10.3389/fimmu.2012.00123
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Immunological_Tolerance/archive

	Therapeutic potential of semi-mature dendritic cells for tolerance induction
	Immature DCs
	Mature DCs
	Semi-mature DCs
	Tolerogenicity of semi-mature DCs
	Role of repetitive semi-mature DC injections
	Inflammation, pathogens, commensals, and tumors as inducers of semi-maturation
	Limitations of semi-mature DC tolerogenicity

	Steady state migratory DCs
	In vivo counterparts of in vitro generated semi-mature DCs?
	Tolerogenic functions of ssmDCs
	In vivo targeting of ssmDCs for tolerance induction

	Semi-mature pDCs
	Conclusion
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


