
Bacterial resistance against conventional 
antibiotics is an escalating problem in 
modern medicinal treatment of infec-
tious diseases, as a growing number of 
immunocompromised patients are suf-
fering from hospital-acquired bacterial 
colonization. The spreading of genetic 
bacterial resistance has stimulated the 
interest in natural antimicrobial peptides 
(AMPs) as promising drugs against patho-
genic species (Giuliani et al., 2007; Zaiou, 
2007; Fjell et al., 2012). These peptides are 
a fundamental component of the innate 
immune system and represent the first 
line of defense against a broad spectrum 
of microorganisms (Radek and Gallo, 
2007). Owing to their intrinsic amphi-
philic character and usually positive net 
charge, AMPs bind strongly to bacterial 
plasma membranes. These receptor-inde-
pendent interactions, which are present 
already at sub-lethal concentrations, can 
induce lipid flip-flop, cause the formation 
of stable or transient pores, and/or lead 
to membrane depolarization and permea-
bilization (Spindler et al., 2011). Elevated 
AMP concentrations tend to fully disrupt 
the lipid bilayer barrier, thereby exhibit-
ing an immediate detergent-like action 
that kills the cells. In the latter scenario, 
it is impossible for the bacteria to develop 
any resistance or tolerance against AMPs. 
In addition to these primary effects on 
the plasma membrane, several AMPs were 
also shown to translocate across the lipid 
bilayer and interact with various intra-
cellular targets. Such alternative targets 
include membrane respiratory proteins, 
nucleic acids, as well as machineries of cell 
wall and protein biosynthesis (Epand and 
Vogel, 1999; Zhang et al., 2001; Brogden, 
2005; Giuliani et al., 2007; Mogi and Kita, 
2009; Spindler et al., 2011).

Unlike conventional antibiotics, AMPs 
do not tend to operate in a stereospecific 
manner. Nevertheless, some resistance 
mechanisms have evolved, such as a reduc-
tion of the net negative charge in the bac-
terial envelope, the active efflux removal 
of AMPs, or their proteolytic destruction 
(Peschel, 2002; Otto, 2009). However, most 
pathogenic Gram-positive and Gram-
negative bacteria still remain susceptible 
to AMPs, and much promise is associated 
with their further development and applica-
tion. Currently, the high production costs 
of natural mammalian AMPs and their low 
molecular stability are considered to be a 
drawback for reaching the drug market 
(Zaiou, 2007). Here, we demonstrate that 
another, as yet unknown problem may 
emerge in the use of AMPs. Namely, some 
AMPs can cause bacterial persistence, a 
phenomenon known to be associated with 
the formation of biofilms responsible for 
chronic diseases (Lewis, 2010). These bio-
films, in turn, have a high tolerance against 
conventional antibiotics and represent a 
dangerous growth form of pathogenic bac-
teria that should be avoided by all means 
(Stewart and Costerton, 2001).

Amongst the best-studied AMPs are 
Magainin-2 (Mag2) and PGLa from X. 
laevis, commonly both denominated as 
“magainins”. These cationic peptides are 
produced in the granular glands of the frog 
skin and acquire an amphiphilic α-helical 
structure when bound to lipid membranes. 
Both peptides are moderately active per 
se, but a notable feature is their synergis-
tically enhanced action in a 1:1 mixture 
(Matsuzaki et al., 1998; Strandberg et al., 
2009). Magainins were used as a blue-
print to design an ideal α-helical “model 
amphiphilic peptide” MAP (Oehlke et al., 
1998), which also exhibits an antibacterial 

effect (Palm et al., 2006). All three heli-
cal molecules (with a length of around 20 
amino acids) bind to lipid bilayers, where 
they can be surface-bound or obliquely 
immersed, depending on peptide concen-
tration (Glaser et al., 2005; Bürck et al., 
2008; Strandberg et al., 2009) and tempera-
ture (Afonin et al., 2008b). A fully inserted 
transmembrane state of these peptides has 
been associated with the formation of tran-
sient pores (Afonin et al., 2008b; Ieronimo 
et al., 2010). These have been shown to allow 
the escape of small metabolites and ions 
(Matsuzaki, 1998), thereby also decreasing 
the transmembrane proton gradient and as 
a result ATP generation. Mag2 was found 
to enhance the uncoupling and depolariz-
ing activity of PGLa in liposomes contain-
ing cytochrome oxidase (Westerhoff et al., 
1995). However, it is important to note 
that pore formation per se does not result 
in complete lysis of the membrane, and it 
does not kill bacteria (Epand and Vogel, 
1999; Zhang et al., 2001). Here, we demon-
strate that amphiphilic AMPs can actually 
stimulate survival mechanisms in bacteria 
instead of eradicating them.

For many pathogenic bacteria is known 
that under stress conditions (e.g., high bac-
terial density, depletion of nutrients and 
oxygen, temperature shift, osmotic shock, 
or selective pressure of antibiotics), cell 
populations produce small and temporary 
subpopulations of dormant cells. They are 
called persisters, because they have adapted 
to a long-term survival by a reduced level 
of metabolic activity, diminished protein 
synthesis, multidrug tolerance to antibi-
otics, and an enhanced ability to grow as 
surface-adherent biofilms. This general 
survival strategy is explained by an expres-
sion of starvation-related (Fux et al., 2005) 
or persister genes (Lewis, 2010). Due to 
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their reduced growth rate, these reversible 
bacterial states are known as non-growing 
and “viable but non-culturable” (Oliver, 
2005), or as slow growing phenotypes. 
The latter ones manifest on agar media as 
small colony variants (SCVs; von Eiff et al., 
2006; Wellinghausen et al., 2009). Clinical 
isolates of S. aureus SCVs are characterized 
by deficiencies in transmembrane electron 
transport and ATP generation, and by an 
increased expression of adhesins instead 
of other virulence factors. These metabolic 
alterations facilitate the protective internal-
ization of the bacteria into host cells and 
thereby persistent and recurrent infections 
(Proctor et al., 2006). The first identified 
molecular mechanism of a cellular stress 
response, which has been recently described 
in E. coli, explains how cells can convert into 
a dormant state. In the presence of stress 
factors, such as ciprofloxacin, which inhibits 
biosynthesis of DNA, the cells express the 
small autotoxic protein TisB. Interaction of 
this 29 amino acid peptide with the plasma 
membrane decreases the protonmotive 
force, reduces ATP synthesis, and thereby 

transforms bacteria into an isogenic dor-
mant state (Dorr et al., 2010). Notably, in 
both modes of stress response (i.e., in slow 
growing auxotrophic clinical isolates of S. 
aureus, as well as in E. coli expressing TisB) 
the key feature is the disturbance of the 
proton gradient. Either by a deficiency in 
its generation or by its active dissipation, 
the reduced protonmotive force leads to a 
lower level of ATP generation by oxidative 
phosphorylation. The need for ATP produc-
tion can be compensated by substrate-level 
phosphorylation, e.g., via glycolysis or via 
the arginine deiminase pathway. This gen-
eral metabolic switch is associated with the 
characteristic slow growth in the biofilm 
mode (Proctor et al., 2006).

Our key idea, which elicited the present 
study, was the realization that TisB has a 
remarkably similar amphiphilic α-helical 
structure when compared to the antimi-
crobial magainin peptides described above 
(see Figure 1B). After all, both types of 
peptides increase the proton permeability 
of lipid bilayers. The stress response pep-
tide TisB has been shown to localize to the 

inner membrane of E. coli (Unoson and 
Wagner, 2008), where it gets inserted in a 
transmembrane alignment (Steinbrecher 
et al., in  revision). We thus wanted to find 
out whether membrane-active AMPs would 
also be able to trigger the formation of 
persister cells via their known depolarizing 
effect on bacteria. We monitored bacterial 
growth using the redox indicator resazurin 
(alamarBlue™), which changes its color 
from blue to pink upon reduction, as an 
indicator of cellular respiration. In this way, 
we carried out twofold microdilution assays 
with several different AMPs to determine 
their minimum inhibitory concentration 
(MIC) values from the bacterial respira-
tory activities. Subsequently, the wells of 
the microtiter plates were inspected with a 
microscope to see whether pinpoint colo-
nies or biofilms had formed. Besides the 
α-helical PGLa, Mag2, a 1:1 mixture of 
PGLa/Mag2, and MAP, we also included 
two cyclic AMPs in this study. Gramicidin 
S (GS) and polymyxin B (PmB) have a 
very different molecular structure com-
pared to the magainins, and they are rather 

Figure 1 | (A) Emergence of small colonies at sub-MIC concentrations of AMPs. 
MIC values are indicated in square brackets, as determined after 24 of exposure to 
the AMP by means of a resazurin color change. Pinpoint colonies were detected in 
the wells with concentrations corresponding to 1/2 MIC for all peptides, except for 
MAP, which was effective even at 1/4 and 1/8 of MIC. Occurrence of pinpoint 

colonies was observed as an average of at least two independent experiments;  
(B) Molecular structures of TisB (left) and PGLa (right); (C) Pinpoint colonies of S. 
aureus in the presence of MAP were detected on the bottom of 96-wells microtiter 
plates with an inverted microscope (Leica DM IL) at 100-fold magnification – two 
individual microcultures under identical conditions are shown as examples.
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evolutionarily optimized their strategies 
to cope with the universal bacterial stress 
response. For example, in the case of injury, 
the immune cells that express high levels 
of defensins and cathelicidins are attracted 
directly to the wound. This way, the AMPs 
are delivered at very high local concentra-
tion to the site of potential infection (Radek 
and Gallo, 2007; Zaiou, 2007; Hancock 
et al., 2012). Analogous local or topical 
applications of AMPs have helped and will 
continue to help the human organism, 
while avoiding an unfavorable imbalance 
in the usual, e.g., intestinal microbiota. We 
believe that medical approaches show most 
promise, when they can provide high local 
concentrations of AMPs directly at the site 
of infection. For instance, cationic AMPs 
can be delivered into the respiratory tract 
with an ultrasonic nebulizer (Falagas et al., 
2010), and tissue-specific local drug deliv-
ery is possible via medical electrophoresis or 
using polymeric nanosphere gels (Batheja 
et al., 2011).
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