
Fungi and bacteria cause many serious and 
sometimes devastating diseases in humans, 
animals, and crops. Furthermore, resist-
ance against antimicrobial drugs is steadily 
increasing. There is thus an urgent need to 
discover new antimicrobial drugs and drug 
targets. Antimicrobial peptides (AMPs) are 
widespread in nature and produced natu-
rally by animals, plants, fungi, and bacte-
ria (Zasloff, 2002). These secreted peptides 
typically act as broad spectrum antibiot-
ics as part of the innate immune systems 
of these organisms. AMPs that possess 
high activity against microbial patho-
gens are attracting great interest for use 
as novel therapeutic agents to prevent and 
treat microbial diseases (Brogden, 2005; 
Hancock and Sahl, 2006). The cell-pene-
trating properties of many AMPs facilitate 
them reaching intracellular targets which, 
in most cases, are unknown and may be 
novel (Marcos and Gandía, 2009; Nicolas, 
2009). Numerous candidate AMP-based 
drugs for use in humans, animals, and 
crops will undoubtedly appear over the 
next decade. A mechanistic understanding 
of their mode-of-action will be essential 
to underpin their use as new antimicro-
bial drugs, to identify novel drug micro-
bial targets, and assist the rational design 
of more powerful and specific AMPs and 
peptidomimetics.

Live-ceLL imaging of individuaL 
ceLLs
Live-cell imaging techniques have become 
powerful tools for understanding the 
dynamic modes-of-action of AMPs. They 
complement methods in which AMP- or 
peptoid-treated cells are typically fixed 
and then processed for immunolocali-
zation (e.g., Theis et al., 2005), electron 
microscopy (e.g., Friedrich et al., 2000), 

atomic force microscopy (e.g., Alves et al., 
2010), or X-ray tomography (Uchida et al., 
2009).

Live-cell imaging has been used primarily 
to analyze the effects of AMPs on the mor-
phology and growth of bacteria and fungi. 
Fluorescent dyes have sometimes been used 
in these studies (e.g., as reporters of plasma 
membrane permeabilization, cell death, or 
to label cell walls). However, most of these 
studies have been restricted to imaging 
cells at a specific time point after treatment 
rather than performing time-lapse imag-
ing and measurements on the same cells to 
monitor their dynamic changes in response 
to AMPs. Nevertheless, these studies pro-
vide useful information relating to the 
effects of AMPs on microbial cells, includ-
ing thickening or weakening of cell walls, 
cell enlargement/shrinkage, or alterations 
in cell growth/branching patterns, as well 
as cell permeabilization and killing. These 
responses can be related to the stress the 
cell is sensing but also as defense responses 
to counteract peptide action. Most studies 
using live-cell imaging and AMPs have been 
done with fungi rather than bacteria, due, 
in part, to the advantages of fungal cells 
(larger cells, easy visualization, and non-
motile). Morphological studies of the effects 
of plant defensins on fungi, for instance, 
have resulted in these AMPs being divided 
into two different subgroups, referred to 
as morphogenic and non-morphogenic, 
according to the type of morphological 
changes they induce in defensin-sensitive 
fungi (Thomma et al., 2002). Morphogenic 
defensins inhibit hyphal growth with a 
concomitant increase in hyphal branch-
ing, whereas non-morphogenic defensins 
inhibit growth without causing marked 
changes in cell morphology (Terras et al., 
1992; Broekaert et al., 1995). Recently, the 

γ-core motif within the related Medicago 
defensins MsDef1 and MtDef4 has been 
shown to contain the major determinants 
which contribute to their morphogenicity 
and antifungal activity against the phy-
topathogenic fungus Fusarium gramine-
arum (Sagaram et al2011). Another plant 
defensin, RsAFP2, has been shown to induce 
septin mislocalization and to impair the 
yeast-to-hypha transition in the human 
pathogen Candida albicans (Thevissen et al., 
2012). In the phytopathogen Penicillium 
digitatum, we have reported alterations in 
cell morphology, conidiophore formation, 
and cell wall structure following expo-
sure to the rationally designed peptide 
PAF26 (Muñoz et al., 2006) and cationic 
Lactoferricin-derived peptides (Muñoz and 
Marcos, 2006). Here it was shown, using 
the chitin-binding fluorophore calcofluor 
white with the membrane permeabilization 
reporter dye Sytox Green, that the peptides 
when used at sub- inhibitory concentrations 
caused abnormalities in cell morphology 
and growth pattern without permeabiliz-
ing the plasma membrane.

The real innovation for visualizing the 
dynamics of AMP–microbe interactions in 
recent years has been achieved with the use 
of fluorescently labeled peptides (or pep-
tidomimetics) in combination with live-
cell imaging, particularly using confocal 
microscopy. Conveniently, both natural and 
synthetic AMPs can be fluorescently labeled 
using commercially available protein tag-
ging protocols (e.g., Lobo et al., 2007; van 
der Weerden et al., 2008). AMPs can also 
be chemically synthesized with fluores-
cent labels (e.g., fluorescein-, rhodamine-, 
BODIPY-, or Alexa fluor-based dyes, or 
quantum dots) with the fluorescent group 
at the N or C terminus of the peptide or pep-
tidomimetic (e.g., Muñoz et al., 2006, 2012; 
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Mochon and Liu, 2008; Jang et al., 2010; 
Mania et al., 2010; Srinivas et al., 2010). 
The fluorescent AMPs commonly retain 
their antifungal activity although this may 
be reduced, often minimally, compared with 
the unlabelled AMPs. Most importantly, is 
that these fluorescent AMPs can be directly 
observed by live-cell imaging in time course 
experiments. The use of these AMP con-
jugates is greatly increasing our knowledge 
of their interaction, method of penetration, 
pathways of intracellular transport, and 
sites of antimicrobial action within living 
microorganisms. Furthermore, live-cell 
imaging gives an improved understanding 
of how the dynamic intracellular localiza-
tion of the peptide influences the dynamic 
morphogenesis and physiology of individ-
ual microbial cells.

Various antifungal peptides and plant 
defensins have been shown to be internal-
ized by living fungal cells (Oberparleiter 
et al., 2003; Theis et al., 2003; Moreno et al., 
2006; van der Weerden et al., 2008; Mania 
et al., 2010; Binder et al., 2011; Maurya et al., 
2011). For instance, the antifungal protein 
AFP from Aspergillus giganteus and the plant 
defensin Psd1 exhibited co-localization 
with Sytox Green- and DAPI-stained fun-
gal nuclei, respectively (Moreno et al., 2006; 
Lobo et al., 2007). Nevertheless, in all these 
examples the mechanism of AMP internali-
zation or their intracellular targets remain 
unknown. Histatin-5 is an antifungal AMP 
whose internalization mechanism coupled 
with activity has been studied in most detail 
in the pathogen C. albicans. Two distinct 
pathways for its intracellular trafficking 
have been postulated: slower endocytic 
internalization and a more rapid energy-
independent uptake into the cytoplasm and 
vacuole (Mochon and Liu, 2008; Jang et al., 
2010; Jang and Edgerton, 2012). In parallel, 
we have recently described a concentration-
dependent mechanism of cell penetration 
and killing by the de novo designed hexa-
peptide PAF26 in the fungus Neurospora 
crassa (Muñoz et al., 2012). This peptide 
was shown to be endocytically internalized 
at low fungicidal concentrations, accumu-
lating in vacuoles that expanded, and then 
was actively transported into the cytoplasm, 
which coincided with cell death. This study 
used a combination of vital fluorescent dyes 
(the membrane selective dye, FM4-64; the 
vacuolar dye, cDFFDA, and the cell death 
reporter propidium iodide), nuclei labeled 

with GFP, and either FITC- or TMR-labeled 
PAF26. These analyses demonstrated the 
advantages of how the direct observation 
of a peptide can be related to its subcellular 
effects at different stages in its antimicro-
bial action in individual cells. Even though 
the synthetic PAF26 and natural histatin-5 
are cationic peptides, they are structurally 
unrelated (e.g., PAF26 is a hexapeptide 
and histatin-5 possesses 24 amino acids), 
they nevertheless seem to exhibit similar 
concentration-dependent pathways of 
internalization. As a result, we have pro-
posed that PAF26 may be used as a simple 
model for mode-of-action studies of cati-
onic antifungal AMPs such as histatin-5, as 
well as understanding how different aspects 
of its activity (e.g., endocytic and passive 
internalization, intracellular trafficking, and 
cell killing) are determined by individual 
residues or domains within its six amino 
acid sequence (Muñoz et al., 2012). Live-
cell imaging and analytical techniques will 
provide novel insights into these processes.

Fluorescently labeled AMPs have only 
been used in a few live-cell imaging studies 
on bacteria. An interesting recent study by 
Sochacki et al (2011) showed the dynamic 
killing by the human AMP LL-37 of single 
Escherichia coli cells using time-lapse imag-
ing. Rhodamine labeled LL-37 was moni-
tored in combination with periplasmic GFP 
and the dye Sytox green to demonstrate 
that disruption of the cytoplasmic mem-
brane by the peptide was not the growth-
inhibiting mechanism, but rather this was 
caused by translocation across the outer 
membrane and access of the peptide into 
the periplasmic space. Leptihn et al. (2009) 
investigated the mode-of-action of the S1 
peptide using fluorescence correlation 
spectroscopy (FCS) and single molecule 
tracking using quantum-dot labeled pep-
tide. Using this approach they elucidated 
a temporal and spatial perspective of the 
bactericidal events involved in S1 peptide 
action.

Live-ceLL anaLysis of ceLL 
popuLations
The use of live-cell probes to measure and 
analyze various physiological parameters in 
AMP-treated populations of living cells has 
also proven very useful. For these studies, 
multiwell plate fluorimetry/luminometry 
or flow cytometry have been used. 96- or 
384-microtiter well plate assays provide 

average measurements across a whole cell 
population. They are well suited for high 
throughput analysis and for monitoring 
changes in various physiological param-
eters [e.g., membrane potential and per-
meability, reactive oxygen species (ROS), 
intracellular calcium] with high temporal 
resolution. Flow cytometry, on the other 
hand, is able to generate one or more fluo-
rescence measurements of a physiological 
or other cell parameter at a single time 
point for each cell in population. It is thus 
not suited for dynamic measurements of 
cell physiology but provides detailed infor-
mation on the heterogeneity of responses 
within a cell population. Potentiometric 
dyes have been used to measure the plasma 
membrane potential in response to treat-
ment with plant defensins (Thevissen et al., 
1996), the protein PAF from Penicillium 
chrysogenum (Leiter et al., 2005), hista-
tin-5 (Helmerhorst et al., 2001b), or PAF26 
(Muñoz et al., 2012). Fluorescent dyes have 
been employed to detect ROS forma-
tion following treatment with histatin-5 
(Helmerhorst et al., 2001a), VS2 and VS3 
(Maurya et al., 2011), PAF26 (Carmona 
et al., 2012), PAF protein (Leiter et al., 
2005), or Lactoferrin (Andrés et al., 2008). 
The genetically encoded calcium-sensitive, 
bioluminescent protein aequorin has been 
used to measure changes in intracellular 
calcium in response to treatment with the 
PAF protein (Binder et al., 2010, 2011) or 
PAF26 (Muñoz et al., 2012). Kim and Cha 
(2006) used a Förster resonance energy 
transfer (FRET)-based assay to quantify 
AMP-induced membrane disruption in 
E. coli by measuring changes in the FRET 
efficiency of a cytosolic protein when it 
became released into the lower pH envi-
ronment of the external medium.

future prospects
The potential of using fluorescent labeled 
AMPs in combination with multiwell plate 
measurements or flow cytometry has been 
explored to only a limit extent. For example, 
Benincasa et al. (2009) used flow cytometry 
to distinguish an AMP that was internal-
ized by bacterial cells from another that was 
membrane active by using cell impermeant 
trypan blue to quench the fluorescence of 
fluorescently labeled AMP that was on the 
cell surface. In the future, the use of “smart 
probes” to label AMPs will be useful where 
the fluorescence spectral characteristics 
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of the label changes depending on the 
cell compartment that the AMP is in. For 
example, a label that is pH-sensitive could 
be used to report the transport of the AMP 
into an acidic organelle such as a vacuole. 
The targeting of genetically encoded physi-
ological reporters (e.g., ROS-sensitive, pH-
sensitive, or calcium-sensitive GFP-based 
indicators) to different cell compartments 
or organelles will also be extremely useful to 
monitor the effects of AMPs on cell popula-
tions using multiwell plate fluorimetry or 
flow cytometry.

There are also now a wide range of 
advanced, live-cell imaging technologies 
which are commercially available and that 
need to be explored with regard to analyz-
ing the influence of fluorescently labeled 
AMPs on living cells. These include: flu-
orescence lifetime imaging microscopy 
and/or FRET microscopy to image and 
measure interactions between fluores-
cently labeled AMPs and other molecules 
(Sekar and Periasamy, 2003; Becker, 2012); 
fluorescence recovery after photobleach-
ing (FRAP) to visualize and measure pro-
cesses such as the rate of AMP diffusion or 
trafficking in cells (Lippincott-Schwartz 
et al., 2003); FCS to measure binding con-
stants between peptides and other mol-
ecules (Bacia and Schwille, 2007); various 
super-resolution microscopic techniques 
that allow the spatial resolution achiev-
able with fluorescence microscopy to be 
significantly increased with living cells 
(Chi, 2009); and high content, multipa-
rameter imaging which are designed for 
ultra high throughput analysis of liv-
ing cells in multiwell plates (Taylor and 
Haskins, 2007).

In summary, live-cell imaging and ana-
lytical techniques are extremely power-
ful methods that can provide direct, high 
spatiotemporal resolution information 
on the dynamics and complexity of the 
modes-of-action of AMPs, and also novel 
peptidomimetics (Scorciapino and Rinaldi, 
2012). In the future, these approaches will 
undoubtedly have a profound impact on 
our understanding of the ways in which 
AMPs work which should greatly assist the 
rational design of new and more effective 
antimicrobial drugs.
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