
A common feature between cancer escape 
and autoimmune diseases is an inappropri-
ate involvement of the regulatory immune 
system, albeit for opposing purposes. 
While autoimmune disease is a reflection 
of the failure to control responses to self, 
cancer is a result of an exaggerated use of 
these controls to abrogate antitumor effec-
tor responses. Although the importance 
of regulatory B cells [Bregs, the defini-
tion first used by Mizoguchi to describe 
B cells exerting protection from colitis in 
mice (Mizoguchi et al., 1997)] in protec-
tion from autoimmunity is now accepted, 
their involvement in cancer escape remains 
poorly understood. The conundrum of 
Bregs is that, if their numbers are low 
(in analogy with Tregs), their existence 
and importance may be concealed by the 
overwhelming response of effector B cells. 
For example, aberrant activation of B cells 
promotes autoimmune diseases, such as 
rheumatoid arthritis (RA), type 1 diabetes 
mellitus (T1D), multiple sclerosis (MS), 
and systemic lupus erythematosus (SLE). 
As such, the depletion of B cells with anti-
CD20 antibody rituximab impairs antigen-
specific CD4+ T cell activation (Bouaziz 
et al., 2007) and ameliorates RA, MS, and 
T1D (Townsend et al., 2010). Yet,  treatment 
with rituximab can also exacerbate the dis-
ease in some patients with ulcerative colitis, 
or even induce other diseases, such as pso-
riasis with psoriatic arthropathy and colitis 
in patients with Graves disease and non-
Hodgkin lymphoma, respectively (Dass 
et al., 2007; Goetz et al., 2007; Mielke et al., 
2008). The increased numbers of B cells in 
peripheral blood of transplant patients is 
positively associated with a rare but long-
term drug-free clinical tolerance (Newell 
et al., 2010; Pallier et al., 2010; Sagoo et al., 
2010). Although these clinical examples 
clearly indicate the importance of B cells, 

a current issue is how to segregate the role 
of Bregs from suppressive activity of B 
cells that has been known for more than 
30 years. As first proposed by Morris and 
Moller in late 1960s (Morris and Moller, 
1968), B cell-produced immunoglobulin 
can elicit immune suppression by directly 
triggering ITIM-mediated suppressive 
signaling in target cells upon binding with 
inhibitory FcγRIIB (Ravetch and Bolland, 
2001) or by indirectly modulating dendritic 
cells (DCs) via activating FcγR (Morris and 
Moller, 1968).

The first evidence of suppressive B cells 
(Bregs?) that functioned independently 
of their immunoglobulin was shown by 
Shimamura et al. (1982) about 30 years 
ago. Confirming this, the absence of B cells 
was linked with exacerbated autoimmune 
responses in mice deficient in B cells, such 
as mice that lack mature B cells (Wolf et al., 
1996) and CD19 B cells (Yanaba et al., 2008). 
To date, the protection from autoimmune 
diseases in mice was linked with several 
unique subsets of IL-10-producing Bregs, 
such as CD1dHigh B1b cells (CD5− B220Low 
CD11b+ IgM+ CD1dHigh; Mizoguchi et al., 
2002), B10 regulatory cells (IL-10-producing 
CD1dHigh CD5+ B cells; Yanaba et al., 2008), 
and CD1dHigh Tim-1+ CD5+ Bregs (Ding 
et al., 2011). Although little is known about 
human Bregs, protection from SLE was 
recently linked with an impairment of regu-
latory activity of CD19+ CD24High CD38High 
B cells (Blair et al., 2010). Moreover, a rare 
subset of IL-10-producing memory CD24hi 
CD27+ B cells that functions like murine 
B10 cells was also shown to exist in humans 
(Iwata et al., 2011). Humans also have IL-10 
and TGFβ-producing CD25hi CD27hi CD86hi 
CD1dhi B cells that can suppress prolifera-
tion of autologous T cells and induce the 
generation of Foxp3+ CTLA-4+ Tregs (Kessel 
et al., 2012).

The majority of protective effects of 
Bregs requires IL-10 (Mizoguchi et al., 2002; 
Byrne and Halliday, 2005; Matsushita et al., 
2008; Yanaba et al., 2008; Blair et al., 2010), 
a cytokine also utilized in other B cell-
mediated suppression. For example, IL-10 
is also abundantly produced and utilized 
by CD5+ B1 cells and MZ B cells to ame-
liorate collagen-induced arthritis in mice 
(O’Garra and Howard, 1992; Brummel 
and Lenert, 2005; Lenert et al., 2005; Evans 
et al., 2007) and by LPS-stimulated B cells 
to protect from autoimmune responses in 
mice by rendering T cells anergic (Parekh 
et al., 2003; Lampropoulou et al., 2008) and 
tolerogenic (Fuchs and Matzinger, 1992). 
The boundaries between Bregs and IL-10 
producing B cells can often be obscure, rais-
ing question whether IL-10 is a primary 
mediator of suppressive activity or a factor 
that promotes homeostasis of Bregs. As for 
murine and human B1 cells (Balabanian 
et al., 2002; Gary-Gouy et al., 2002), IL-10 
may promote survival and proliferation of 
Bregs. On the other hand, full suppressive 
power of Bregs and concomitant IL-10 
production often requires activation, for 
example, by chronic inflammation or by 
engagement of their toll-like receptors 
(TLRs) or CD40 (Mizoguchi et al., 2002; 
Gray et al., 2007; Lampropoulou et al., 
2008). This leads to production of other 
immunomodulatory factors (TGFβ and 
galectin-1) and upregulation of surface 
antigens, such as PD-1 and CTLA-4. As a 
result, activated Bregs can either directly 
induce apoptosis and anergy of effector 
Th1 cells and CD8+ T cells (Zuniga et al., 
2001; Parekh et al., 2003; Frommer et al., 
2008; Tretter et al., 2008) or indirectly by 
converting Tregs (Reichardt et al., 2007; 
Sun et al., 2008; Sayi et al., 2011; Scapini 
et al., 2011) and modulating DCs (Byrne 
and Halliday, 2005; Watt et al., 2007).
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the success of a strategy will also depend on 
the use of tailored approaches, ideally, ones 
that only inactivate tBregs, while protect-
ing or promoting “good” B cells needed for 
optimal cancer eradication. For example, 
4T1 breast cancer metastasis is abrogated 
by antibody that targets IL2Rα expressed 
on Tregs and tBregs (Olkhanud et al., 2009, 
2011). Despite this, no clinical benefit was 
elicited in patients with renal cell carci-
noma treated with B cell-depleting anti-
CD20 antibody rituximab (Aklilu et al., 
2004). Although this result questions the 
role of Bregs in human cancers, our recent 
data indicate that tBregs can escape anti-
CD20 antibody due to low levels of CD20 
expression. As a result, treatment with 
anti-CD20 antibody preferentially depletes 
“good” and activated B cells, while enrich-
ing for tBregs and thereby enhancing cancer 
escape and metastasis (Bodogai et al., MS 
in preparation). Overall, although plethora 
of conventional B cells can often conceal 
and hamper analysis of small population of 
Bregs, the use of tailored and unique meth-
odologies clearly indicates their existence 
and importance in mediation of cancer 
escape. It is time to unequivocally accept 
Bregs and tBregs as true members of the 
regulatory immune network.
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