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Although a great deal of knowledge has been gained from studies on the immunobiol-
ogy of leishmaniasis, there is still no universally acceptable, safe, and effective vaccine
against the disease. This strongly suggests that we still do not completely understand the
factors that control and/or regulate the development and sustenance of anti-Leishmania
immunity, particularly those associated with secondary (memory) immunity. Such an under-
standing is critically important for designing safe, effective, and universally acceptable
vaccine against the disease. Here we review the literature on the correlate of protec-
tive anti-Leishmania immunity and vaccination strategies against leishmaniasis with a bias
emphasis on experimental cutaneous leishmaniasis.
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INTRODUCTION
Protozoan parasites in the genus Leishmania are the causative
agents of a spectrum of human diseases collectively known as leish-
maniasis. The disease is endemic in 88 countries, affects 12 million
people currently, and over 350 million more at risk (Desjeux,
1996). It is important to note that these estimates may not reflect
the true burden of the disease due to underreporting (Singh et al.,
2006, 2010). Also, the fact that leishmaniasis is reportable in only
33 out of the 88 endemic countries more prevalent in very low
income group means that there are many undiagnosed as well as
asymptomatic cases since transmission occur in rural areas where
there is little or no access to medical care1.

Leishmaniasis can manifest in three major clinical forms: the
self-healing simple cutaneous leishmaniasis (CL) that occurs as
skin lesions, the mucocutaneous leishmaniasis (MCL) that affects
mucous membranes of the oral and nasal cavities and the deadly
visceral leishmaniasis (VL) that affects visceral organs such as
spleen and liver (Reithinger et al., 2007). CL is the most com-
mon clinical form of the disease and the most studied experi-
mentally. In contrast, VL is the most clinically relevant disease
because of its high morbidity and mortality. Over 90% of CL occur
mostly in seven countries namely Afghanistan, Algeria, Brazil,
Iran, Peru, Saudi Arabia, and Syria, whereas most (>95%) of
the VL cases is concentrated in Bangladesh, India, Nepal, Sudan,
Ethiopia, and Brazil (Chappuis et al., 2007). Although treatment
is available, the current drugs used for treatment are highly toxic,
expensive, and cases of resistance have been reported (Lira et al.,
1999). Recent epidemics have been reported in endemic areas
and there is evidence of spread of leishmaniasis into previously

1http://apps.who.int/gb/ebwha/pdf_files/WHA60/A60_10-en.pdf

non-endemic areas. For instance soldiers returning from active
duty in endemic areas have been diagnosed with leishmania-
sis (van Thiel et al., 2010; Bailey, 2011). Furthermore, Human
Immunodeficiency Virus (HIV)/Leishmania co-infection is an
alarming threat in some countries in Africa and Asia where
HIV/AIDS is also endemic. As such, VL is now included as an
important opportunistic infection in HIV infected patients2. Cur-
rently, only three anti-Leishmania vaccines have been approved
and licensed. These include two human vaccines; a killed vaccine
for immunotherapy in Brazil and a live vaccine in Uzbekistan;
and a recombinant vaccine for prophylaxis in dogs in Brazil
(Palatnik-de-Sousa, 2008). However, the efficacy of these vaccines
remains controversial, particularly when compared with those
against viral and bacteria infections. The lack of an effective pro-
phylactic vaccine suggests that we still do not fully understand
the factors that regulate the induction and maintenance of anti-
Leishmania immunity. Understanding these factors is critical for
the design of effective vaccine and/or vaccination strategy against
leishmaniasis.

INNATE IMMUNITY TO LEISHMANIA INFECTION
NEUTROPHILS, MACROPHAGES AND DENDRITIC CELLS
Leishmania parasites are transmitted to humans and other ver-
tebrate host through the bite of sand fly vectors. The sand fly
inoculum contains live, apoptotic or dead promastigotes (van
Zandbergen et al., 2006), and salivary components (Lerner and
Shoemaker, 1992), which play critical roles in shaping the host’s
immune response (Mougneau et al., 2011). Following the injec-
tion of metacyclic promastigotes into the skin, they interact with

2http://www.who.int/leishmaniasis/burden/en/
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multiple cell types (neutrophils, macrophages, dendritic cells, ker-
atinocytes, and langerhans cells) where they then transform into
intracellular amastigotes (Mougneau et al., 2011). In particular,
phagocytosis of parasites by macrophages induces the release of
multiple chemoattractant factors such as MCP-1 and CXCL1, lead-
ing to recruitment of monocytes and neutrophils (Racoosin and
Beverley, 1997). Both in vitro and in vivo studies have shown
that neutrophils influence the outcome of Leishmania infection
through several ways including intracellular killing after phagocy-
tosis, extracellular killing through the release of neutrophil extra-
cellular traps (NETS), and through cooperation with macrophages
(John and Hunter, 2008; Peters et al., 2008; Mougneau et al., 2011).
In addition, the uptake of promastigotes by neutrophils inhibits
cellular apoptotic signals thereby prolonging their lifespan (Aga
et al., 2002). These “long-lived” neutrophils become transiently
unable to kill Leishmania and acts as“Trojan horses”for dissemina-
tion of parasites to other cells, particularly macrophages (Aga et al.,
2002; van Zandbergen et al., 2004). Interestingly, a recent work
suggests that contrary to the observations in Leishmania major,
neutrophils may play a protective role in L. braziliensis infection
(Novais et al., 2009), suggesting that these innate immune cells may
play distinct roles in CL caused by L. major and L. braziliensis.

Although neutrophils are the most abundant cells at the infec-
tion site during the first few hours to days, the pattern, and
magnitude of monocyte influx may be more important in shaping
the outcome of infection. About 1 week after infection, monocytes
invade the infection site (Leon et al., 2007) where they differentiate
into monocytes-derived dendritic cells (mDCs) that take up par-
asites (Mougneau et al., 2011). Via a TLR-9-dependent pathway,
mDCs play a vital role in the production of IL-12 and Type 1 IFNs,
leading to activation of Natural Killer (NK) cells, the production
of Interferon gamma (IFN-γ), and the subsequent Th1 response
(Liese et al., 2008). In general, DCs are essential for the initiation
and regulation of anti-Leishmania adaptive immunity (Kane and
Mosser, 2000). The magnitude of IL-12 production by infected
DCs critically affects the outcome L. major infection. Dendritic
cells from the susceptible BALB/c mice produce less IL-12 fol-
lowing L. major infection and their T cells respond very poorly
to IL-12 due to the down regulation of the IL-12 receptor β (IL-
12Rβ) chain. In contrast, the resistant C57BL/6 mice produce more
and maintain their IL-12 responsiveness throughout the course of
infection (Himmelrich et al., 1998).

The tissue resident macrophages are the definitive host cells
for parasite survival and replication. In addition, classical activa-
tion of infected macrophages by IFN-γ and tumor necrosis factor
(TNF) stimulates the production of inducible nitric oxide (iNOS),
an enzyme that catalyzes l-arginine to generate nitric oxide (NO;
Liew et al., 1990a). NO is a powerful cytostatic and cytotoxic mol-
ecule and plays a major role in killing many intracellular parasites,
including Leishmania. Thus, in leishmaniasis, macrophages play a
dual role; they represent an important cell population responsi-
ble for killing of the parasites and also the major site of parasite
replication (Birnbaum and Craft, 2011).

NATURAL KILLER (NK) CELLS
Natural Killer cells are important innate components and their
contribution to protective immunity against Leishmania infection

has been studied extensively. NK cells purified from unexposed
human PBMCs proliferate and secrete IFN-γ in response to Leish-
mania antigen (Nylen et al., 2003). Depletion of NK cells within the
first 7 days of L. major infection in mice leads to significant reduc-
tion in IFN-γ production and higher parasite burden (Laurenti
et al., 1999) suggesting an important role of NK cells during the
early innate response to Leishmania infection. In support of this,
a robust NK cell IFN-γ response was associated with enhanced
resistance to L. major infection in the C3H/HeN mice whereas
diminished NK activity was observed in the susceptible BALB/c
mice (Scharton and Scott, 1993). NK cells can also control infec-
tion by directly lysing infected macrophages or parasites (Scharton
and Scott, 1993), although this effect seem to be parasite species
dependent (Korbel et al., 2004).

ADAPTIVE IMMUNITY TO CUTANEOUS LEISHMANIASIS
Because Leishmania are obligate intracellular parasites, cell-
mediated immunity is required for control of the infection and
hence T cells are indispensable for resistance. T cell deficient mice
are highly susceptible to Leishmania infection, and adoptive trans-
fer of T cells restores resistance in these mice (Varkila et al., 1993).
Both CD4+ and CD8+ T cells are important for optimal primary
immunity to L. major although their relative contribution may
depend on experimental conditions and parasite strains/species.

CD4+ T HELPER CELLS AND RESISTANCE TO L. MAJOR
Following the identification of distinct mouse CD4+ T helper cell
subsets by Mosmann et al. (1986), it was demonstrated that IFN-
γ production by CD4+ T cells was associated with healing of L.
major-infected C57BL/6 mice, while IL-4 production was associ-
ated with susceptibility in the BALB/c mice (Heinzel et al., 1989).
Scott et al. (1988) demonstrated that adoptive transfer of polarized
T cell clones can change the outcome of L. major infection: Th1
clones were “protective” while Th2 clones were “non-protective”
(Scott et al., 1988). Holaday et al. (1991) further confirmed this
finding by transferring Th1-like or Th2-like cell lines into SCID
mice, which resulted in the recipient mice becoming resistant or
susceptible, respectively. Thus, the balance of Th1/Th2 cytokines
determines disease outcome in mouse model of CL: healing in
resistant mice is associated with the development of CD4+ Th1
cells that produce IFN-γ whereas susceptibility is associated with
an early IL-4 production by CD4+ T cells that promotes the
development and expansion of Th2 cells (Locksley et al., 1995).

The overarching question has been what factors direct the
preferential Th1 and Th2 cell development in the resistant and
susceptible mice, respectively, following infection. The single most
dominant factor appears to be the production of IL-12 by DCs
and responsiveness to this cytokine by T cells during the initial
phase of infection. Dendritic cells from the highly susceptible
BALB/c produces less IL-12 and their T cells respond poorly to
this cytokine due to low expression of IL-12Rβ chain (Himmelrich
et al., 1998). In contrast, infected C57BL/6 mice produce more and
maintain their IL-12 responsiveness throughout infection (Louis
et al., 1998a,b). Indeed, treatment of infected BALB/c mice with
rIL-12 early during infection renders them resistant (Afonso et al.,
1994) whereas administration of anti-IL-12 antibodies renders B6
mice susceptible (Heinzel et al., 1995).
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While IL-12 is the dominant cytokine that drives Th1 devel-
opment leading to resistance, the factors that drive expansion of
Th2 cells in the susceptible mice are not completely understood.
Studies show that the early production of IL-4 by unique popu-
lation of CD4+ T cells promotes the development and expansion
of Th2 cells in the susceptible mice (Scott, 1989; Scott et al., 1989;
Reiner and Locksley, 1995; Himmelrich et al., 2000). These cells
respond to peptides derived from the Leishmania homolog of acti-
vated protein kinase (LACK) protein by producing high levels of
IL-4 leading to concomitant expansion of Th2 cells (Mougneau
et al., 1995). However, the contribution of these cells to suscepti-
bility in other strains of mice has been equivocal. Both IL-4 and
IL-13 synergize in mediating susceptibility to L. major infection
(Matthews et al., 2000), although the relative contribution of IL-13
has been recently challenged (Sosa et al., 2001) and may indeed be
dependent on parasite specie (Alexander et al., 2002).

CD8+ T CELLS AND RESISTANCE TO L. MAJOR
Because activated CD8+ T cells also produce IFN-γ (a critical
macrophage activating cytokine for intracellular parasite destruc-
tion), it was speculated that they would also contribute to optimal
immunity to L. major. Interestingly, several studies demonstrated
that mice lacking CD8+ T cells or MHC-Class I expression were
not impaired in their ability to control primary L. major infections
(Wang et al., 1993; Huber et al., 1998). However, recent stud-
ies utilizing low dose intradermal infection that closely mimic
natural infections show that CD8+ T cells are important for
anti-Leishmania immunity. Inoculation of low dose metacyclic
promastigotes into the ear dermis of CD8 deficient C57BL/6 mice
leads to uncontrolled parasite proliferation. We found that low
dose infection-induced a transient Th2 response in naive wild
type (WT) mice (Uzonna et al., 2004a). In the absence of CD8+
T cells, the transient Th2 response was sustained, suggesting that
the major role of CD8+ T cells is to produce IFN-γ that down-
modulates the early CD4+ Th2 cell development (Uzonna et al.,
2004a).

ROLE OF CYTOKINES
INTERFERON GAMMA (IFN-γ)
Interferon gamma is a critical cytokine for resistance to L. major
infection in mice because it plays a crucial role for macrophage
activation leading to the production of microbicidal molecules.
In addition, IFN-γ is also necessary for the down regulation of
Th2 cytokines and suppression of Th2 cell development. A sin-
gle injection of anti-IFN-γ antibodies to resistant mice 2 days
prior to L. major infection resulted in Th2 response and increased
susceptibility (Belosevic et al., 1989; Scott, 1991). In contrast,
administration of rIFN-γ at the time of infection of the susceptible
mice dramatically reduced lesion sizes and parasite burden (Scott,
1991). Furthermore, IFN-γ or IFN-γ-R deficient mice on the
usually resistant C57BL/6 background develop progressive lesion
associated with uncontrolled parasite proliferation after L. major
infection (Swihart et al., 1995).

TUMOR NECROSIS FACTOR SUPERFAMILY OF CYTOKINES (TNFSF)
Members of the TNF superfamily of cytokines and their cognate
receptors also play significant roles in modulating disease outcome

in experimental CL. TNF has been shown to play a protective role
by synergizing with IFN-γ in mediating parasite killing (Liew et al.,
1990a,b). Peritoneal macrophages from TNFR1 deficient mice are
grossly defective in NO production and their ability to kill para-
sites in vitro. In contrast, macrophages from TNFR2 deficient mice
are normal; suggesting that TNF-dependent macrophage activa-
tion for in vitro parasite killing is mediated via signaling through
TNFR1 (Nashleanas and Scott, 2000). Treatment of infected mice
with recombinant TNF resulted in reduced lesion size and lower
parasite burden, while the administration of anti-TNF antibodies
results in larger lesions and higher parasite burden (Titus et al.,
1989). Disruption of the TNF gene in the resistant mice leads to
visceralization of L. major infection and death within a few weeks
(Wilhelm et al., 2001).

Recently, we showed that both lymphotoxin beta (LTβ), and
LIGHT (LT-like, exhibits inducible expression and competes with
HSV glycoprotein D for herpes virus entry mediator, a receptor
expressed by T lymphocytes) contribute to resistance to L. major.
LTβ deficient mice on the resistant C57BL/6 background devel-
oped chronic non-healing lesion after infection with L. major and
this was associated with decreased IL-12 and antigen-specific IFN-
γ production (Xu et al., 2007a). In contrast, blockade of LIGHT
signaling led to acute and fatal leishmaniasis, which was associated
with uncontrolled parasite proliferation, severely impaired IL-12
production, and poor CD4+ Th1 cell response (Xu et al., 2007b).
While intra-lesional treatment of infected mice with rIL-12 com-
pletely reversed the susceptibility of LIGHT deficient mice to L.
major, it only partially reduced parasite proliferation in infected
LTβ deficient mice proliferation (Xu et al., 2007a), suggesting that
LIGHT and LTβ may exert their effects through different but non-
mutually exclusive manner. The differences in the outcome of
infection in LIGHT and LTβ deficient mice suggests that LIGHT
plays a more important role in regulating outcome of L. major
infection than LTβ.

INTERLEUKIN (IL)-4 AND IL-13
In contrast to elevated IFN-γ level in L. major-infected resis-
tant mice, high levels of IL-4 are found in infected susceptible
BALB/c mice and is associated with disease progression. Adminis-
tration of IL-4 neutralizing antibodies renders susceptible BALB/c
mice resistant to L. major (Heinzel et al., 1993). Surprisingly, IL-4
deficient BALB/c mice remain susceptible to L. major (LV39 sub-
strain) infection (Noben-Trauth and Kropf, 1996). In contrast,
IL-4Rα deficient BALB/c mice are highly resistant to L. major sub-
strain IR173, suggesting that another cytokine that signal through
IL-4Rα contributes to the susceptibility in BALB/mice. Signaling
through IL-4Rα subunit is shared between IL-4 and IL-13, and
IL-13 is a major Th2 cytokine (Mueller et al., 2002). Indeed, stud-
ies show that IL-13 promotes disease in L. major-infected mice
(Mohrs et al., 1999; Noben-Trauth et al., 1999; Matthews et al.,
2000; Brombacher, 2003). Interestingly, murine lymphocytes do
not express any IL-13 receptors (Brombacher, 2000), indicating
that the effects of IL-13 are mediated indirectly through other cell
types, most likely APCs. IL-13 has been found to down-regulate
macrophage functions including IL-12 (Skeen et al., 1996), iNOS
(Paludan et al., 1997; Rutschman et al., 2001), and TNF (Doyle
et al., 1994; Di Santo et al., 1997) production. In addition, IL-13
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up-regulates PGE2 production (Rey et al., 1999), which could in
turn inhibit IL-12Rβ2 expression on T cells (Wu et al., 1998) lead-
ing to impaired Th1 cell development and susceptibility to L. major
infection (Farrell and Kirkpatrick, 1987; Milano et al., 1996).

INTERLEUKIN-10
Another key cytokine that regulate disease outcome in Leishma-
nia-infected mice is IL-10. The susceptibility of BALB/c mice to L.
major is IL-10 dependent, because IL-4Rα deficient BALB/c mice
remain highly susceptible to L. major infection and this suscepti-
bility could be abolished by treatment with anti-IL-10R antibody
(Noben-Trauth et al., 2003). In addition, IL-10 deficient BALB/c
mice are resistant to L. major infection despite intact IL-4 signaling
(Noben-Trauth et al., 2003). IL-10 mediates its effect by blocking
macrophage activation by IFN-γ thereby preventing the produc-
tion of parasiticidal NO (Chatelain et al., 1999). IL-10 also directly
inhibits the development of Th1 cells and their production of
IFN-γ (Fiorentino et al., 1991; Mosmann and Moore, 1991). Both
macrophages (Von Stebut, 2007) and CD4+ Th2 cells (Anderson
et al., 2007) are important sources of IL-10 in Leishmania-infected
mice. Interestingly, IL-10−/− mice on C57BL/6 background do not
show any enhanced resistance to L. amazonensis, despite mount-
ing a stronger Th1-type response (Jones et al., 2002). Moreover,
another study reported that IL-10−/− BALB/c mice infected with L.
mexicana and L. amazonesis fail to control the disease progression
but the lesions were less severe than their WT controls, suggest-
ing the genetic background and parasite species may influence the
requirement for IL-10 in resistance (Padigel et al., 2003). Healing
from primary infection with L. major is typically accompanied
with parasite persistence (Aebischer et al., 1993). IL-10 produced
by regulatory T (Tregs) cells has also been linked to parasite persis-
tence at the primary site of infection (Belkaid et al., 2002). IL-10
produced by Treg is responsible for a persistent chronic infection.
Taken together, these data clearly indicate a central role for IL-10
in susceptibility, immunopathology, and parasite persistence in L.
major-infected mice.

ROLE OF IL-17 AND TH17 CELLS
T helper 17 (Th17) cells are new T helper cell subsets that pro-
duce interleukin IL-17A (also called IL-17), a pro-inflammatory
cytokine that play important pathologic role in several immune-
mediated disease (Chang et al., 2011; Zhang et al., 2011). However,
their protective function in various infectious diseases has also
been reported (Mou et al., 2010; Wu et al., 2010). T cells from
infected susceptible BALB/c mice produce more IL-17 than those
from the resistant C57BL/6 mice and L. major-infected IL-17
deficient BALB/c mice develop smaller lesions and harbor lower
parasites compared to their WT counterpart mice (Lopez Kostka
et al., 2009). The increased resistance to L. major in IL-17 defi-
cient mice was associated with decreased CXCL2 accumulation
and fewer neutrophils in lesions (Lopez Kostka et al., 2009). In
contrast, some studies provide indirect evidence that IL-17 may
be associated with enhanced susceptibility to L. major infection
(Akilov et al., 2009; Anderson et al., 2009; Makala et al., 2011;
Reinhard et al., 2011). The pathogenic role of IL-17 has also been
found in human mucosal leishmaniasis (Boaventura et al., 2010).
Interestingly, Th17 and IL-17 have been shown be associated with

enhanced control of L. donovani (Pitta et al., 2009) infections in
mice. Also the self-healing of L. braziliensis infection in mice has
been strongly correlated with the expansion of Th17 cells (Vargas-
Inchaustegui et al., 2008). Thus, it appears that the role of IL-17
may be related to the specie of Leishmania organism.

REGULATORY T CELLS IN LEISHMANIA INFECTION
Regulatory T cells are a specialized CD4+CD25+Foxp3+ T cell
subsets that suppress the activation of immune system and there-
fore are important for maintaining immune homeostasis and
self-tolerance. During L. major infection, CD4+CD25+ Tregs accu-
mulate at the primary infection site in both human and mouse,
where they suppress parasite elimination by CD4+CD25− effec-
tor T cells, mediate disease chronicity, and their depletion leads
to parasite clearance (Belkaid et al., 2002; Anderson et al., 2005;
Campanelli et al., 2006; Bourreau et al., 2009). Tregs are also
directly responsible for Leishmania reactivation (Mendez et al.,
2004; Lages et al., 2008) because transfer of Tregs purified from
infected mice into healed mice is sufficient to trigger disease reac-
tivation (Mendez et al., 2004). Interestingly, it was shown that
proliferation and cytokine (IL-10) production by these Tregs occur
in Leishmania-specific manner (Suffia et al., 2006).

Several studies have shown that homing of Tregs to L. major-
infected dermal sites promotes establishment of infection and
long-term survival of the parasite (Suffia et al., 2005; Yurchenko
et al., 2006). The expression of alpha and beta integrin is neces-
sary for homing of Tregs to the site of L. major infection (Suffia
et al., 2005). CD103 deficient BALB/c mice are resistant to L.
major infection and the susceptible phenotype can be restored by
adoptive transfer of WT Tregs into CD103−/− mice (Suffia et al.,
2005). Natural Tregs preferentially express the chemokine receptor,
CCR5, compared to conventional CD4+ T cells. Adoptive transfer
of CCR5−/− Tregs results in an increased magnitude of parasite-
specific, IFN-γ-producing CD4+ T cells at the infection sites and
significant reduction in parasite numbers, which is consistent with
the enhanced resistance of CCR5−/− mice to L. major infection
(Yurchenko et al., 2006).

Recently, we found that mice with an inactivating knock-in
mutation in the p110δ isoform of PI3K (termed p110δD910A)
are highly resistant to L. major (Liu et al., 2009). The enhanced
resistance of p110δD910A mice is related to defects in homing,
expansion, and/or function of Tregs, suggesting that signaling via
the p110δ isoform of PI3K may regulate expansion and tissue
homing of Tregs (Liu et al., 2009). Indeed, CD4+CD25+ cells from
infected WT mice could transfer susceptibility to p110δD910A mice.
In contrast, transfer of CD4+CD25+ T cells from naive (unin-
fected) WT or infected p110δD910A mice into naïve p110δD910A

mice failed to abolish their enhanced resistance to L. major. These
observations suggest that CD4+ T cells from p110δD910A mice are
intrinsically defective in their ability to differentiate into inducible
Tregs following infection with L. major.

INFECTION-INDUCED RESISTANCE IN CUTANEOUS LEISHMANIASIS
Recovery from natural or experimental infections in humans and
mice is associated with the development of strong and durable
immunity to re-challenge infection. This so-called infection-
induced resistance is the fundamental principle underlying
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leishmanization, a practice in which individuals are deliber-
ately injected with live organisms to protect against more
serious ulcers after natural infection (Momeni and Amin-
javaheri, 1995). Understanding the factors that regulate and
mediate infection-induced resistance is critically important for
designing an effective vaccine and vaccination strategies against
leishmaniasis.

Infection-induced resistance in mice is mediated by IFN-γ-
producing CD4+ T cells (Belosevic et al., 1989) and its mainte-
nance is dependent on IL-12 produced by antigen presenting cells.
Thus, the highly susceptible IL-12 deficient mice treated with rIL-
12 develop Th1 response and resolve their lesion. However, in con-
trast to WT mice, these rIL-12-treated mice develop progressive
disease and uncontrolled parasite replication upon re-challenge
infection (Park et al., 2000). In fact, lesion disease reactivation
occur at the primary infection site in healed IL-12-deficient mice
upon cessation of IL-12 treatment (Park et al., 2000), suggesting
that exogenous administration of rIL-12 was able to only promote
short-term resistance. It is conceivable that IL-12 may be required
for optimal proliferation and differentiation of memory CD4+ T
into IFN-γ producing effector cells. Alternatively, IL-12 could be
acting to enhance the development and survival of Leishmania-
specific effector memory cells that are important for mediating
rapid secondary anti-Leishmania immunity (Zaph et al., 2004; Liu
and Uzonna, 2010).

Under certain conditions, infection-induced resistance can be
lost and previously immune animals become highly susceptible to
re-challenge infections (Uzonna et al., 2001; Belkaid et al., 2002).
This loss of resistance has been linked to complete parasite clear-
ance, suggesting that persistent parasites are important for the
maintenance of anti-Leishmania immunity. Recent studies from
our group show that infection-induced resistance could also be lost
in the presence of persistent parasites (Okwor et al., 2009). Injec-
tion of killed parasites into mice that have healed their primary
L. major infection results in rapid expansion of IL-10-producing
Tregs, a concomitant loss of infection-induced resistance and sus-
ceptibility to virulent L. major challenge (Okwor et al., 2009).
Injection of avirulent live parasites does not cause loss of infection-
induced resistance (Okwor et al., 2009); suggesting that killed and
live parasites may be presented differently to T cells, particularly
Tregs differently.

VACCINES FOR LEISHMANIASIS
Although experimental L. major infection has extensively
enhanced our understanding of the factors that control the devel-
opment of CD4+ T helper cells in vivo, there is still no universally
acceptable, safe, and effective vaccine against human leishmania-
sis. Several vaccination trials in humans using killed Leishmania
parasites yielded very disappointing results (Handman, 2001). In
murine studies, several experimental vaccines are effective, but
many of them rely on IL-12, or components that induce IL-12, as
adjuvant (Afonso et al., 1994; Gurunathan et al., 1997, 1998; Scott,
1997). However, as with killed Leishmania vaccines, the protec-
tion wanes with time. These studies suggest that we need to know
more about the requirements for maintenance of anti-Leishmania
immunity in order to better define the correlates of protection.
In the following sections, we review information on vaccination

strategies against CL and comment on their implications for
developing effective vaccine against the disease.

LEISHMANIZATION
Leishmanization which is the oldest and perhaps most effective
vaccination strategy against CL, is the injection of live virulent
parasites or tissue extracts from infected lesions into hidden parts
of the body of non-immune individual with the aim of preventing
the formation of visible lesions following natural infection. This
practice was used successfully for a long time to contain epidemics
of CL in the republics of the former Soviet Union, Israel, and Iran.
However, the development of chronic (non-healing) lesions that
require medical treatment and immunosuppression in a large per-
centage of leishmanized individuals (Greenblatt, 1980) has led to
the abandonment of this practice. However, the practice is grad-
ually making a comeback in certain endemic regions such as Iran
(Tabbara et al., 2005), because despite the associated morbidities,
leishmanization remains the only effective vaccine with proven
efficacy in humans to date. Attempts are being made to make
leishmanization safer, including the addition of killed parasites
(Khamesipour et al., 2005) and the use of adjuvants such as CpG
that promote rapid onset of anti-Leishmania immunity and swift
healing of lesions (Mendez et al., 2003). CpG acts by inducing IL-
12 and IFN-γ production by dermal DCs, NK, and CD4+ T cells,
respectively (Laabs et al., 2009). In addition, CpG ODN may also
promote IL-6 production leading to expansion of Th17 cells (Wu
et al., 2010), and blockade of IL-6 production or signaling resulted
in increased lesion development in mice infected with L. major
(Wu et al., 2006, 2009). The use of genetically attenuated parasites
may help eliminate the unwanted side effects associated leishman-
ization. Attenuated parasites such as lpg2− L. major persist at the
local site of injection and its draining lymph node, does not cause
pathology and protect mice against virulent L. major challenge
(Spath et al., 2003a; Uzonna et al., 2004b).

KILLED WHOLE PARASITE VACCINES
Killed parasite vaccines,also known as the first generation vaccines,
represent the first bold step to tackle epidemics of CL by vaccina-
tion in endemic countries. Several factors were responsible for this
vaccination strategy: it is easy and cheap to make, does not require
sophisticated technology, and there is no worry about lesion devel-
opment and reversion to virulence. However, standardization of
parasite-derived vaccines from one culture to another is a major
drawback that could impede the registration and marketing of
killed vaccines. The use of killed parasites as vaccine dates back
to the late 1930s in Brazil. A vaccine containing promastigotes of
five killed Leishmania strains was shown to be safe and immuno-
genic as measured by the leishmanin skin test (LST) reactivity,
but conferred only a small degree of protection (50%). Phase III
clinical trials in Ecuador and Colombia showed that heat-killed L.
amazonensis vaccine was safe, induced strong IFN-γ response but
did not prevent clinical disease (Velez et al., 2000; Armijos et al.,
2004). The apparent lack of protection despite strong Th1 response
is consistent with similar observations in mice and primates, and
suggests that the induction of Th1 immune response may be nec-
essary but not sufficient for protection against CL. In contrast to
the reported benefits of heat-killed vaccines in South America,
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studies utilizing heat-killed L. major with or without BCG in Iran
and East African countries yielded disappointing results (Momeni
et al., 1999; Khalil et al., 2000). Studies in Vervet monkeys show
that killed Leishmania vaccine induced robust Th1 response but
could not protect against virulent challenge (Sjolander et al., 1998;
Gicheru et al., 2001). However, some reports show that vacci-
nation with heat-killed parasites with strong adjuvants induces
Th1 response and protects against virulent challenge in BALB/c
mice but this wanes with time. The failure of killed parasites to
induce long-term protection may be related to their inability to
maintain memory cells (Okwor and Uzonna, 2008). However, we
recently showed that repeated injection of killed parasites leads
to robust expansion of effector-like memory T cells resulting in
durable protection against virulent challenge (Okwor et al., 2010).
Thus, provided enough effector memory-like cells are generated
and continuously re-stimulated, there is no obligatory require-
ment for live parasites for maintaining anti-Leishmania immunity.
These findings provide strong rationale for continued evaluation
of mechanisms of secondary protective immunity against L. major
and suggest that killed parasite-based vaccines could have promis-
ing benefits if appropriate vaccination strategies that enhance the
generation of optimal memory T cells are employed.

LIVE-ATTENUATED PARASITE VACCINE
In order to harness the desirable attributes of leishmanization
(parasite persistence and durable immunity) without the poten-
tial safety concerns (Muyombwe et al., 1997; Davoudi et al., 2005),
different vaccination strategies involving attenuated parasites have
been taken. These include long-term in vitro culture with or
without antibiotic pressure (Daneshvar et al., 2009), irradiation
(Rivier et al., 1993), chemical mutagenesis (Elhay et al., 1990),
and more recently targeted deletion of essential virulence genes
(Titus et al., 1995). Among these, targeted gene deletion has shown
much promise because of the reduced risk of reversal to viru-
lence. Kedzierski et al. (2008) showed that immunization with
phosphomannomutase-deficient L. major protected the highly
susceptible BALB/c mice against virulent challenge. The protec-
tion was associated with suppression of early IL-10 and IL-13
production as well as expansion of CD44hi CD4+ and CD8+ T
cells. In a similar study, Leishmania parasite that lacks the gene that
encodes for dihydrofolate reductase-thymidylate synthetase (dhfr-
ts), which is essential for long-term parasite survival, was tested as
potential vaccines (Titus et al., 1995; Brodskyn et al., 2000). This
mutant parasite showed limited protection in mice against L. major
and L. amazonensis infection but failed to protect non-human pri-
mates against virulent challenge (Amaral et al., 2002). This lack of
protection may be attributed to the rapid elimination of the para-
sites from the host because parasite persistence is associated with
maintenance of anti-Leishmania immunity (Aebischer et al., 1993;
Uzonna et al., 2001). The deletion of LPG2 gene that encodes an
enzyme involved in the transport of GDP-mannose to the Golgi
apparatus produced mutant parasites (termed lpg2−) that are able
to persist indefinitely in infected mice without causing obvious
pathology (Spath et al., 2003a). Vaccination of mice with these
mutant parasites induced very strong protection against virulent L.
major challenge (Spath et al., 2003b). Interestingly, the protection
induced by lpg2− parasites was not associated with delayed-type

hypersensitivity (DTH) and enhanced IFN-γ responses, suggesting
that the induction of Th1-like responses might not always be essen-
tial or correlate with protective immunity (Kedzierski et al., 2006).
Whether lpg2− could mediate protection in non-human primates
has not yet been investigated. This information is important if
lpg2− parasites could replace virulent organisms for leishmaniza-
tion in disease endemic countries. Recent report showed that some
lpg2− mutants could regain virulence through a compensatory but
as yet undefined mechanism(s) (Spath et al., 2004). Thus, caution
must be exercised in using this mutant parasite as a potential live-
attenuated vaccine. The gene encoding cysteine proteinase in L.
mexicana has also been targeted to create attenuated parasite for
vaccination studies (Alexander et al., 1998). Cysteine proteinase
deficient L. mexicana are highly attenuated in vitro and induced
protection against a homologous challenge in hamsters (Saravia
et al., 2006) and mice (Alexander et al., 1998).

Another live-attenuated vaccination approach involves the use
of Leishmania strains that are not pathogenic to humans. Vaccina-
tion with L. tarentolae, a lizard parasite, was shown to induce DC
maturation, Th1 response, and protection against virulent L. dono-
vani challenge (Breton et al., 2005). In addition,vaccination with L.
tarentolae expressing A2 (amastigote-specific) antigen of L. dono-
vani induced strong Th1 response leading to protection against
L. donovani challenge (Mizbani et al., 2009). The use of non-
pathogenic Leishmania parasite would most probably eliminate
the fear of disease development following vaccination. However,
many questions remain to be answered, such as how long non-
virulent parasites would persist in vaccinated host, the quality
and durability of the primary and memory immune responses,
and whether such immunity could cross protect against other
Leishmania species.

SUBUNIT VACCINES
Subunit vaccines are attractive because they lack the ability to
cause disease and are relatively cheap to produce and standardize.
Several Leishmania protein antigens have been used as subunit vac-
cine candidates against leishmaniasis. Vaccination with Leish-111f,
a recombinant polyprotein vaccine that contains thiol-specific
antioxidant (TSA), L. major stress inducible protein 1 (LmST11)
and L. major elongation initiation factor (LeIF) was shown to pro-
tect against both visceral and CL (Coler et al., 2007). Phases 1 and
II clinical trials for Leish-111f vaccine have been completed and
show that the vaccine is safe and immunogenic in both healthy and
adult patients with mucocutaneous and CL (Llanos-Cuentas et al.,
2010). This vaccine has also been used therapeutically in com-
bination with sodium stilbogluconate for treatment of mucosal
leishmaniasis (Llanos-Cuentas et al., 2010) and in combination
with meglumine for the treatment of human CL (Nascimento
et al., 2010). Interestingly, although a recent study suggested that
the Leish-111f vaccine could also partially protect dogs against VL
(Coler et al., 2007), it failed to induce any significant protection
in vaccinated dogs in a well-controlled Phase III trial (Gradoni
et al., 2005). More clinical studies are needed to determine the
potential of using this vaccine to control human leishmaniasis.
A more recent study showed that the polyprotein comprising
of kinetoplastid membrane protein 11 (KMP11), Sterol 24-c-
methyltransferase (SMT), A2, and cysteine proteinase B (CPB)
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given with monophosphoryl lipid A (MPL-SE) as adjuvant was
able to protect mice against visceral and CL caused by L. infantum
and L. major, respectively (Goto et al., 2011). It will be interesting
to determine the clinical efficacy of this vaccine as a prophylactic
or therapeutic vaccine in human or canine leishmaniasis.

A large effort has focused on Gp63, also known as leish-
manolysin, which is a major surface protein on Leishmania pro-
mastigotes, because of its protease activity and role in virulence
(Yao et al., 2003). One study showed that vaccination with recom-
binant gp63 expressed in E. coli failed to protect mice against
virulent L. major challenge (Handman et al., 1990). In another
report, BALB/c mice vaccinated with recombinant gp63 (rgp63)
encapsulated in cationic liposome with CpG ODN as an adjuvant
had significant reduction in parasite burden, lower IL-4 (Th2) pro-
duction, and higher Th1 response compared to mice that received
rgp63 alone or rgp63 plus CpG ODN following virulent L. major
challenge (Jaafari et al., 2007). In a more recent study, vaccination
with a DNA vaccine containing rgp63 from L. mexicana induced
better protective immunity in BALB/c mice as evidenced by higher
serum levels of parasite-specific IgG2a, smaller lesion size and
more robust lytic activity of the CTL induced in the DNA vac-
cinated mice compared to those that received the empty vector
(Rezvan et al., 2011). Paradoxically, vaccination with rgp63 con-
ferred partial protection in Vervet monkeys (Olobo et al., 1995).
More studies are required to further elucidate the potential of
using gp63 as a subunit vaccine either alone or in combination
with other antigens.

Other Leishmania proteins that have been targeted for vaccina-
tion include the Leishmania homolog for receptors of activated C
kinase (LACK), a conserved antigen expressed in both promastig-
ote and amastigote life stages (Mougneau et al., 1995; Gurunathan
et al., 1998; Melby et al., 2001) and the highly immunogenic
cathepsin L-like cysteine proteinases (Rafati et al., 2003; Zadeh-
Vakili et al., 2004). Recently a polyprotein vaccine made up of
LACK, TSA, LbSTI, or LeIF was shown to protect mice against
CL caused by L. major but failed to protect disease caused by L.
braziliensis (Salay et al., 2007). This result is rather puzzling given
that the vaccine consisted of components derived from antigens
that are conserved across all Leishmania and hence should cross
protect against different Leishmania species.

DNA VACCINES
DNA vaccines are capable of eliciting strong immune responses
similar to those induced by protein antigens and this could be
further enhanced and modulated by the inclusion of adjuvants
or cytokines (Alarcon et al., 1999; Restifo et al., 2000). Since pro-
tection against leishmaniasis requires the induction of early Th1
response, DNA vaccination is a very attractive strategy because
of the propensity of DNA vaccines to elicit strong cell-mediated
immunity (Gurunathan et al., 1997, 2000a). In addition, DNA
vaccines mimic the protective effects of live vaccines without the
potential danger of disease development, they are relatively easy
and cheap to produce and unlike protein or live-attenuated vac-
cines, does not require the maintenance of “cold chain” sequence
(Gurunathan et al., 2000b). Several experimental studies have
shown that DNA vaccines confer strong protection against cuta-
neous (Doroud et al., 2011a,b) and visceral (Fragaki et al., 2001;
Tewary et al., 2004; Saldarriaga et al., 2006; Masih et al., 2011;

Mazumder et al., 2011) leishmaniases. However, although DNA
vaccination is considered a promising technology, it still remains
an experimental practice because no development of such vac-
cines for use in humans has been reported so far. In addition, the
conflicting reports on the protective efficacy of this vaccination
strategy add to the confusion in the field (Kedzierski et al., 2006).
There are also genuine concerns about ethics, safety, and delivery
systems, which collectively have hampered the application of this
technology in humans. At present, DNA vaccination remains a
very attractive experimental research area with possible benefits in
human medicine.

CONCLUDING REMARKS
Vaccination is one of the most cost-effective methods for protec-
tion against infectious diseases. There is an in-depth understand-
ing of the immunobiology of leishmaniasis and studies in this area
of research have helped shed lights into the factors that regulate
the induction, maintenance, and loss of cell-mediated immunity
in infectious diseases. Therefore, it is very frustrating and disap-
pointing that despite this enormous wealth of information, there
is currently no generally and globally acceptable, effective, and
efficacious vaccine against the disease in humans. The reasons for
this failure are many, but primarily related to the obvious differ-
ences between mouse and human immune systems. In addition,
the use of different vaccination protocols (nature of adjuvants,
frequency of vaccination, and/or boost, time before challenge)
and arbitrary markers or correlates of protection in murine stud-
ies have complicated the situation (Okwor and Uzonna, 2009).
Researchers tend to select vaccination protocols that most likely
will yield desirable results in mice studies, which are unrealistic in
clinical settings and/or “real world” environment. Therefore, it is
important for researchers in this field to set standards for vaccina-
tion studies, such as the time from immunization to challenge and
the minimum duration of immunity before any experimental vac-
cine and/or vaccination protocol is deemed protective. In addition,
most of the vaccination studies (particularly CL) utilize BALB/c
mice, which do not mimic the clinical disease in humans. The CL
in the C57BL/6 mice more closely resembles the human disease
and hence it is imperative that vaccination studies be conducted
in this strain of mice.

It is generally accepted that immunity in leishmaniasis is depen-
dent on persistence of a small number of parasites at the pri-
mary site of infection (infection-induced resistance). However,
whether live replicating parasites or just persistent antigen is
required to maintain immunity is not very clear. Studies with
genetically modified Leishmania parasites such dhfr-ts that are
naturally cleared by the host after infection will be helpful in elu-
cidating the role of live replicating parasites in the maintenance
of anti-Leishmania immunity. Persistent antigens are believed to
be important for the maintenance of effector memory-like T
cells that mediate rapid anti-Leishmania immunity (Zaph et al.,
2004; Liu and Uzonna, 2010; Okwor et al., 2010). Therefore, an
ideal anti-Leishmania vaccine must maintain constant turnover
of Leishmania-specific memory cells in vaccinated hosts, akin to
what is obtained in persistently infected mice that retain infection-
induced resistance (Figures 1A,B). This could be achieved by
two mechanisms: strategic booster immunizations or vaccina-
tion with live-attenuated parasites (such as lpg2− L. major) that
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FIGURE 1 | Proposed model to explain the superior protective immunity

induced by infection or vaccination with live-attenuated live parasites

over those induced by killed parasites and subunit vaccines. (A) Following
vaccination with killed or subunit vaccines, a robust effector T cells (Teff) are
generated from naïve Leishmania-specific T cells at the expense of memory T
(Tm) cells. It is plausible that some Teff cells could also convert into Tm cells.
In the absence of persistence antigen (as seen following antigen clearance),
theTeff cells are rapidly depleted leading to loss of immunity and susceptibility

to secondary virulent challenge. (B) In contrast, infection with virulent
parasites or vaccination with live-attenuated or genetically modified parasites
leads to generation of robust and balanced Teff and Tm cells, infection-induced
immunity, and persistence of low number of parasites at the infection site and
its draining lymph node. Persistent parasites promote constant generation
and maintenance of Teff and Tm cells in the draining lymph node leading to
maintenance of immunity and protection against secondary virulent
challenges.This would eliminate the need for frequent booster immunizations.

persist indefinitely at the primary infection site and its draining
lymph nodes. We favor vaccination strategies that lead to mainte-
nance of low levels of parasite antigens at the site of inoculation,
which would promote constant generation and maintenance of
protective effector and memory cells (Figure 1B). Such a strategy
would generate infection-induced resistance and therefore elimi-
nate the need for frequent booster immunizations (Figure 1B). In
this regard, we believe that attenuated parasites generated by tar-
geted deletion of specific virulent genes (such as lpg2−) are ideal
vaccine candidates because they meet these requirements: per-
sistence without pathology and induction of protection against
virulent challenge. Thus, lpg2− parasites could overcome the side
effects associated with leishmanization while providing immunity
comparable to virulent parasites (Liu et al submitted). Although
we recently showed that it is possible to maintain Leishmania-
specific memory cells (and hence immunity) in the absence of
live replicating parasites by repeated inoculation of killed para-
sites (Okwor et al., 2010), however this vaccination protocol may
not be feasible in humans. Thus, more studies are required to
optimize this vaccination protocol and to determine how long

these cells will survive in vivo and also protect mice against vir-
ulent challenge. The use of nanoparticles as well as other slow
release antigen delivery systems could help enhance durability of
killed parasite and subunit vaccines. Currently, only few studies
are looking into the use of nanoparticles as a vaccination strategy
in leishmaniasis. Such studies are required to fully characterize the
role of nanoparticles and similar technologies as vaccine strate-
gies in leishmaniasis. In addition, there is need for increased use of
bioinformatics and proteomics to identify new immune-dominant
antigens and peptides that will be used as anti-Leishmania vaccine
candidates.
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