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INTRODUCTION

The use of genetic tools, imaging technologies and ex vivo culture systems has provided
significant insights into the role of tissue inducer cells and associated signaling pathways
in the formation and function of lymphoid organs. Despite advances in experimental tech-
nologies, the molecular and cellular process orchestrating the formation of a complex
three-dimensional tissue is difficult to dissect using current approaches. Therefore, a robust
set of simulation tools have been developed to model the processes involved in lymphoid
tissue development. Specifically, the role of different tissue inducer cell populations in the
dynamic formation of Peyer's patches has been examined. Utilizing approaches from sys-
tems engineering, an unbiased model of lymphoid tissue inducer cell function has been
developed that permits the development of emerging behaviors that are statistically not
different from that observed in vivo. These results provide the confidence to utilize statis-
tical methods to explore how the simulator predicts cellular behavior and outcomes under
different physiological conditions. Such methods, known as sensitivity analysis techniques,
can provide insight into when a component part of the system (such as a particular cell
type, adhesion molecule, or chemokine) begins to have an influence on observed behavior,
and quantifies the effect a component part has on the end result: the formation of lymphoid
tissue. Through use of such a principled approach in the design, calibration, and analysis of
a computer simulation, a robust in silico tool can be developed which can both further the
understanding of a biological system being explored, and act as a tool for the generation
of hypotheses which can be tested utilizing experimental approaches.

Keywords: agent-based modeling, computational modeling, development, lymphoid tissue inducing cells,
lymphoid tissue organizer cells, Peyer’s patches, sensitivity analysis

be examined using traditional experimental approaches (Andrews

The analysis of mice deficient for key transcription fac-
tors (ID2, RORyt), cytokines (IL-7), chemokines (CXCL13,
CCL19/21), TNF superfamily members (LT, RANK), RET, adhe-
sion molecules, and associated signaling pathways has led to an
understanding of the detailed cellular and molecular elements that
play a key role in secondary lymphoid tissue development. How-
ever, a reductionist approach focusing on the role of individual
cells types and molecules is limited in the insight it can provide
into how this tissue develops, because it is the complex temporal
interactions between cells and signaling molecules that dictates the
end result: the formation of the organ.

To further understand the underlying mechanisms in such
systems, mathematical and computational biology is becoming
increasingly prevalent. Such approaches permit the development
of models which aim to provide an interpretation of the under-
lying biological data upon which they are constructed (Guo and
Tay, 2005), and to act as a tool for exploration and development
of new hypotheses which may lead to testable outcomes that can

etal.,2008). The application of such modeling techniques has per-
mitted the exploration of a range of complex biological systems,
including T cell signaling cascades (Chakraborty and Das, 2010),
autoimmune disease pathology (Read etal., 2009), investigating
cell migration within germinal centers (Figge etal., 2008), emer-
gence of immune memory (Lagreca etal., 2001; Jacob etal., 2004),
and system dynamics under HIV-1 infection (Sieburg etal., 1990;
Stafford etal., 2000). However, the approach has yet to be adopted
in the exploration of immune system development.

Work in this paper examines the application of a structured
methodology that integrates traditional in vivo and ex vivo exper-
imental techniques such as gene knockouts, real-time imaging,
gene expression data sets, and functional ex vivo culture systems,
in the creation of a model that encompasses the dynamics of a
complex system being studied (Figure 1A). The objective is to
demonstrate that a structured process is required in the design of
any computer simulation of a biological process if confidence is
to be retained in the use of that simulation as a scientific tool.
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FIGURE 1 | (A) Schematic of the modeling process. Data obtained using
experimental biological approaches was used to develop a series of models:
Domain Model — explicitly capturing an abstraction of the biological system;
Platform Model — detailing how the biological system is implemented as a
computer simulation; Simulation Platform — coding the platform model;
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Results Model — interpretation of simulation results and relationship to
biological system. Through use of in silico experimental results model new
models and new hypothesis can be developed. (B) To determine if the size
and number of PP that form in mice is stochastic, the relative size and
location of PP from six adult mice was determined.

We then demonstrate how statistical tools that analyze output
from the constructed simulator can be used to predict changes in
cellular behavior under different physiological conditions. These
lead to predictions being made that may be tested within the
laboratory. As Figure 1A demonstrates, this leads to the gener-
ation of an iterative process, where the biological understanding
heavily influences the development of the model and simulator,
from which results may influence laboratory investigations, which
may in turn produce results which inform later iterations of model
development.

Any exploration of a biological system, whether this uses tra-
ditional experimental or computational methods, will be open
to a degree of skepticism as the understanding of each underly-
ing detail is incomplete. This is addressed through the making of
assumptions, justified by available evidence. Thus, the exploration

is focusing on an abstraction of the real system. The abstrac-
tion captured in any computer simulation will be greater than
that examined using traditional laboratory approaches, as it is
intractable to capture all current understanding in a model. It is
critical that this is taken into consideration when judging how
relevant any results are to the biological system under study. For
this reason, it is important that a rigorous process is adopted in the
design of any simulation, where all assumptions and abstractions
are documented and justified for scrutiny alongside simulation
results, and the link between the underlying biological system
and how this is encoded is fully appreciated by both immunol-
ogists and the modeler. The methodology involved in developing
the model and simulation in our case study utilizes the princi-
pled approach of the CoSMoS (Complex Systems Modeling and
Simulation Infrastructure) process (Andrews etal., 2010), which
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can be used to create and validate simulations of complex systems.
In this process, the biological system being explored is termed the
domain of interest. Understanding of the functional elements in
the system is captured in a series of models: domain, platform,
simulation, and results. The domain model encapsulates the cur-
rent scientific understanding for each biological entity within the
model. The platform model specifies how the domain model will
be implemented as a computer simulation. The simulation model
is executable software constructed from the specification in the
platform model. The results model is a mapping detailing how the
output from the simulation relates back to the biology. The con-
struction of each model is an important step in the process, with
the aim of ensuring that confidence is retained in the model as a
representation of the system, and that results from the simulation
relate back to the biological system and can be justified.

As a demonstration of how this approach can be applied,
the role lymphoid tissue inducer and initiator cell populations
(LTi/LTin) have in the development of Peyer’s patches (PP) was
examined. PPs have an essential role in the initiation of adaptive
immune responses to infection within the gastrointestinal tract,
and are comprised of an organized structure of B cell follicles con-
taining follicular dendritic cells (FDC), T cell zone and associated
fibroblastic reticular cells (FRC), surrounded by a mucosal epithe-
lium (Jung etal., 2010). Antigens are transported by specialized
epithelial cells, M cells, to dendritic cells in the FRC, which trig-
gers an adaptive immune response. Pre-natal studies show that an
average of 60 PP develop in the human fetal gut (Cornes, 1965),
and 8-12 in the mouse (Figure 1B), distributed along the gut
length with a large variation in the location, number, and size
of PP between different genetically identical mice, indicating a
stochastic nature to the process.

Peyer’s patches form through a clustering of hematopoietic
and stromal cells on the anti-mesenteric side of the small intes-
tine (Randall etal., 2008). The properties of the key cellular and
molecular components involved in the development process are
well understood (van de Pavert and Mebius, 2010). In the mouse,
migration of hematopoietic LTin and LTi cells into the mid-gut
occurs from embryonic day 14.5. LTin cells express the tyro-
sine kinase receptor RET and initiate the process of PP induction
through an adhesion-dependent chemokine-independent process,
ultimately leading to lymphoid tissue organizer (LTo) cell mat-
uration (Fukuyama and Kiyono, 2007; Veiga-Fernandes etal.,
2007; Patel etal, 2012). Upon LTo triggering, LTi cells inter-
act with Vcam + LTo cells through LTb/LTf receptor inducing
the production of IL-7, and chemokines CXCL13, CCL19, and
CCL21 (Adachi etal., 1997; Luther etal., 2003). LTi cells express
the corresponding receptors for these chemokines (CXCR5 and
CCR7; Adachi etal., 1997), thus further hematopoietic cells are
attracted to the region through chemotaxis, and retained by adhe-
sion molecules. This promotes further cellular interaction, which
increases the concentration of IL-7, chemokines, and localized
expression of adhesion molecules in the forming cluster. This is a
self-sustaining process, up to a point at E18.5 where, for reasons
not currently understood, further clustering of PPs ceases to occur
(Randall et al., 2008).

In the development of any simulator, it is essential that the ques-
tions it will be used to address are defined prior to its construction,

as this directly affects the choice of modeling strategy. Recent
ex vivo experimental work has focused on the initial 12 h of PP
development, which has revealed that the behavior of LTin/LTi
cells within 50pm of a RET ligand-expressing ARTN soaked
micro-sphere is statistically different to that of cells further away
(Patel etal., 2012). The cellular behavior observed in the ex vivo
culture system is thought to emerge from interactions between
LTin/LTi cells and the LTo cells. In conjunction with the experi-
mental approaches, our model captures the cellular dynamics up
to this time-point, in the hope of generating hypotheses on why,
for each cell, this emergent behavior becomes apparent. Thus,
it is not possible to use a traditional ordinary differential equa-
tion (ODE) modeling strategy, as our focus is at an individual
rather than the population level (Guo and Tay, 2005). In such
cases a multi-agent models is necessary. In this approach, each
biological entity exists as an autonomous object, referred to as an
agent, with associated states and within a specified spatial envi-
ronment (Forrest and Beauchemin, 2007). These agents interact
with others in the environment through a set of rules that in turn
change the agent’s state. At this level, it is possible to observe entity
behavior or structural formation that emerges through interactions
between agents.

As we are seeking to understand the behavior of each cell
individually, our demonstration of this methodology focuses
on the creation of a multi-agent simulation. Our purpose is
to explore how cellular interactions have led to the emergent
behavior observed. This allows us to create a model at a higher
level of abstraction, removing the need to explicitly model each
individual component involved in the interaction and each under-
lying mechanism. As Germain etal. (2011) note, the focus shifts
from an examination of each individual component part to
that of the higher order behavior and how this emerges from
components which lack the capability to do this alone. This
permits an understanding of how small perturbations in indi-
vidual system components affect the end outcome of the process
(Germain etal., 2011).

With the application of the CoSMoS process (Andrews etal.,
2010), we demonstrate how the set of models is generated and the
underlying biology captured through the use of Unified Modeling
Language (UML) diagrams. We then describe how the simula-
tor created from these models has been calibrated to reproduce
emergent behaviors that are statistically similar to those observed
ex vivo (Patel etal., 2012), providing a level of confidence that the
simulator is an adequate representation of the real system. The
latter part of this study demonstrates how the simulator can be
used to explore the complex system under examination. Using the
PP simulator, we show how the capacity of the model to replicate
previously published gene knockout and over expression experi-
mental results can be rigorously tested. Using statistical analysis
techniques, including sensitivity analysis techniques, changes in
observed behavior when the model is run under different condi-
tions was used to determine the relative role of different parameters
involved in PP development. Specifically, we focused on the role
chemoattractant molecules have in influencing cellular behav-
ior and tissue organogenesis, and the time-point at which these
molecules become influential. Use of these methodologies per-
mits quantification of the capacity of simulation to determine
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changes in cellular behaviors and emergent behaviors when quan-
titative changes are applied to each system component, allowing
in silico experimentation with the aim of informing future
laboratory experimentation.

MATERIALS AND METHODS

MODEL DEVELOPMENT

To develop a computer simulation of lymphoid tissue formation,
an agent-based approach to complex systems modeling was uti-
lized, and through the application of the CoSMoS process a series
of models created (Andrews etal., 2010).

DOMAIN MODEL

The domain model (Figure 2) focuses on modeling the biological
system by encapsulating current scientific understanding of cel-
lular behavior. Thus, this is a purely biological model, ensuring
isolation between the understanding of the system to be captured,
and how this translates into computer code. This is important as at
this point the details of how the simulation is to be implemented
are not of concern, and may distract from the specific model-
ing of the biological system. The domain features the component
parts of the system which will be included in the in silico model
including the cell types, the factors which influence cell behav-
ior (e.g., chemokines, adhesion factors) and a description of the
environment in which interactions take place (e.g., the fetal intesti-
nal tract). Any abstractions and necessary assumptions made are
clearly documented for later scrutiny (Tables 1-3).

State diagrams

Each of the key cell types identified in the literature is repre-
sented explicitly in the domain model. For each cell type, the states
(observed behaviors or gene expression profile) that the cell might
exist in and the interaction(s) that must take place for that cell to
change state were examined. For example, an LTo (stromal) cell
(Figure 2C) initiates in the model as an undifferentiated stromal
cell until LT receptor activation, upon which the LTo cell induces
expression of cytokines, chemokines, and adhesion factors critical
for PP development. Such descriptions are documented through
the use of state diagrams (Figure 2), a documentation method
closely related to the notation included within UML and widely
used in software engineering (Bersini and Carneiro, 2006; Read
etal., 2009). Through creating this model, parameters are identi-
fied and recorded. Some of these parameters have known values
which have been determined experimentally, whereas the values
of others are currently unknown.

Activity diagram

A further UML diagram, an activity diagram, is utilized to specify
how the cells identified in the state diagrams interact (Figure 3). It
is through these interactions that the observed behavior is expected
to emerge. Thus, in this model, it is the interactions between cells
that causes statistically significant changes to LTi/LTin cell velocity
and displacement.

PLATFORM MODEL

Utilizing the domain model the implementation of the computer
simulation is documented using a platform model. This specifi-
cally details how the individual cells, the model environment and

interactions described in the domain model will be implemented
in the computer simulation (Figure 4). In the platform, the inter-
actions that lead to state changes are examined and translated
into a form which can be captured in computer code (the sim-
ulator). Further parameters are identified during this process
and described, and as in the domain model, the numerical val-
ues of some parameters are unknown. These parameters capture
the behavior of component parts such as adhesion molecules,
cytokines, and chemokines. Despite the importance of these fac-
tors, the number of molecules expressed by the different cell
types, the level of chemokine expression required to induce cellu-
lar chemotaxis and the diffusion distribution of chemokines and
cytokines in the localized environment all are currently unknown.
Thus further assumptions are made based on known biology and
documented for scrutiny alongside simulation results (Tables 1-3;
Figures 5 and 6). Critical to the modeling process, emergent
behavior specified in the domain model is entirely removed from
the platform model. Biologically observed behavior must emerge
through interactions between components and not be encoded
into the model, as this invalidates the simulator as a predictive
experimental tool.

One of the strengths of agent-based simulation is the ability to
consider spatial elements of the biological environment. Thus, it
is critical to accurately represent the fetal intestine tract in which
our agents interact, and understand how this environment changes
during the time-frame of the simulation. Images were taken of the
developing mid-gut from twelve embryos, six at E14.5 and six
at E15.5, using stereomicroscopy (Zeiss). Measurements of the
length and circumference of each were then taken using Image]J
(Fiji). Taking measurements at different time-points ensures the
dynamic nature of the developing tract (model environment) was
captured. Using these measurements, and known cell sizes (Veiga-
Fernandes etal., 2007) a virtual environment was created which
accurately represents that seen ex vivo (Figure 7), and a scale
set where 1 pixel in our graphical simulation will represent four
microns. The platform model also specifies how the user interacts
with the simulator (e.g., graphical interface representing the envi-
ronment and the control panel), and specifies how data can be
extracted for further analysis (Andrews etal., 2011; Table 4).

SIMULATOR

The computer simulation was created from the specification in
the platform model. The Java-based MASON simulation envi-
ronment, a cross-platform toolkit for the creation of multi-agent
simulations was used (Luke, 2005). Each agent (cell) type is cre-
ated as a Java class, with state transitions encoded to match those
specified on the platform model. MASON simulations work in
steps, where each active agent performs the behavior determined
by its current state within each step. Such a feature allows for the
inclusion of time in the simulation. By default, one simulation
time-step represents 1 min of developmental time. A copy of the
Java code for the simulation and the simulator is accessible online
at http://www.cs.york.ac.uk/immunesims/frontiers.

SIMULATOR CALIBRATION USING EXPERIMENTAL DATA
To identify values for parameters identified in the domain and
platform models, numerical values were determined from the
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1: Adhesion factor expression for LTo cells in this state is detailed in Figure 6

2: Upregulation of adhesion factors for cells in this state is detailed in Figure 6

3: chemokine expresion and upregulation is detailed in Figure 5

4:While in this state, the cell will divide when it has been active for a time period specified in N

D Parameter Simulation Domain Value
x Probability stable bind occurs on contact thresholdBindProbability 50%
0 Percentage of LTo cells expressing RET Ligand percentStromalRETLigands Unknown
H Percentage of RET Ligand Cells that are non-stromal percentLTinLTiRETLigands Unknown
(o] Hours Immature LTo remains active imLToActiveTime 72 hours
N Lto Division Time IToDivisionTime 12 hours
P Hours RET Ligands Expressed numHoursRETLigandActive 72 hours
© LTin / Lti Cell size HCellDiameter 8um
© Lto Cell Size LtoDiameter 24um
® LTin / Lti Cell Speed Lower Bound cellSpeedLowBound 3.8um/min
g LTin / Lti Cell Speed Upper Bound cellSpeedUpBound 8.8 um/min
€ LTin Input Time ITininputTime 72 hours
v Lti Input Delay Time [TilnputDelayTime 0 hours
n Lti Input Time ITilnputTime 72 hours
[ Chemokine Threshold chemoThreshold Unknown

FIGURE 2 | The domain model captures an abstraction of the biological
domain. The state diagrams, created using a modified version of Unified
Modeling language, provide a description of the states in which the identified
agents (cell type) may exist within (the boxes), and the biological event that

must take place for that agent to transition into the next state (the arrow).
This does not contain any simulation-specific detail. (A) LTin cell, (B) LTi cell,
(C) LTo cell, and (D) biological parameters identified in the creation of the
domain model.
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Table 1| LTin assumptions.

Agent State Model Assumptions
LTin Random movement on tract surface Domain  There is no attractive influence on an LTin cell — any contact with RET ligand-expressing
cells will occur randomly
Platform  Each cell is assigned a speed between the lower limit set by parameter w and upper limit
set by parameter . This is chosen randomly from a Gaussian random number generator.
Contact with RET ligand-expressing cell  Domain  For lymphotoxin signaling to occur, the bind between the two cells must be of sufficient
strength. If the bind affinity is sufficient, we assume that cell signaling always occurs.
If contact is with a cell expressing RET ligand yet not an LTo, and a stable bind occurs,
the cells will bind briefly but no signaling occurs
Platform  Whether LTin and LTo cells bind will be determined by a probability function. If a chosen
probability is > parameter y then a stable bind is formed
Localized movement around LTo Domain  An LTin cell will remain in contact with an LTo cell if there is a sufficient expression level
mediated by adhesion of adhesion factors
As expression level increases, the LTin cell is more likely to remain in contact
Though there may be sufficient expression level of adhesion factors, there is still a
possibility that the LTin cell may move away from the LTo
Though the cell remains in contact with the LTo, LT signaling and up-regulation of adhesion
factors and chemokines only occurs on initial contact
Platform  LTin cell will remain in close contact with the LTo cell making small movements around it.
When an LTin cell is held in direct contact to an LTo cell, the cell will remain in its
current location.
Prolonged adhesion is decided through use of a probability function. Diagram in Figure 6
details how adhesion has been captured in the Platform Model.
Other assumptions Domain  LTin cells migrate into the tract throughout the whole period being modeled.
All LTin cells are the same size, 8 um
Platform  Through FACS staining we are aware of the number of LTin cells that should be present

at E15.5 in development. A linear input rate is used to ensure this is reached. This

rate remains constant throughout the simulated period

The environment is modeled as a 2-D plane on which all movement and interactions occur

(see environment in Platform Model). Should an LTin cell leave the left or right of the

screen, this cell will be removed from the simulation

List of assumptions made at both domain and platform model level concerning the behavior of and interactions with an LTin cell.

literature and unpublished experimental data However, obtaining
a numerical value for many parameters is not currently possible
due to technical experimental limitations. Calibration is the pro-
cess by which values are obtained for any parameters for which a
numerical value is unknown. The objective is to ensure that the
simulator produces cellular behavior that is statistically similar to
that observed in previously published studies (Veiga-Fernandes
etal., 2007; Patel etal., 2012).

The simulation has been calibrated against the observed behav-
ior of cells close to a PP versus those observed prior to patch for-
mation (Patel etal., 2012). In this case, there are six parameters for
which the value is uncertain: (a) probability at which an LTin/LTi
cell will form a stable bind with an LTo cell upon contact, (b)
the initial level of chemokine expression upon LTo differentiation,

(c) the limit on chemokine expression level, (d) the level of
chemokine required in the environment to induce LTi cell chemo-
taxis (e) the level at which adhesion factors are expressed with each
stable contact, and (f) the probability that the level of adhesion fac-
tors expressed on the surface of an LTo cell will restrain LTin/LTi
cell movement. Thus, values for these parameters needed to be
established that lead to simulation outcomes of cellular behavior
that does not differ from those observed ex vivo. To test for statis-
tical similarity between the distributions seen experimentally and
those observed in simulation, the non-parametric Mann—Whitney
U test has been used, as the results will not be normally dis-
tributed. Values for all six parameters were established through a
structured trial and error approach, and lead to cellular behavior
that is statistically similar to that observed (Patel etal., 2012).

Frontiers in Immunology | Inflammation

July 2012 | Volume 3 | Article 172 | 6


http://www.frontiersin.org/Inflammation/
http://www.frontiersin.org/Inflammation/archive

Alden etal.

Computational modeling of immune development

Table 2 | LTi assumptions.

Agent State

Model

Assumptions

LTi Random movement on tract surface

Response to chemokine level in local

environment

Contact with RET ligand-expressing

cell

Prolonged surface contact

(adhesion effect)

Other assumptions

Domain

Platform

Domain

Platform

Domain

Platform

Domain

Platform

Domain

Platform

Cells move randomly until the level of chemokine expression in the vicinity is above

a threshold

To ascertain chemokine level, the simulator will calculate the expression level in each
“gridsquare” around the cell (see Modeling Chemokines for more information).

If none of these values is above ¢, the cell moves randomly

Three chemokines are known to play a part in the process — CXCL13, CCL19, and CCL21.
However as an abstraction we will assume these can be modeled as a single
chemokine (see Modeling Chemokines)

[l=7 which could stimulate Il-7 receptor signaling and regulate chemokine receptor
expression levels of LTi cells, has not been included in the model.

The assumption will be made that there is always sufficient IL-7 present for chemokine
receptor expression to be upregulated

There is always a small chance that the cell may not respond to the level of chemokine,
although the expression level may be greater than ¢

Chemokine expression is modeled using an inverse sigmoid curve (see Modeling
Chemokines).

As some stochasticity must remain, the chance that the cell will move in the direction

of the strongest level is determined by probability function

For lymphotoxin signaling to occur, the bind between the two cells must be of sufficient
strength. If the bind affinity is sufficient, we assume that cell signaling always occurs.

If contact is with a cell expressing RET ligand yet not an LTo, and a stable bind occurs,
the cells will bind briefly but no signaling occurs

Whether LTi and LTo cells bind will be determined by a probability function. If a chosen
probability is > parameter y then a stable bind is formed

An LTi cell will remain in contact with an LTo cell if there is a sufficient expression level
of adhesion factors

As expression level increases, the LTi cell is more likely to remain in contact

Though there may be sufficient expression level of adhesion factors, there is still a
possibility that the LTi cell may move away from the LTo

Though the cell remains in contact with the LTo, LT signaling and up-regulation of
adhesion factors and chemokines only occurs on initial contact

The LTi cell would remain in close contact with the LTo cell making small movements
around it. When an LTin cell is held in contact to an LTo cell, the cell will remain in its
current location.

Prolonged adhesion is decided through use of a probability function. See Figure 6 which
details how adhesion has been captured in the Platform Model (modeling adhesion)

LTi cells migrate into the tract throughout the whole simulated period

All LTi cells are the same size — 8 um

Through FACS staining we have determined the number of LTi cells that should be present
in the mid-gut at E15.5 in development. A linear input rate is used to ensure this is reached.
This rate remains constant throughout the simulated period

The environment is modeled as a 2D plane on which all movement and interactions occur
(see Modeling the Environment in Platform Model). Should an LTin cell leave the left or

right of the screen, this cell will be removed from the simulation.

List of assumptions made at both domain and platform model level concerning the behavior of and interactions with an LTi cell.
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Table 3 | LTo assumptions.

Agent State Model Assumptions
LTo No expression of RET ligand Domain  Although we are aware that 20% of the intestine tract contains stromal cells, we assume
only a percentage of these have the potential to become patches.
Platform  Where only a percentage of LTo cells are active, all are still placed on the intestine tract,
but interactions only occur with LTo cells which have the potential to become patches
(that express RET ligand).
Expression of RET ligand Domain  Cell will remain active throughout the time period, irrespective of whether the cell changes
state or not
Platform  All LTo cells which express RET ligand have the potential to express adhesion factors and
chemokines (thus form patches)
Upregulation of adhesion molecules Domain  Adhesion molecules are up-regulated with every contact where the strength of the bind is
sufficient (see Modeling Adhesion)
Up-regulation only occurs on initial contact with the cell — prolonged contact due to adhesion
does not lead to further up-regulation
Cells in this state will divide after a set number of hours
Platform  Expression of adhesion factors does not degrade over time
With each stable contact, a counter representing adhesion factor expression is increased.
This determines the strength of adhesion and probability the cell will remain in contact.
(see Modeling Adhesion).
Upregulation of chemokines Domain  Chemokines are up-regulated with each LTi/LTo contact where the strength of the bind is
sufficient (see Modeling Chemokines)
Up-regulation only occurs on initial contact with the cell — prolonged contact due to adhesion
does not lead to further up-regulation
Cells in this state will divide after a set number of hours
Platform  Chemokine expression does not degrade over time
With each stable contact, a counter representing chemokine expression is increased.
This determines the distance over which the chemokine has an effect.
(see Modeling Chemokines)
Mature LTo Domain
Platform  Both adhesion molecules and chemokines must have reached their peak of expression
to reach this state
Other assumptions: Domain It is assumed that other pathways, such as the NF«B pathway, are always activated

upon stable contact, and thus not explicitly modeled

List of assumptions made at both domain and platform model concerning the behavior of and interactions with an LTo cell.

REDUCING UNCERTAINTY IN SIMULATION RESULTS

Prior to performing any analysis of simulation results, it is impor-
tant to establish the number of replicate runs necessary (n) to
produce a robust representative result that reflects the analysis
being performed, and is not heavily influenced by uncertainty
arising from inherent stochasticity within the simulation. This
calculation is a pre-requisite in understanding the simulator’s sen-
sitivity to parameter perturbation. Such a judgment cannot be
made if the effect of the underlying inherent stochasticity is not
appreciated. This was achieved using a technique developed by
Read etal. (2012), which examines the relationship between the

number of runs performed and the effect of such uncertainty for
a given set of parameters, establishing an # to use in all subsequent
analyses.

To establish n, a number of replicate run sizes were chosen
(1, 5, 50, 100, 300, 500, and 800). Taking the sample size of five
as an example, twenty simulation result sets were obtained, with
each of the twenty sets containing the results from five simulation
runs. From the results of each simulation run, medians are cal-
culated for each of the cell behavior output measures captured.
These are collated to form a set of medians for each of the 20
subsets. The medians from each set are compared to the first set
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FIGURE 3 | Activity diagram of domain model representing the low-level interactions between the cells (LTin, LTi, LTo cells) which lead to the
formation of PP. Cellular behaviors are described in boxes, decisions points indicated by diamonds and lines. Arrows indicate potential changes to

Contact with stromal cell
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cell and inactive
stromal cell
<02+ T2
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cellin place - cell moves away

Adhesion level mediates
prolonged stable contact

LTo maturation level
sufficient to prolong contact

using the Vargha—Delaney A-Test (Vargha and Delaney, 2000). The
test compares the two distributions and returns a value between 0
and 1.0, with a result of 0.5 indicating no difference, and results
above 0.71 and below 0.29 indicating a statistically significant dif-
ference between the two sets. To achieve a representative result,
there should be no statistical difference in all 20 comparisons.
In this case, this was achieved when each of the 20 subsets con-
tained the results from 500 simulation runs (Figure 8). Therefore,
n =500 was used for the remaining analyses.

IN SILICO EXPERIMENTATION

Simulations have been performed to test the robustness of the
model to determine if PP emerge replicating gene knockout and
over expression experiments published in the literature and to
determine if key features of the biology are observed in the in
silico model. Comparison with the observed biology was made
by comparing snapshots of the simulated environment post sim-
ulation run to observed phenotypes using antibody staining of
LTi and LTo cells. To simulate gene knockouts, Boolean parame-
ters indicating the inclusion of the relevant component are set to
false. To simulate changes to level of expression, values for relevant
parameters were adjusted. The simulation has been run under the

following conditions from the established literature (Figure 9):
(Figure 9A) Normal parameter setting (control wild type mice),
(Figure 9B) RET deficiency (RET~/~ mice; Veiga-Fernandes
etal., 2007), (Figure 9C) chemokine knockout (CXCL13~/—,
CCL19/217/~ mice; Luther etal., 2003), (Figure 9D) no LTin
cells (RORy~/~ mice; Eberl etal., 2004), (Figure 9E) doubling
number of LTi cells (IL-778 mice; Meier et al., 2007). Consistent
with established results no PP form in either RET, chemokine
or LTi deficient mice (Figures 9B-D). In mice with increased
numbers of LTi cells in the simulation (Figure 9E), more, larger
PPs were observed to develop consistent with the published
results.

PARAMETER EXPLORATION IN THE MODEL

Through experimentation, literature research, and calibration, a
set of parameter values has been established from which the simu-
lator reproduces the emergent cellular behavior observed ex vivo.
However, it is important to establish how sensitive the simulator
output is to alteration in these values. Uncertainty and sensitivity
analysis techniques can be used to quantify the effect perturbing
parameter values has on simulator response, providing an insight
into the sensitivity of both known biological parameter values and
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1: LTin cells migrate into the environment at a rate, s , to generate the required number of cells at E15.5 (8) - see Modelling the
igure 7). calculated through one of the below methods:

A LTin
(Platform) Migration no nfesin tract
between start of simulation and endpoint set by € '
( Random movement on tract surface * )
ry

Probabily of escape >
Probabilty prolonged cellular
adhesion*

If distance between cell

If contact cell and stromal cell <012 + 12

is not an LTo Cell

m——T—————

oR
Probabily of escape < AND
Probabilty prolonged Strengih of LTiLTo
cellular adhesion f contact cell i an LTo Cell AND bind sufficient
Probabilty of escape <
Probabilty prolonged cellular adhesion *
v

Stable Contact with RET Ligand expressing Cell

LTi
(Platform)

Migration into intestine tract
between timepoints set by y and n

Random movement on tract surface *

T 1

D)

(a) If s 'linear’, g is (8 / ((24°60)*60) / A

(b) If x is "exponential’, G is A raised to the power of the simulation time elapsed minus the current LTin cellularity

(c) If kis 'square root’, ¢ is A multipled by the simulation time elapsed, raised to the power of 0.5, with the current LTin cellularity
subtracted from the total

For (b) and (c), to ensure the correct number of LTin cells is reached at E15.5 (5), the constant A has been calculated using &

2: Strength of bind is a probability. If a probabilly is chosen which is greater than x , stable bind is deemed to have occurred.
3: Probabilty of prolonged adhesion is calculated as detailed in Figure 6 - Modelling Adhesion

4:In the domain model, cell speed falls somewhere between a lower bound specified by w and an upper bound specified by £
These limits assume the cell is moving that distance per minute. In the model, no assumption is made that each simulation
step will represent a minute of developmental time; it could be more or less than that. Therefore, the upper and lower bounds
need to be calculated from the chosen number of seconds represented by each step ( A ):
The lower bound for the simulation run, M1, is calculated by w /60 * A
The upper bound for the simulation run, @ , is calcualted by £ /60 * A

1: LTi cells migrate into the environment at a rate, W to generate the required number of cells at E15.5 (¢ - see Modelling the Environment,
Figure 7). Thisis calculated through one of the below methods:
(@)Y is linear, ¥ is (& /((24°60)°60)/ A
(B) 1Y is exponential, W is A raised 1o the power of the simulation time elapsed minus the current LTi celllarity
(©)IfY s 'square root, ¥ is A multipled by the simulation time elapsed, raised to the power of 05, with the current LTi cellularity
subtracted from the total,
For (b) and (c). to ensure the correct number of LT cells is reached at E15.5 (¢ ) the constant A has been calculated using ¢

Response to Chemokine Level in Local Environment

2: To ascertain chemokine level, the model will calculate the level in each ‘gridsquare’ around the cell. More detailin the environment
description on how this is done. If the strongest level s greater than g, the cell will move in that direction

)

Probabilty of escape >
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It distance between cell
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bind suffcient *
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-

3: Strength of bind is a probabilty. If a probabilty is chosen which is greater than x .stable bind is deemed to have occurred.

4: Probabilty of prolonged detailed in Fi Adhesion
5:In the domain model, cell speed falls somewhere between a lower bound specified by w and an upper bound specified by ¢ . These
limits assume the cell is moving that distance per minute. In the model, no assumption is made that each simulation step will
represent a minute of developmental time; it could be more or less than that. Therefore, the upper and lower bounds need to be
calculated from of seconds represented p(A )
‘The lower bound for the simuiation run, 1, is calculated by w /60 * A
‘The upper bound for the simulation run, © , is calcualted by § /60 * A

Contact with Cell Expressing RET Ligand

C

LTo
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not ithin percentage © of
colls that express RET Ligand

If cell within percentage ¢ . but
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) (

)

(cellin contact) AND

AND
LTo can stil diferentiate

I distance to LTin Cell < 072 + 112 (cell in contact),

TinlLTi sufficient

(ime elapsed < @)

Upregulation of Adhesion Molecules **

D)

I distance to LTi Cell < 0/2 + 172 (cell n contact)

Strength of LTVLTo bind sufficient*

(

If probabity of prolonged adhesion

)

Upregulation of Chemokines ****

1:In this state, the level of adhesion factor expression is specified as detailed in Figure 6
2: Strength of bind is a probabilty. If a probability is chosen which is greater than x ,stable bind is deemed to have occurred.
3: While in this state, with each contact with an LTin, adhesion molecule expression is increased as detailed in Figure 6

4: When initially entering this state, the steepness of the chemokine sigmoid curve is set to that stated in Figure 5

5: While in this state, with each contact with an LTi, as detailed in Figure 5

6: While in this state, the cell wil divide when it has been active for a time period specified in N

FIGURE 4 | The Platform model details how the states and interactions
captured in the domain model are coded into the simulation. The
expected behavior, which emerges from interactions between components
in the system, is specifically not present in the platform model. Behavior
emerges from the simulation and are not coded into the simulation. In the

Cove reched 7 ne Fenres 58.6) Wie sagend > ime peed >
( e LT )
iftime elapsed > p
( RET Ligand Down-Regulated )
D Parameter Simula Platform Value

c| LTin Cell Input Rate ITinInpt C: as specified in A
K LTin Input Rate Function ITinInputRateFunction linear
2y LTin Input Rate Constant ITinInputRateConstant Not Used with linear
R LTi Input Rate ITilnputRate Calculated as specified in B
ae LTin Input Rate Function ITilnputRateFunction linear
A LTin Input Rate Constant ITilnputRateConstant Not Used with linear
o LTin / LTi Cell Size IToDiameter 6 pixels
c LTo Cell Size HCellDiameter 2 pixels
A Seconds per simulation step secondsPerStep 60 seconds
u Simulation Run Cell Speed Lower Bound cellSpeedSimLowBound Calculated
[} Simulation Run Cell Speed Lower Bound cellSpeedSimUpBound Calculated

platform model, how each cell behaves and how interactions are encoded

is detailed. As this includes a variety of factors from the domain model a
number of assumptions are made and documented. (A) LTin cell, (B) LTi cell,
(C) LTo cell, and (D) additional simulation parameters identified in the creation
of the platform model.

parameters for which a value has been established through calibra-
tion. In this case we consider the inherent epistemic uncertainty
arising from parameters in the latter category, where a value is not
currently known, and demonstrate statistical techniques that can
be used to quantify this uncertainty. However, a full exploration

of the experimentally verified parameters could also be elucidated
using the same techniques.

Using the calibrated simulator, the impact on cell behavior
has been investigated when the chemokine parameters are mod-
ified. These parameters are: the threshold at which chemokine
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MODELING CHEMOKINES
1 The chemokine effect has been modelled using an
0.9 inverse sigmoid curve, adjusted so that the top of the
0.8 curve meets the 'y axis (using parameter
é 07 chemoCurveAdijust)
@
§06 1 Contact The curve starts off tight, set by parameter
@ 05 SContacts shemoUpperAdijust, meaning that the chemokine effect
04 —20Contacts  js restricted over a small distance. With each stable
203 ~——Threshold contact, the curve is relaxed (adjusted by parameter
0.2 increasChemoExpression), representing an increase in
o1 expression, affecting cells over a greater distance, until
' a maximum expression distance is reached
0 Distance from LTo (chemolLowerAdjust)
When an LTi cell is to perform a move in the simulation, a virtual grid is
drawn around it, with the centre of each grid space being placed at the 0
distance the cell will move. The simulator then evaluates the chemokine
level in each square, using the formula:
distafice

1

(l —+ @ ("LToChemokine Expression Level + distance to LTo-+ Sigmoid Curve Adjustment) )

where sigmoid curve adjustment is the constant used to make the curve
meet the y axis.

Should the level be over a threshold level (chemoThreshold), the
chemokine level has an effect on that cells behaviour.

The level of expression becomes the probability that the cell will move in
that direction. Therefore it is most likely the cell will follow the level of
chemokine expression as it gets closer to the LTo cell, but there remains

LTo parameters:

Chemokine Expression Level:
affects the shape of the
chemokine sigmoid curve

stable contact

some possibility that the cell may not respond to the chemokine.

Parameter Simulation Domain Value Platform Value
[0} Chemokine Threshold chemoThreshold Unknown Range: 0—1
Calibrated to 0.3
B Sigmoid Curve Adjustment chemoCurveAdjust - 3
I Initial Curve Value chemoUpperAdjust - Calibrated to 0.2
7 Lower Curve Value chemoLowerAdjust - Calibrated to 0.04
! Increase in expression with increaseChemoExpression - Calibrated to 0.005

FIGURE 5 | Description of how chemokines are included in the platform model. This details mechanism of chemokine diffusion in the model from the LTo
cell, and how the direction of LTi cell movement is based on a calculation of local chemokine levels.

expression in the environment begins to influence cell migration
(chemoThreshold); the level of chemokine expressed with each
LTi/LTo contact; and the distance from the LTo cell over which the
chemokine can have an effect (set by parameters chemoLowerLin-
earAdjust and chemoUpperLinearAdjust, detailed in Figure 5).
We also examine the effect of changing the parameter which spec-
ifies the probability a stable bind occurs where a hematopoietic cell
(LTin/LTi) comes into contact with a stromal cell (LTo) (threshold-
BindProbability). Impact on simulation response was determined
using two techniques, one-a-time analysis and Latin hypercube
sampling (LHS) and analysis. In one-a-time analysis, the subset of

simulation parameters is examined to determine how robust the
simulation is to a change in input (Read etal., 2012). Taking each
in turn, the parameter is perturbed within a set range of values,
with all other parameters remaining constant. For each parameter
value, 500 simulation runs were performed as established through
robustness analysis. The median of each cell behavior measure
is calculated for the 500 runs, producing a median distribution
set for each parameter value. This set of medians is compared to
that gained from 500 runs of the baseline simulation, using the
Vargha—Delaney A-Test (Vargha and Delaney, 2000). This deter-
mines if a change in the value of that particular component has
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adhesion is calculated using the formula:

adhesion slope * LTo Adhesion Expression Level

probability is set to the threshold value

MODELING ADHESION

0.3 Prolonged Adhesion

After stable contact between two cells, the probability of prolonged

where adhesion slope is a constant set in calibration. Should this
probability be higher than the threshold (also set in calibration), then the

Parameter Simulation Domain Value Platform Value
M Initial Expression of initialAdhesion 0 0
Adhesion Factors
E Linear Equation Slope adhesionSlope - Calibrated to 1
E Increase in Adhesion with adhesionincrement Unknown Calibrated to 0.05
each stable contact
v Adhesion Level Threshold maxAdhesionEffectProbability Unknown Range: 0—1

The probability of prolonged cellular adhesion is
modelled using a linear equation, with a slope value set
through calibration (adhesionSlope)

Each LTo has the same initial adhesion level
expression level (initialAdhesion). With each stable
contact, the level of adhesion factors expression
increases (adhesionincrement). This increases the
probability that a cell remains in prolonged contact with
an LTo cell. This probability increases with expression
level until a threshold is reached
(maxAdhesionEffectProbability). This threshold exists to
ensure some stochasticity remains, and although
adhesion factors may be high, there is a chance that an
LTin/LTi cell may move away from a forming cluster.

LTo parameters:

Adhesion  Expression Level: a
counter representing the level of
adhesion  factor expression —

increased with each stable contact

Calibrated to 0.65

FIGURE 6 | Description of how the adhesion factors are included in the platform model. This details how the LTo cell increases adhesion factor expression
with each stable contact and the probability that a LTi or LTin cell remains in prolonged contact with an LTo cell is determined in the simulator.

led to behavior which is significantly different to that seen in the
calibrated result.

Latin hypercube sampling and analysis, a global sensitivity anal-
ysis technique, has been performed in an attempt to identify any
compound affects which become apparent when two or more of
the components are varied simultaneously (Marino etal., 2008;
Read etal., 2012). A range of potential values has been set for each
parameter of interest, and the parameter space sampled using a
LHS approach (Saltelli etal., 2000). LHS was used to produce
500 parameter value sets, with the value of each parameter falling
within the set range. For each set, the simulation was run 500
times and the relevant cell behavior medians calculated. Taking
each parameter of interest in turn, the sample sets were ordered
by the value assigned to that parameter. A scatter plot was then
generated, for each cell behavior measure, showing the parameter
value in that run against the simulation result. This gives a visual
representation of any correlation between the value of that cell

behavior measure and the value assigned to that parameter. To
gain a statistical indication of an existing correlation, the Partial
Rank Correlation Coefficient was also calculated.

DETERMINING WHEN A PARAMETER BECOMES INFLUENTIAL

IN THE SIMULATION

To analyze the time-point at which a factor in the model begins
to have an influence on the emergent behavior, the point at which
the chemokine parameter value has a notable effect on cellular
behavior (LTi cells away from a forming cluster) was determined.
The simulation was run to simulate 48 h in PP development, with
LTi cell behavior tracked for an hour at 12 h intervals. Five hundred
simulation runs were performed, with medians recorded for each
cell tracking measure for the respective run. The median results
for hours 24, 36, and 48 were then compared with those from
the calibrated baseline (12 h) using the Vargha—Delaney A-Test
(Vargha and Delaney, 2000), to determine if there is a significant
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MODELING THE ENVIRONMENT
Experimental Measurements Taken:
Measured the length and circumference of the developing
mid-gut from 12 embryos using stereomicroscopy (Zeiss)
and ImagedJ (Fiji)
-six at E14.5
-six at E15.5
Averages taken for use in the simulation. Having both
measurements allows for inclusion of growth over the
period
€ LT ;::o s, e ceend 0] h Simulation Environment:
S “0 C %, 0o % L e ° 1 screen pixel = 4 microns
5 5y ¢ - st s F%q Length and width represent the gut
< e, . o g T measurements taken.
@ " :Qm“ .. . ’; T Cen S e Cells that leave top or bottom appear on
] o o So0elT, . o PR AN ° opposite side.
:. PR o . . T e . e N ° Cells that leave left and right are deemed
< 0o g o B o O o0 o ® to
N ° ° S e eot@s o o0 o ° 8 . ’ .
R .,: o s e * e LS -, . take no more part in the simulation
7203 pixels -> 28.8 mm
Parameter Simulation Domain Value Platform Value
r Initial Circumference initialGridHeight 0.976 mm 244 pixels
A Initial Length initialGridLength 28.80 mm 7203 pixels
K Maximum Circumference upperGridHeight 1.016 mm 254 pixels
P Maximum Length upperGridLength 29.22 mm 7303 pixels
¢ LTo Cell Density stromalCellDensity 20% 20%
Y Intestine Growth Time growthTime 72 h 72 h
8 Percentage of area occupied percentLTinfromFACS 0.45% 0.45%
by LTin cells at E15.5
[0) Percentage of area occupied percentLTifromFACS 0.37% 0.37%
by LTi cells at E15.5
FIGURE 7 | Description of how the simulation environment relates back to that found in vivo.

difference in cell behavior over time. All statistical analysis was
performed using R.

RESULTS

EXPLORING THE SIMULATION COMPONENTS THROUGH

SENSITIVITY ANALYSIS

To demonstrate the use of sensitivity analysis techniques in explo-
ration of the model, the values of the chemokine parameters,
where the values are uncertain, were perturbed and the effect on
the overall result analyzed.

ONE-A-TIME ANALYSIS

One-a-time analysis was used to determine the effect each param-
eter has on the cell behavior captured in the model (Figure 10).
This provides an indication of how robust the simulation is to
changes in parameter value, and which parameters have the great-
est impact on cell behavior. To determine the effect of a parameter
value perturbation, the simulation results for each value assigned
to that parameter have been compared against simulation results
known to be statistically similar to cell behavior seen ex vivo
using the Vargha—Delaney A-Test (Vargha and Delaney, 2000).
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Table 4 | Additional platform model considerations.

Additional platform model considerations

Simulation Graphical user interface:

interface e Enabled with use of MASON Toolkit

e Environment and cell movement displayed in
MASON window, settings can be varied on
simulation control console

Non-GUI simulator:

e |nteraction via XML parameter file read by
simulator when started

Instrumentation  Simulation results output as CSV files:

e Tracking results: cells in vicinity of LTo cell

e Tracking results: cells >50 wm from LTo cell

e Cluster size summary

Images:

e Screenshots every time-step during tracking
(for time lapse movie generation)

e Screenshots at every 12 h time-point

e Screenshots at end of simulation

Quantifying data  Stored by simulation:

e Cell position (x, y)

e Position when tracking commenced

e Position when tracking time elapsed

e Distance covered in tracking period

Calculated by simulation:

e Cell track length

e Cell velocity

e Cell displacement

e Cell displacement rate

e Cell meandering index

Above five can then be compared to the measures

gained in ex vivo experimentation

List of simulation design considerations included within the platform model.
These add the ability to interact with the simulator, to state how simulation out-
put will be generated, and list the quantifying data which will be recorded and
output for further analysis.

This analysis indicates that perturbing the expression and thresh-
old level of chemokines (Figures 10A—C) at an early time-point
(initiation of patch formation) has no appreciable effect on the
behavior of cells in the vicinity of a forming patch. All potential
values for the parameter chemoThreshold, which controls a cells
response to a level of chemokine, have been explored, through
never responding to presence within the environment to always
responding. Although the full range has been examined, there is
no significant change in cell behavior for any value in compari-
son to calibration results. Thus, early in PP formation the model
predicts that chemokines are unlikely to be the key force driving
the patch formation.

LATIN HYPERCUBE SAMPLING AND ANALYSIS

In contrast to one-a-time analysis, LHS perturbs the values of
all parameters in the subset simultaneously. Using this approach,
any compound effects between parameters which do not become
apparent through perturbing each individually can be identified.
Analysis of these parameters (Figure 11) at the earliest phase of
patch formation (12-13 h) again indicates that the chemokine
parameter values are not influential at this phase in PP develop-
ment. LHS analysis of the threshold value at which a chemokine
begins to affect the velocity of cells close to a developing PP shows
no trend in the simulation (Figure 11A). This is apparent both
visually and from the calculated Partial Rank Correlation Coeffi-
cient (PRCC) values (in the header of each graph). The PRCC
value gives an indication of an existing correlation between a
change in output measure with a change in the input measure.
However, a small trend does become apparent for the displace-
ment output measure when the threshold value is set to its extreme
value, where a cell always responds to any level of chemokine in
the environment.

INVESTIGATING WHEN A COMPONENT BECOMES

INFLUENTIAL

Chemokines have been shown to have an essential role both
in vivo (Luther etal., 2003) and in silico (Figure 9C), however
using both one-a-time and LHS analysis the parameter values
chemoThreshold, chemoLowerLinearAdjust, and chemoUpper-
LinearAdjust were predicted not to have a significant affect in
simulation outcome (Figures 8A and 10A). Thus to determine
if and when these parameters effect cellular behavior, the sim-
ulator for was run for 48 h of simulated time (Figure 12). For
each time-point, 500 sets of cell tracking data were obtained
(500 runs of the simulation) with each containing a minimum
of 30 tracked cells. The resultant distribution of the 500 medi-
ans for each of the 24, 36, and 48 h time-points was compared
to that generated at the 12 h time-point (the calibrated baseline).
Our analysis predicts that these parameters do not start to sig-
nificantly change the behavior of cells until after 36 h into the
simulation, a finding that can possibly be tested on a biological
set-up.

DISCUSSION

Agent-based modeling is an important methodology for under-
standing complex biological systems. The ability to model time-
variant stochastic systems, coupled with the environment in which
the biological event occurs makes this approach highly applicable
to modeling cellular function and interactions in lymphoid tissue
development and function. This paper has described the process
involved for the development of a robust simulation model, the
application of key principles from systems engineering to translate
biological understanding (the domain) into an unbiased simula-
tor where key aspects of PP formation emerge from the model.
Critically, the simulation has shown that the model faithfully
recapitulates the biology leading to the stochastic formation of
PPs. In fact for simulations of mice deficient in known regula-
tory factors of PP development (chemokines, RET tyrosine kinase,
and adhesion molecules) the expected “phenotype” was observed
in silico.
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twenty result subsets are listed along the x axis, with the Vargha-Delaney each cell output measure for each simulation run in the set. Each set of
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sets as no parameters are being changed. The plot shows the comparison This figure shows the results for four of the sample sizes used. (A) 5, (B) 50,
scores for both cell behavior output measures: cell velocity and cell (C) 100, and (D) 500.

CREATING A FRAMEWORK TO UTILIZE SIMULATION MODELING

TO UNDERSTANDING IMMUNE SYSTEM FUNCTION AND
DEVELOPMENT

The inherent complexity and interconnectivity of in vivo phys-
iology has led us to develop computational simulations of an

immunological process to provide novel insights into that pro-
cess. Although this methodology is well established in physics,
chemistry, ecology, and structural biology, the use of compu-
tational approaches has been limited due to the highly stochas-
tic and interconnected nature of immune responses. Although
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FIGURE 9 | Images of typical simulation runs at a time-point (simulated knockout), (C) Chemokine deficiency (simulated CXCL13,
representing 72 h of PP development. Conditions have been created which ~ CCL19/21 knockout), (D) LTin-deficient mice (simulated RORy™/~mice),
replicate known phenotypes from mice: (A) Control, (B) RET~/~ LTin cells (E) doubling number of LTi cells (1779 mice).

mathematical ODE models are a potent methodology for under-
standing how populations behave, they are limited in their ability
to describe complex phenomena, like lymphoid tissue formation,
that emerges during immune development through interactions
between individual cells. Thus, we have demonstrated a simpli-
fied non-mathematical approach that allows easy translation of
the biology into a set of models that are easy to understand and
interact with. Using these models in the creation of the simulator
ensures the production of a tool where the scope and encapsu-
lation of the biological understanding is clear, thus simulation
results can provide meaningful insight into molecular mechanisms
driving the biological process. The CoSMoS modeling process
(Andrews etal., 2010) has been developed to make computa-
tional simulation accessible through breaking down the process
into well documented steps that permit immunologists to develop
models, understand how the agents interact and query the valid-
ity of the model. In the first step of the process the biological
entity can be described using UML to create a domain model that
accurately represents the biological system and the interactions
between the different cell types and the environment during the

process: in the PP domain model we succinctly document the
key cell types (LTi, LTin, LTo), the different cellular states dur-
ing PP development, and cellular interactions that are known to
drive PP formation. Using the domain model, a platform model
was created, again using UML, to represent the modeling envi-
ronment and detail how individual cells interact and change state
within the model environment. This platform model used to spec-
ify the agent-based computational model which is implemented in
the Java programming language. By creating a separate model on
which the simulation is generated, crucially cellular behaviors that
must emerge through interactions between agents in the model are
removed, and not coded into the model. By using an open source
Java-based modeling environment and open source statistical
tools, the technological barriers to create and utilize a compu-
tational model have been kept to a minimum. The PP simulator,
the documented Java source code, all tools created for the visual-
ization of PP formation and statistical analysis of the model are
freely available for download from the web (http://www.cs.york.
ac.uk/immunesims/frontiers). Making the model freely avail-
able makes it possible for immunologists to engage with the
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parameter, leaving the remaining values constant in the simulation. varies significantly from the simulation. (A) Chemokine threshold,
This provides an indication of the effect perturbing each individual parameter (B) initial expression level of chemokine, (C) maximum expression level
has on simulation output. Cell behavior was compared to the calibrated of chemokine, (D) probability of stable bind when two cells are in contact.
baseline results using the Vargha—-Delaney A-Test, which determines if N = 500.

model for their own research and provide critical feedback
on the future iterations of the simulator, as demonstrated in
Figure 1A. Utilizing this framework it is possible to rapidly
develop meaningful computational simulations of immunological
processes.

PAIRING EXPERIMENTATION AND COMPUTATIONAL
MODELING

Innate lymphoid cells have recently been shown to have essen-
tial roles in both the development of lymphoid tissue and
normal lymphoid and epithelial tissue function. Bioinformatics
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displacement, (C) probability of stable bind when two cells are in contact vs
velocity, and (D) probability of stable bind when two cells are in contact vs
displacement. N = 500.

approaches have provided novel insights into pathways that regu-
late cellular function; however they are limited in their capacity
to understand how intracellular signals drive process during a
complex stochastic process. Although knockout mice provide key
insights to the functional requirement for particular pathways they
often fail to capture how, when and where the pathways regulate
the biological process. Although chemokines have been previously
been shown to be essential in the formation of patches (verified in

the model), the timing of chemokine mediated effects during PP
formation are unknown. Utilizing the PP simulator and statistical
analysis techniques, the parameters that control chemokine func-
tion in the model have been shown, surprisingly, to have no effect
during early stages of PP development. By sampling the model over
time it was possible to show that the effect of chemokines on LTi
cell behavior was only found to be statistically significant 36 h into
the simulation. This is consistent with biological observations that
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FIGURE 12 | Computer simulation to predict when chemokine
expression level has a significant effect on cell behavior. For 24, 36, and
48 h time-points, datasets have been generated which record the
displacement of each cell in the system for a sixty minute period after that
time-point. Each set of results is then compared to the simulation baseline
cell behavior at 12 h using the Vargha-Delaney A-Test.

the behavior of LTi cells at E15.5, 24 h post initiation of LTi/LTin
infiltration into the fetal mid-gut, the movement of all observed
cells was a normal random walk (Veiga-Fernandes etal., 2007).
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