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Stromal cell microenvironments within lymphoid tissues are designed to support immune
cell homeostasis and to regulate ongoing immune responses to pathogens. Such stro-
mal cell networks have been best characterized within lymphoid tissues including the
spleen and peripheral lymph nodes, and systems for classifying stromal cell phenotypes
and functions are emerging. In response to inflammation, stromal cell networks within
lymphoid tissues change in order to accommodate and regulate lymphocyte activation.
Local inflammation in non-lymphoid tissues can also induce de novo formation of lymphoid
aggregates, which we term here “follicle-like structures.” Of note, the stromal cell networks
that underpin such follicles are not as well characterized and may be different depending
on the anatomical site. However, one common element that is integral to the mainte-
nance of stromal cell environments, either in lymphoid tissue or in extra-lymphoid sites,
is the constitutive regulation of stromal cell phenotype and/or function by the lymphotoxin
(LT) pathway. Here we discuss how the LT pathway influences stromal cell environments
both in homeostasis and in the context of inflammation in lymphoid and non-lymphoid
tissues.
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INTRODUCTION
Within the secondary lymphoid tissues, stromal cell networks are
an integral scaffold for complex immune cell interactions nec-
essary to mount an effective immune response to pathogens.
The maintenance of the phenotype and function of some stro-
mal cell types is critically dependent on constitutive signaling
of the lymphotoxin-beta receptor (LTβR). LTβR is a member of
the tumor necrosis factor (TNF) superfamily of receptors and is
triggered by two ligands: membrane-bound LTα1β2 heterotrimers
and LIGHT, resulting in the activation of both the canonical and
alternative NFκB pathways (Bista et al., 2010). During embryoge-
nesis, the LTβR-dependent activation of NFκB within lymphoid
tissue organizer (LTo) cells is achieved by interaction with LTαβ-
expressing lymphoid tissue inducer (LTi) cells, thus facilitating
lymph node (LN) and Peyer’s patched (PP) development (Mebius,
2003; Ruddle and Akirav, 2009).

In the adult animal, stromal cell phenotype and function
must be constitutively maintained for the lifetime of the host in
order to maintain the integrity of lymphoid tissue, and much
of this maintenance is accomplished by continual LTβR signal-
ing (Gommerman and Browning, 2003). The cell types which
provide LTαβ are generally lymphocytes, in particular B cells
(Tumanov et al., 2002, 2004), but can also be LTi-like innate lym-
phoid cells, especially in the context of the gut (Eberl, 2005).
The moment such a homeostatic program is interrupted, as
achieved by a single injection of the LT pathway antagonist
LTβR-Ig, stromal cell networks collapse and the lymphoid tis-
sues become disorganized (Mackay and Browning, 1998). When
the drug is cleared, however, aspects of the lymphoid tissue

stromal cell environment can be re-established (Gommerman
et al., 2002).

These findings have important implications for how we view
stromal cells. First, it suggests that stromal cells are highly
dynamic and rely on continual input from LTαβ-expressing
cells. Second, since LTαβ is up-regulated on activated lympho-
cytes (Summers-DeLuca et al., 2007), lymphocytes that have been
triggered by foreign or self-antigen (Ag) may have the poten-
tial to provide stromal cell differentiation cues. Finally, the
ability to manipulate stromal cell biology via the LT pathway
allows one to study the potential function of LT-sensitive stromal
cell types during tissue homeostasis and during inflammation.
Here, we outline the role of LTβR signaling in the homeo-
static maintenance of non-lymphoid cell types within LN and in
the small intestine, and explore how LTβR signaling influences
changes in stromal cell phenotype/function during inflamma-
tion within lymphoid tissues and in ectopic sites of follicle
development.

LTβR-DEPENDENT REGULATION OF STROMAL CELLS
IN PERIPHERAL LYMPHOID TISSUES
Lymph nodes are composed of a variety of stromal cell types whose
phenotype and function are being increasingly elucidated (Mal-
hotra et al., 2012). In general, marginal reticular cells are located in
the sub-capsular sinus (SCS), under which follicular dendritic cells
(FDCs) populate the follicle. Fibroblastic reticular cells (FRCs)
are located in the T cell-rich paracortex area and LN medullary
fibroblasts are found in the medullary cords. Vascular and lym-
phatic endothelial cells are an additional source of non-lymphoid
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FIGURE 1 | Stromal cell elements in the lymph node under lymphotoxin

control during homeostasis and inflammation. The LT pathway is critical
for the proper maintenance and function of various stromal cell elements
in the LN. During homeostasis, chemokine production by FDC in the
primary follicle is required for B cell positioning (1). LTβR signaling in
endothelial cells of HEV is also required for the expression of
sulfotransferases that promote the proper glycosylation of PNAd (2).

During inflammation, the LN becomes enlarged, stromal cells acquire new
functions, and increased vascularization occurs (not depicted). In addition,
clusters of B and T cells aggregate within germinal centers during
T-dependent immune responses, and highly differentiated FDC within the GC
environment require LTβR signaling (3). To facilitate the output of plasma cells
that emerge from these GC reactions, remodeling of the medullary region
has been shown to occur (4).

cell types. In the context of the non-inflamed LN, we focus on
FDCs, FRCs, and the endothelial cells that form high endothelial
venules (HEV) since the role of the LT pathway in these cell types
has been well described. Depicted in Figure 1 are examples of
LN stroma that are under LT control in both the steady state and
during inflammation.

FOLLICULAR DENDRITIC CELLS
B cell follicles in lymphoid tissues are largely defined by FDC
(Allen and Cyster, 2008). FDCs are an important source of the B
cell chemo-attractant CXCL13 which helps to establish the polar-
ity between B and T cell zones in lymphoid tissues. FDCs also
aid in germinal center responses by secreting the B cell survival
factor BAFF and by trapping immune complexes for display to

activated B cells (Suzuki et al., 2010). Though the exact identity of
the FDC precursor is still unclear, it is thought that FDCs derive
from mesenchymal cells in situ (Munoz-Fernandez et al., 2006;
Allen and Cyster, 2008). It is well established that mature pri-
mary FDCs are maintained within B cell follicles by virtue of the
interaction between LTαβ on B cells and LTβR on a resident radio-
resistant stromal cell precursor (Fu et al., 1998; Gonzalez et al.,
1998; Endres et al., 1999). LTβR signals stimulate FDCs to secrete
CXCL13, which attracts more B cells and induces them to up-
regulate LTαβ, thereby initiating a positive feedback loop (Ansel
et al., 2000). Constitutive signaling is required for FDC mainte-
nance and disruption of LTαβ-LTβR signaling in vivo results in the
rapid disappearance of FDCs along with a disorganization of the
B cell and T cell zones (Mackay et al., 1997).
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FIBROBLASTIC RETICULAR CELLS
Fibroblastic reticular cells are found predominantly in the T cell
areas of LN (Balogh et al., 2008; Turley et al., 2010). FRCs secrete
fibronectin, laminin, and ER-TR7 antigen, which bind ECM colla-
gen fibers to produce a reticular network (Katakai et al., 2004).
This reticular network serves as a scaffold for cell migration
and retention (Bajenoff et al., 2006), provides a source of IL-
7 (Link et al., 2007), creates conduits that facilitate movement
of chemokines and small soluble Ag (Roozendaal et al., 2009),
and influences T cell tolerance in the steady state (Fletcher et al.,
2011). Like FDCs, FRCs are thought to derive in situ from a
mesenchymal precursor, and multipotent mesenchymal stem cells
isolated from human tonsils and bone marrow stimulated with
recombinant TNFα and LTαβ develop an FRC phenotype in vitro
(Ame-Thomas et al., 2007). Murine FRCs cultured alone in vitro
do not secrete ER-TR7 but upon co-culture with CD4+ T cells
FRCs produce large amounts of reticula that are coated with
ER-TR7 in an LT- and TNFα-dependent manner (Katakai et al.,
2004). Similarly, LTβR-Ig treatment diminished FRC networks in
pancreatic infiltrates of diabetic CXCL13-RIP mice in vivo (Link
et al., 2011). However, it is unclear if the development and/or
maintenance of an intact ER-TR7-producing FRC network within
LN requires constitutive LTβR signaling, although the loss of
T cells concomitant with a decrease in LTαβ is correlated with
FRC collapse in human immunodeficiency virus (HIV) infection
(Zeng et al., 2012).

HIGH ENDOTHELIAL VENULES
High endothelial venules are the portals of entry for naive lympho-
cytes into LN. This is because the endothelium of HEV displays
adhesion molecules, notably peripheral node addressin (PNAd).
Mice that receive LTβR-Ig treatment have hypo-cellular LN due
to the requirement of LTβR signaling in regulating the expres-
sion of sulfotransferase enzymes that mediate post-translational
modification of PNAd. Without these modifications, PNAd is
aberrantly expressed in HEV and naive L-selectin+ lymphocytes
transmigrate into LN tissues inefficiently (Browning et al., 2005).
A similar paradigm is observed for ectopic lymphoid aggregates
in the pancreas (Drayton et al., 2003). Recently, it was shown
that dendritic cells (DC) are an important source of LTαβ in
providing the maturation signal for HEV. This suggests there
could be intimate cross-talk between DC and HEV (Moussion and
Girard, 2011). Whether DC can communicate with other LTβR-
expressing stromal cell elements within lymphoid tissues remains
to be determined.

LTβR-DEPENDENT REGULATION OF STROMAL CELLS
IN THE SMALL INTESTINE
The LT pathway plays a critical role in regulation of IgA produc-
tion in the gut (Kang et al., 2002), and this has been linked to the
activity of LTβR signaling in gut-resident stromal cells in differ-
ent types of gut-associated lymphoid tissues (Tsuji et al., 2008).
Such lymphoid tissues include PP, which are located along the
small intestine. PP contains large B cell follicles along with smaller
T cell regions in “inter-follicular” zones. Not unlike the case in
LN, FDC and T/B segregation within the PP are likewise depen-
dent on LTβR signaling in PP stromal cells, primarily by virtue

of expression of LTαβ on B cells (Tumanov et al., 2004). PP-
resident FDCs are somewhat different than LN FDCs in that they
produce mediators that particularly encourage IgA class switch
recombination (Suzuki et al., 2010). Overarching the PP follicles
is the sub-epithelial dome that hosts a rich community of DC.
Interestingly, expression of the chemokine CCL20 in the follicle-
associated epithelium which overlies the DC-rich sub-epithelial
dome is also LT sensitive (Rumbo et al., 2004). The CCL20/CCR6
axis may be important for the recruitment of B cells to the PP,
and since B cells can express LTαβ, this could potentially drive
the subsequent organization of the PP architecture (Williams,
2006). Microfold (M) cells, which are also partially dependent
on the LT pathway (Debard et al., 2001), are interspersed within
the follicle-associated epithelium. Along with dome-resident DC,
M cells play an important role in shuttling Ag from the gut lumen
into the PP for sampling and generation of immune responses.
In general, the stroma in PP is less well characterized than
in the LN.

Also within the small intestine are lymphoid tissue struc-
tures that develop strictly after birth called cryptopatches. In
the presence of commensal bacteria, these cryptopatches mature
to become isolated lymphoid follicles (ILF; Taylor and Williams,
2005). LTαβ- and LTβR-deficient animals lack both ILF and cryp-
topatches. It is thought that IL-7 release by the underlying stroma
in the small intestinal lamina propria induces the expression of
LTαβ on LTi-like innate lymphoid cells. This in turn results in
the triggering of LTβR to form the cryptopatch which matures
into an ILF (Eberl, 2005). Like PP, ILF development also requires
the CCL20/CCR6 axis (Bouskra et al., 2008). Such ILF can be
an alternative location for the generation of mucosal IgA+ cells
(Tsuji et al., 2008).

LTβR-DEPENDENT CHANGES IN LYMPHOID STROMAL
CELLS DURING INFECTION AND INFLAMMATION
Several changes occur in the draining inflamed LN following expo-
sure to Ag in adjuvant: systems for Ag transport are mobilized,
stromal cells acquire new functions, the LN becomes enlarged,
neo-vascularization occurs to accommodate increased cellular
input, and specialized niches that support T/B interactions are
formed. In this section we describe these changes, how such
changes are influenced by different types of stromal cells, and
the role of the LT pathway in orchestrating dynamic changes in
the inflamed LN.

ANTIGEN TRANSPORT
Lymph-borne Ag enters LN into the SCS. There, Ag complexes
are bound by CD169+F4/80− SCS macrophages (SCS Mϕ) that
extend their processes into the SCS lumen to pick up Ag com-
plexes (Carrasco and Batista, 2007; Junt et al., 2007). Non-cognate
B cells subsequently pick up Ag complexes from SCS Mϕ, carry
them deeper into follicles, and deposit the Ag on FDCs in ger-
minal centers (Phan et al., 2007). Interruption of this transport
chain results in early dissipation of germinal centers and impaired
affinity maturation. SCS Mϕ express LTβR and their presence in
the SCS region requires signals from LTαβ on B cells (Phan et al.,
2009). As such, the expression of LTαβ on B cells is an important
form of innate defense due to its ability to signal LTβR on cells
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within the SCS: the first point of Ag entry (Moseman et al., 2012).
Stromal cells within the SCS have been described (Katakai et al.,
2008), and it will be of interest to learn how these stromal cells
interact with the Ag transport chain.

LYMPHOID TISSUE REMODELING DURING INFLAMMATION
AND INFECTION
Dramatic changes occur in lymphoid tissues in response to viral
infections. For example, during lymphocytic choriomeningitis
virus (LCMV) infection, lymphoid tissue architecture becomes
disorganized but is eventually restored in a manner that depends
on LTαβ expression on LTi-like innate lymphoid cells (Scandella
et al., 2008). In addition to this dramatic remodeling, lymphoid
stroma can be an important source of type I interferons dur-
ing viral infection, and LTβR signaling in splenic stroma can
drive such a Type I interferon response independent of MyD88
or TRIF-derived signals (Schneider et al., 2008).

In the LN, inflammation also greatly increases the size of the LN
and this LN hypertrophy is accompanied by endothelial cell pro-
liferation that can be promoted by the production of VEGF. FRC
is a source of VEGF and this is dependent on LTαβ/LTβR signaling
(Chyou et al., 2008) as well as input by the alternative LTβR ligand
LIGHT (Zhu et al., 2011). Furthermore, LTαβ expression on B cells
can also drive HEV network extension/remodeling in response to
LCMV infection independent of VEGF (Kumar et al., 2010). Thus,
through various mechanisms, the LT pathway is important for
accommodating the increased flow of lymphocytes into a draining
reactive LN. The medullary stroma, which supports lymphocyte
egress from the LN, also becomes remodeled during an immune
response. This may be important for providing a niche for the
incredible burst in plasma cell output that is generated follow-
ing a germinal center response. In this process, collagen-poor and
collagen-rich areas are created, with plasma cells settling in the
collagen-rich regions, presumably to take advantage of stromal
cell factors that may enhance their survival (Zhu et al., 2011).

GERMINAL CENTER FORMATION
As mentioned, mature primary FDCs are located throughout B
cell follicles and rely on constitutive, low-level LTβR signaling
(Fu et al., 1998; Gonzalez et al., 1998; Endres et al., 1999). Dur-
ing an immune response, activated Ag-specific B cells that receive
co-stimulation from T cells up-regulate LTαβ even further and
provide stronger LTβR signals to FDCs (Vu et al., 2008). This ele-
vated LTβR signaling prompts FDCs to mature into secondary
FDCs within germinal centers. Secondary FDCs up-regulate com-
plement receptors CD21 and CD35 as well as FcγRIIB to enhance
capture of Ag complexes (Allen and Cyster, 2008). While the exact
role for Ag complexes on FDCs is still debated, it is likely that they
help sustain the germinal center response and enhance affinity
maturation. Secondary FDCs also begin to express FDC-M1 anti-
gen (Mfg-e8), which may play a role in the clearance of apoptotic
germinal center B cells (Kranich et al., 2008).

INFLUENCE OF LTβR SIGNALING ON ECTOPIC
LYMPHOID TISSUE
Inflammation in peripheral tissues can create an environment that
is permissive to the formation of follicle-like structures (FLS).

These structures have been observed in a wide variety of settings
and display differing levels of organization, and in some cases have
been shown to support local immune responses (Aloisi and Pujol-
Borrell, 2006). In this section, we review two examples of FLS and
speculate on how the LT pathway may support such structures.

INDUCIBLE BRONCHIAL LYMPHOID TISSUE
Inducible bronchus-associated lymphoid tissues (iBALT; Randall,
2010) are FLS that form in the lungs in response to respira-
tory inflammation due to infection (Moyron-Quiroz et al., 2004;
Lugade et al., 2011), chronic inflammation (Hogg et al., 2004), or
autoimmunity (Rangel-Moreno et al., 2006). The content of such
structures varies from highly organized niches beneath a dome
epithelium with defined T cell and B cell areas and FDC capable
of supporting germinal centers, to small clusters of lympho-
cytes containing mostly B cells and some FDC (Moyron-Quiroz
et al., 2004). Local production of CXCL13, CCL19, and CCL21
drives the recruitment of lymphocytes to iBALT follicles (Foo
and Phipps, 2010). Fully formed iBALT require approximately
10 days to become organized niches in adult mice post-infection
(Moyron-Quiroz et al., 2004; Halle et al., 2009) but are maintained
for months (Moyron-Quiroz et al., 2006).

Unlike LN and PP which require LTαβ–LTβR signaling for
their formation, studies using LTα−/− mice have shown that
LTβR signaling is not required for iBALT formation or induc-
tion of CXCL13, CCL19, and CCL21 during acute inflammation
(Moyron-Quiroz et al., 2004). Instead, Randall and colleagues
determined that CD4+IL-17+ cells are necessary to initiate iBALT
formation (Moyron-Quiroz et al., 2004). However, once estab-
lished, CD4+IL-17+ cells are insufficient for optimal organization
and maintenance of iBALT which instead is dependent on LTβR
signaling.

FLS IN THE CENTRAL NERVOUS SYSTEM
Follicle-like structures have been documented at sites of chronic
inflammation in several autoimmune diseases including: rheuma-
toid arthritis, Sjörgen’s syndrome, systemic lupus erythematosus,
and Multiple Sclerosis (MS; Aloisi and Pujol-Borrell, 2006). There
is a range in the level of lymphoid-like organization of these
structures: from perivascular infiltrates, to diffuse aggregates with
HEV-like vessels, to organized follicles with T and B cell segrega-
tion and underlying FDC networks (Browning, 2008). The disease
relevance of FLS is associated with local tissue injury and cell death.
In MS, FLS preferentially accumulate in the meninges in patients
at the later progressive stage of the disease (Serafini et al., 2004),
and meningeal FLS are associated with increased demyelination
and neuronal loss (Magliozzi et al., 2007, 2010).

A role for the LT pathway in attenuating clinical disease has
previously been described in the rodent model of MS, experi-
mental autoimmune encephalomyelitis (EAE; Gommerman et al.,
2003). Pharmacological disruption of LT signaling reduces the
size and number of meningeal FLS compared with control treat-
ment (Columba-Cabezas et al., 2006). Impaired FLS formation
following LT inhibition is concomitant with reduced mRNA levels
of CXCL10 and CXCL13 in the brain, suggesting that LT regu-
lates chemokine induction at peripheral sights of inflammation.
However, not unlike iBALT, emerging studies in EAE also support

Frontiers in Immunology | Antigen Presenting Cell Biology July 2012 | Volume 3 | Article 243 | 4

http://www.frontiersin.org/Antigen_Presenting_Cell_Biology/
http://www.frontiersin.org/Antigen_Presenting_Cell_Biology/archive


“fimmu-03-00243” — 2012/7/28 — 19:37 — page 5 — #5

Boulianne et al. Lymphotoxin-sensitive stromal cell environments

the notion that distinct pathways may culminate in orchestrat-
ing FLS. For example, adoptively transferred myelin-specific Th17
cells induce EAE concomitant with FLS formation (Peters et al.,
2011). How signals from the LT pathway and from Th17 cells co-
integrate to induce and/or maintain FLS structures in the CNS is
unknown.

CONCLUSION
It is clear that LTβR-generated signaling underpins the mainte-
nance and in some cases the function of stromal cell types within
lymphoid tissues. Not discussed here are examples of how LTβR
signaling is also important in myeloid/DC biology (Deluca and
Gommerman, 2012), and DC have been implicated in regulat-
ing stromal cells and the formation of FLS (GeurtsvanKessel et al.,
2009; Halle et al., 2009; Moussion and Girard, 2011). Thus, it will
be of interest to learn more about the connections between DC and
stromal cells with respect to the LT pathway. Moreover, many ques-
tions remain unanswered regarding how the LT pathway integrates

with other forms of input, such as Th17 cells, to orchestrate distinct
stages of FLS formation (i.e., initiation versus maintenance), and
which LTαβ and LTβR-expressing cell types support FLS. Indeed,
while exciting advances have been made toward understanding
the nature of stromal cell types in peripheral LN, this question has
barely been addressed in the mucosal lymphoid tissues and in the
context of FLS. Unraveling the many facets of LTβR signaling in
regulating and fine-tuning the immune response is a tall order, but
of value for considering the therapeutic potential of LT inhibitors
in treatment of chronic diseases.
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